Skip to main content
Log in

Buchanania cochinchinensis (Lour.) M.R. Almedia habitat exhibited robust adaptability to diverse socioeconomic scenarios in eastern India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

One of the greatest challenges to ecosystems is the rapidity of climate change, and their ability to adjust swiftly will be constrained. Climate change will disrupt the ecological balances, causing species to track suitable habitats for survival. Consequently, understanding the species’ response to climate change is crucial for its conservation and management, and for enhancing biodiversity through effective management. This research intends to examine the response of the vulnerable Buchanania cochinchinensis species to climate change. We modeled the potential suitable habitats of B. cochinchinensis for the present and future climatic scenario proxies based on the Shared Socioeconomic Pathways (SSP), i.e. SSP126, 245, 370 and 585. Maxent was used to simulate the potential habitats of B. cochinchinensis. The study found that ~28,313 km2 (~10.7% of the study area) was a potentially suitable habitat of B. cochinchinensis for the current scenario. The majority of the suitable habitat area ~25,169 km2 occurred in the central and southern parts of the study area. The future projection shows that the suitable habitat to largely increase in the range of 10.5–20% across all the SSPs, with a maximum gain of ~20% for SSP 126. The mean temperature of the wettest quarter (Bio_08) was the most influential contributing variable in limiting the distribution of B. cochinchinensis. The majority of the suitable habitat area occurred in the vegetation landscape. The study shows a southward shifting of B. cochinchinensis habitat by 2050. The phytosociological analysis determined B. cochinchinensis as Shorea robusta’s primary associate. Our research provides significant insight into the prospective distribution scenario of B. cochinchinensis habitat and its response to diverse socioeconomic scenarios, and offers a solid foundation for management of this extremely important species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acácio, V., Dias, F. S., Catry, F. X., Rocha, M., & Moreira, F. (2017). Landscape dynamics in Mediterranean oak forests under global change: Understanding the role of anthropogenic and environmental drivers across forest types. Global Change Biology, 23(3), 1199–1217. https://doi.org/10.1111/gcb.13487

    Article  Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/10.1111/ecog.01132

    Article  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Avani, P., Bauri, F. K., & Sarkar, S. K. (2019). Chironji: A golden nut fruit of Indian tribes. Acta Hotic, 1241, 37–42. https://doi.org/10.17660/ActaHortic.2019.1241.6

    Article  Google Scholar 

  • Baldock, D. (1990). Agriculture and habitat loss in Europe (No. 3). WWF International.

    Google Scholar 

  • Bazzaz, F. A. (1998). Tropical forests in a future climate: Changes in biological diversity and impact on the global carbon cycle. Potential Impacts of Climate Change on Tropical Forest Ecosystems, 177–196. https://doi.org/10.1007/978-94-017-2730-3_7

  • Beltrán-Rodríguez, L., Manzo-Ramos, F., Maldonado-Almanza, B., Martínez-Ballesté, A., & Blancas, J. (2017). Wild medicinal species traded in the Balsas Basin, Mexico: Risk analysis and recommendations for their conservation. Journal of Ethnobiology, 37(4), 743–764. https://doi.org/10.2993/0278-0771-37.4.743

    Article  Google Scholar 

  • Benchimol, M., & Peres, C. A. (2015). Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology, 103(2), 408–420. https://doi.org/10.1111/1365-2745.12371

    Article  Google Scholar 

  • Benveniste, H., Oppenheimer, M., & Fleurbaey, M. (2022). Climate change increases resource-constrained international immobility. Nature Climate Change, 12(7), 634–641.

    Article  Google Scholar 

  • Bhadra, A. K., & Pattanayak, S. K. (2017). Dominance is more justified than abundance to calculate Importance Value Index (IVI) of plant species. Asian Journal of Science and Technology, 8(2), 4304–4326.

    Google Scholar 

  • Biswas, S., & Khan, D. K. (2011). Habitat fragmentation and nutrient dynamics in tropical dry deciduous forests of West Bengal, India. ARPN Journal of Science and Technology, 2(Special Issue), 109–119.

    Google Scholar 

  • Boisvert-Marsh, L., & de Blois, S. (2021). Unravelling potential northward migration pathways for tree species under climate change. Journal of Biogeography, 48(5), 1088–1100. https://doi.org/10.1111/jbi.14060

    Article  Google Scholar 

  • Boral, D., & Moktan, S. (2021). Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: Current and future scenarios. Ecological Processes, 10(1), 26. https://doi.org/10.1186/s13717-021-00294-5

    Article  Google Scholar 

  • Brandt, M., Rasmussen, K., Peñuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer, J. R. B., & Fensholt, R. (2017). Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nature ecology & evolution, 1(4), 0081. https://doi.org/10.1038/s41559-017-0081

    Article  Google Scholar 

  • Braun-Blanquet, J. (1932). Plant sociology. The study of plant communities. In Plant sociology. The study of plant communities. First ed. CABI.

    Google Scholar 

  • Burdon, F. J., McIntosh, A. R., & Harding, J. S. (2013). Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecological Applications, 23(5), 1036–1047. https://doi.org/10.1890/12-1190.1

    Article  Google Scholar 

  • Cao, Z., Zhang, L., Zhang, X., & Guo, Z. (2021). Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model. Sustainability, 13(20), 11253. https://doi.org/10.3390/su132011253

    Article  Google Scholar 

  • Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil systems, 3(1), 12. https://doi.org/10.3390/soilsystems3010012

    Article  Google Scholar 

  • Chamberlain, S. (2013). Socio-economic development in India's Jharkhand: An analysis of the influence of coal mining. https://doi.org/10.2139/ssrn.2386181

    Book  Google Scholar 

  • Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2013). Growth of tree seedlings in a tropical dry forest in relation to soil moisture and leaf traits. Journal of Plant Ecology, 6(2), 158–170. https://doi.org/10.1093/jpe/rts025

    Article  Google Scholar 

  • Chauhan, P. S., Jitendra, S., & Kavita, A. (2012). Chironjee: A promising tree fruits of dry subtropics. Hort Flora Research Spectrum, 1(4), 375–379.

    Google Scholar 

  • Chitale, V. S., & Behera, M. D. (2012). Can the distribution of sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in. India due to changing climate? Current Science, 102(8), 1126–1135.

    Google Scholar 

  • Chowdhury, E. H., & Hassan, Q. K. (2015). Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 224–236. https://doi.org/10.1016/j.isprsjprs.2014.03.011

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement of nominal scales. Educational and Psychological Measurement, 20, 37–46. https://doi.org/10.1177/00131644600200010

    Article  Google Scholar 

  • Curtis, J. T. (1959). The vegetation of Wisconsin: An ordination of plant communities. University of Wisconsin Pres.

    Google Scholar 

  • Dai, Y., Ye, W. C., Wang, Z. T., Matsuda, H., Kubo, M., & But, P. P. H. (2002). Antipruritic and antinociceptive effects of Chenopodium album L. in mice. Journal of ethnopharmacology, 81(2), 245–250. https://doi.org/10.1016/S0378-8741(02)00096-X

    Article  CAS  Google Scholar 

  • Davreux, T., Godbold, D. L., & Walmsley, J. (2011). Climate change and tree species migration impacts on boreal and temperate forest biodiversity. Quarterly Journal of Forestry, 105(2), 141–147.

    Google Scholar 

  • de Souza, W. M., Paiva, M. C. G., Zaidan, Ú. R., Mendes, K. F., & de Freitas, F. C. L. (2022). Parameters of the phytosociological survey to evaluate the abundance, distribution, and diversity of the weed community. In Applied weed and herbicide science (pp. 97–126). Springer International Publishing. https://doi.org/10.1007/978-3-031-01938-8_3

    Chapter  Google Scholar 

  • Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2017). The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and Evolution, 7(7), 2238–2248. https://doi.org/10.1002/ece3.2846

    Article  Google Scholar 

  • Degrande, A., Tadjo, P., Takoutsing, B., Asaah, E., Tsobeng, A., & Tchoundjeu, Z. (2013). Getting trees into farmers’ fields: Success of rural nurseries in distributing high quality planting material in Cameroon. Small-Scale Forestry, 12(3), 403–420. https://doi.org/10.1007/s11842-012-9220-4

    Article  Google Scholar 

  • Deshmukh, A. S., & Ganeshani, G. (2013). Kalmkari—An eco-friendly approach for sustainable fashion development. International Journal of Theoretical and Applied Sciences, 5(1), 84–87.

    Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., et al. (2006). Novel methods improve prediction of species distributions from occurrence data. Ecography, 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • Ellwood, E. R., Temple, S. A., Primack, R. B., Bradley, N. L., & Davis, C. C. (2013). Record-breaking early flowering in the Eastern United States (ed Hérault B). PLoS ONE, 8, e53788. https://doi.org/10.1371/journal.pone.0053788

    Article  CAS  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  • Garai, S., Khatun, M., Singh, R., Sharma, J., Pradhan, M., Ranjan, A., Rahaman, S. M., Khan, M. L., & Tiwari, S. (2022). Assessing correlation between Rainfall, normalized difference Vegetation Index (NDVI) and land surface temperature (LST) in Eastern India. Safety in Extreme Environments, 1–9. https://doi.org/10.1007/s42797-022-00056-2

  • Garai, S., Ranjan, A., Rahaman, S. K., Khatun, M., Kumar, R., Kumar, B., Mishra, S. N., & Tiwari, S. (2021). Climate change and habitat adaptability of Madhuca longifolia (J. Koenig ex L.) jf macbr.: An endangered tree species of high socio-economic significance to tribal community of eastern India. Indian Journal of Ecology, 48(4), 1062–1067.

    Google Scholar 

  • Geelani, S. N., Bhat, G. N., Mughal, A., Husain, M., Qaiser, Q. N., & Khan, P. A. (2018). Phytosociological status of trees and shrubs of Romshi range of Shopian forest division in Kashmir valley. Journal of Pharmacognosy and Phytochemistry, 7(3), 696–702.

    Google Scholar 

  • Ghosh, B. G., Garai, S., Rahaman, S. M., Khatun, M., Mohammad, N., Mishra, Y., Ranjan, A., & Tiwari, S. (2021). Assessing potential habitat distribution range of the endangered tree species Pterocarpus marsupium Roxb. Under the climate change scenario in India. Trees, Forests and People, 6, 100124. https://doi.org/10.1016/j.tfp.2021.100124

    Article  Google Scholar 

  • Han, Q., Keeffe, G., Caplat, P., & Simson, A. (2021). Cities as hot stepping stones for tree migration. NPJ Urban Sustainability, 1(1), 12. https://doi.org/10.1038/s42949-021-00021-1

    Article  Google Scholar 

  • Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. G., Jonsen, I. D., Shaffer, S. A., Dunne, J. P., Costa, D. P., Crowder, L. B., & Block, B. A. (2013). Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change, 3(3), 234–238. https://doi.org/10.1038/nclimate1686

    Article  Google Scholar 

  • Hiwale, S., & Hiwale, S. (2015). Chironji (BuchananialanzanSpreng.). In Sustainable horticulture in semiarid dry lands (pp. 247–253). https://doi.org/10.1007/978-81-322-2244-6_17

    Chapter  Google Scholar 

  • Horton, R. M., de Sherbinin, A., Wrathall, D., & Oppenheimer, M. (2021). Assessing human habitability and migration. Science, 372(6548), 1279–1283.

    Article  CAS  Google Scholar 

  • Hu, L. S., & Dong, Y. W. (2022). Northward shift of a biogeographical barrier on China’s coast. Diversity and Distributions, 28(2), 318–330. https://doi.org/10.1111/ddi.13463

    Article  Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., & Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933. https://doi.org/10.1126/science.1085046

    Article  CAS  Google Scholar 

  • Inague, G. M., Zwiener, V. P., & Marques, M. C. (2021). Climate change threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil. Perspectives in Ecology and Conservation, 19(1), 53–60. https://doi.org/10.1016/j.pecon.2020.12.006

    Article  Google Scholar 

  • Johnson, L., Evans, J., Montgomery, J., & Chenery, C. (2022). The forest effect: Biosphere 87Sr/86Sr shifts due to changing land use and the implications for migration studies. Science of the Total Environment, 839, 156083. https://doi.org/10.1016/j.scitotenv.2022.156083

    Article  CAS  Google Scholar 

  • Kala, C. P. (2009). Aboriginal uses and management of ethnobotanical species in deciduous forests of Chhattisgarh state in India. Journal of Ethnobiology and Ethnomedicine, 5(1), 1–9. https://doi.org/10.1186/1746-4269-5-20

    Article  Google Scholar 

  • Komac, B., Esteban, P., Trapero, L., & Caritg, R. (2016). Modelization of the current and future habitat suitability of Rhododendron ferrugineum using potential snow accumulation. PLoS One, 11(1), e0147324. https://doi.org/10.1371/journal.pone.0147324

    Article  CAS  Google Scholar 

  • Kraemer, B. M., Pilla, R. M., Woolway, R. I., Anneville, O., Ban, S., Colom-Montero, W., Devlin, S. P., Dokulil, M. T., Gaiser, E. E., Hambright, K. D., Hessen, D. O., Higgins, S. N., Johnk, K. D., Keller, W., Knoll, L. B., Leavitt, P. R., Lepori, F., Luger, M. S., Maberly, S. C., et al. (2021). Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 11(6), 521–529. https://doi.org/10.1038/s41558-021-01060-3

    Article  Google Scholar 

  • Kumar, A., Kumar, A., Adhikari, D., Gudasalamani, R., Saikia, P., & Khan, M. L. (2020). Ecological niche modeling for assessing potential distribution of Pterocarpus marsupium Roxb. In Ranchi, eastern India. Ecological Research, 35(6), 1095–1105. https://doi.org/10.1111/1440-1703.12176

    Article  Google Scholar 

  • Kumar, J., Vengaiah, P. C., Srivastav, P. P., & Bhowmick, P. K. (2012). Chironji nut (Buchanania lanzan) processing, present practices and scope. NIScPR Publications.

    Google Scholar 

  • Kumar, R., & Saikia, P. (2020). Forest resources of Jharkhand, Eastern India: Socio-economic and bio-ecological perspectives. In N. Roy, S. Roychoudhury, S. Nautiyal, S. Agarwal, & S. Baksi (Eds.), Socio-economic and eco-biological dimensions in resource use and conservation. Environmental Science and Engineering. Springer. https://doi.org/10.1007/978-3-030-32463-6_4

    Chapter  Google Scholar 

  • Kumar, R., & Saikia, P. (2021). Population structure and regeneration status of Shorea robusta and associated trees in Sal forests of Ranchi, Eastern India. Tropical Ecology, 62(1), 34–51. https://doi.org/10.1007/s42965-020-00121-6

    Article  Google Scholar 

  • Lai, S., Loke, L. H., Hilton, M. J., Bouma, T. J., & Todd, P. A. (2015). The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean & Coastal Management, 103, 78–85. https://doi.org/10.1016/j.ocecoaman.2014.11.006

    Article  Google Scholar 

  • Liu, G., & Mai, J. (2022). Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios. Energy, 251, 123885. https://doi.org/10.1016/j.energy.2022.123885

    Article  Google Scholar 

  • Lobo, J. M., Jimenez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr, 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Malakar, A., Sahoo, H., Sinha, A., & Kumar, A. (2023). Necessity of genetic diversity study and conservation practices in chironji (Buchanania cochinchinensis (Lour.) MR Almedia). Environment Conservation Journal, 24(1), 253–260. https://doi.org/10.36953/ECJ.12802358

    Article  Google Scholar 

  • McHenry, J., Welch, H., Lester, S. E., & Saba, V. (2019). Projecting marine species range shifts from only temperature can mask climate vulnerability. Global Change Biology, 25(12), 4208–4221. https://doi.org/10.1111/gcb.14828

    Article  Google Scholar 

  • Megerssa, G. R., & Bekere, Y. B. (2019). Causes, consequences and coping strategies of land degradation: Evidence from Ethiopia. Journal of Degraded and Mining Lands Management, 7(1), 1953. https://doi.org/10.15243/jdmlm.2019.071.1953

    Article  Google Scholar 

  • Melles, S. J., Fortin, M. J., Lindsay, K., & Badzinski, D. (2011). Expanding northward: Influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Global Change Biology, 17(1), 17–31. https://doi.org/10.1111/j.1365-2486.2010.02214.x

    Article  Google Scholar 

  • Mishra, S. N., Kumar, D., Kumar, B., & Tiwari, S. (2021). Assessing impact of varying climatic conditions on distribution of Buchanania cochinchinensis in Jharkhand using species distribution modeling approach. Current Research in Environmental Sustainability, 3, 100025. https://doi.org/10.1016/j.crsust.2021.100025

    Article  Google Scholar 

  • Mishra, S., & Tiwari, S. (2018). Spatial distribution of Buchanania cochinchinensis in Jharkhand. Biobrio, 5, 344–353.

    Google Scholar 

  • Misra, R. (1968). Ecology Work Book. Oxford & IBH Publishers.

    Google Scholar 

  • Mohammad, N., Rahaman, S. M., Khatun, M., Rajkumar, M., Garai, S., Ranjan, A., & Tiwari, S. (2022). Teak (Tectona grandis Lf) demonstrates robust adaptability to climate change scenarios in central India. Vegetos, 1–10. https://doi.org/10.1007/s42535-022-00444-w

  • Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology. Wiley.

    Google Scholar 

  • Nishad, P. K., Patel, S., Naik, R. K., Mishra, N. K., & Sahu, P. (2018). Assessment of some physical properties of char (Buchanania lanzan) seed. Current Journal of Applied Science and Technology, 32(1), 1–8. https://doi.org/10.9734/CJAST/2019/46137

    Article  Google Scholar 

  • Padalia, H., Srivastava, V., & Kushwaha, S. P. S. (2014). Modeling potential invasion range of alien invasive species, Hyptissuaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Eco Inform, 22, 36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002

    Article  Google Scholar 

  • Padma, T. V. (2014). Himalayan plants seek cooler climes: Race is on to record mountain biodiversity before it is lost. Nature, 512(7512), 359–360.

    Article  CAS  Google Scholar 

  • Panda, R. M., Behera, M. D., & Roy, P. S. (2018). Assessing distributions of two invasive species of contrasting habits in future climate. Journal of Environmental Management, 213, 478–488. https://doi.org/10.1016/j.jenvman.2017.12.053

    Article  Google Scholar 

  • Pearson, R. G., & Dawson, T. E. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful. Global Ecology and Biogeography, 12, 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  • Pelletier, J., Chidumayo, E., Trainor, A., Siampale, A., & Mbindo, K. (2019). Distribution of tree species with high economic and livelihood value for Zambia. Forest Ecology and Management, 441, 280–292. https://doi.org/10.1016/j.foreco.2019.03.051

    Article  Google Scholar 

  • Peterson, A. T. (2006). Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics. https://doi.org/10.17161/bi.v3i0.29

  • Phillips, S. J. (2017). A brief tutorial on Maxent. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 05 Dec 2022.

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips, S. J., Dudik, M., & Schepire, R. E. (2022). Maxent software for modeling species niches and distributions (version 3.4.4). https://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 10 Oct 2022.

  • Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25(6), 1922–1940. https://doi.org/10.1111/gcb.14619

    Article  Google Scholar 

  • Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0

    Article  Google Scholar 

  • Prasad, S. (2020). Chironji (Buchanania lanzan): A retreating valuable resource of Central India. International Journal of Bioresource Science, 7(1), 01–04. https://doi.org/10.30954/2347-9655.01.2020.1

    Article  Google Scholar 

  • Profirio, L. L., Harris, R. M. B., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., Bindoff, N. L., & Mackey, B. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE, 9(11), e113749. https://doi.org/10.1371/journal.pone.0113749

    Article  CAS  Google Scholar 

  • Qi, S., Luo, W., Chen, K. L., Li, X., Luo, H. L., Yang, Z. Q., & Yin, D. M. (2022). The prediction of the potentially suitable distribution area of Cinnamomum mairei H. Lév in China based on the MaxEnt Model. Sustainability, (13), 14, 7682. https://doi.org/10.3390/su14137682

  • Rajput, B. S., Gupta, D., Kumar, S., Singh, K., & Tiwari, C. (2018). Buchanania lanzan Spreng (Chironji): A vulnerable multipurpose tree species in Vindhyan region. Journal of Pharmacognosy and Phytochemistry, 7(5), 833–836.

    Google Scholar 

  • Raxworthy, C., Martinez-Meyer, E., Horning, N., Nussbaum, R., Schneider, G., Ortega-Huerta, M., & Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837–841. https://doi.org/10.1038/nature02205

    Article  CAS  Google Scholar 

  • Ray, D., Behera, M. D., & Jacob, J. (2015). Predicting the distribution of rubber trees (Hevea brasiliensis) through ecological niche modeling with climate, soil, topography and socioeconomic factors. Ecological Research, 31(1), 75–91. https://doi.org/10.1007/s11284-015-1318-7

    Article  Google Scholar 

  • Sahle, M., Furst, C., & Yeshitela, K. (2018). Plant diversity analysis for conservation of Afromontane vegetation in socio-ecological mountain landscape of Gurage, South Central Ethiopia. International Journal of Biodiversity and Conservation, 10(4), 161–171. https://doi.org/10.5897/IJBC2017.1172

    Article  Google Scholar 

  • Sahu, S. C., Dhal, N. K., & Mohanty, R. C. (2012). Tree species diversity, distribution and population structure in a tropical dry deciduous forest of Malyagiri hill ranges, Eastern Ghats, India. Tropical Ecology, 53(2), 163–168.

    Google Scholar 

  • Salinas-de-León, P., Andrade, S., Arnés-Urgellés, C., Bermudez, J. R., Bucaram, S., Buglass, S., Cerutti, F., Cheung, W., Hoz, C. D. L., Hickey, V., Jíménez-Uzcátegui, G., Keith, I., MarínJarrín, J. R., Martí-Puig, P., Medina, M., Moya, A., Pauly, D., Orellana, D., Ostergaard-Klem, R., et al. (2020). Evolution of the Galapagos in the Anthropocene. Nature Climate Change, 10(5), 380–382. https://doi.org/10.1038/s41558-020-0761-9

    Article  Google Scholar 

  • Sanderson, B. M., Knutti, R., & Caldwell, P. (2015). A representative democracy to reduce interdependency in a multimodel ensemble. Journal Of Climate, 28, 5171–5194. https://doi.org/10.1175/JCLI-D-14-00362.1

    Article  Google Scholar 

  • Shannon, C. E., & Weiner, W. (1963). The mathematical theory of communities. University of Illinois Press.

    Google Scholar 

  • Sharma, A. (2012). Scientific harvesting for quality seed collection of Buchanania lanzan Spreng for its conservation and sustainable management–Case study of Chhindwara, Madhya Pradesh, India. International Journal of Bio-Science and Bio-Technology, 4(1), 65–74.

    Google Scholar 

  • Sharma, J., Singh, R., Garai, S., Rahaman, S. M., Khatun, M., Ranjan, A., Mishra, S. N., & Tiwari, S. (2022). Climate change and dispersion dynamics of the invasive plant species Chromolaena odorata and Lantana camara in parts of the central and eastern India. Ecological Informatics, 72, 101824. https://doi.org/10.1016/j.ecoinf.2022.101824

    Article  Google Scholar 

  • Sharma, R. S., Sharma, S., Kumar, A., Singh, M., Dwivedi, N., Singh, S. V., & Purohit, A. (2021). Present status and future outlook for conservation of Chironji (Buchanania lanzan Spreng.). Octa Journal of Biosciences, 9(1), 12–20.

    CAS  Google Scholar 

  • Sharma, V., Bhardwaj, U., Sharma, S., & Sharma, S. (2012). Medicinal plants: Need for sustainable exploitation (with special reference to Himachal Pradesh). Journal of Pharmaceutical Research, 5, 4313–4317.

    Google Scholar 

  • Sher, H., Al-Yemeni, M. N., Masrahi, Y. S., & Shah, A. H. (2010). Ethnomedicinal and ethnoecological evaluation of Salvadorapersica L.: A threatened medicinal plant in Arabian Peninsula. Journal of Medicinal Plants Research, 4(12), 1209–1215.

    Google Scholar 

  • Shukla, K. M. L., Khan, A. A., Khan, S., & Verma, A. K. (2001). Traditional phototherapy of Maikal range and plateau of Pendra district Bilaspur MP. India Advanced Plant Science, 14, 11.

    Google Scholar 

  • Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C., & Lau, M. K. (2016). How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators, 60, 223–230. https://doi.org/10.1016/j.ecolind.2015.06.036

    Article  Google Scholar 

  • Siddiqui, M. Z., Chowdhury, A. R., Prasad, N., & Thomas, M. (2014). Buchanania lanzan: A species of enormous potential. World Journal of Pharmaceutical Sciences, (2), 374–379.

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688–688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  • Singh, S., Singh, A. K., Mishra, D. S., Saroj, P. L., & AppaRao, V. V. (2018). Chironji is promising fruit for the tribal. Journal of Indian Horticulture, 63(5), 37–41.

    Google Scholar 

  • Sol, D., González-Lagos, C., Moreira, D., Maspons, J., & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 17(8), 942–950. https://doi.org/10.1111/ele.12297

    Article  Google Scholar 

  • Solomun, M. K., Barger, N., Cerda, A., Keesstra, S., & Marković, M. (2018). Assessing land condition as a first step to achieving land degradation neutrality: A case study of the Republic of Srpska. Environmental Science & Policy, 90, 19–27. https://doi.org/10.1016/j.envsci.2018.09.014

    Article  CAS  Google Scholar 

  • Somodi, I., Lepesi, N., & Botta-Dukát, Z. (2017). Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecology and evolution, 7(3), 863–872. https://doi.org/10.1002/ece3.2654

    Article  Google Scholar 

  • Song, Y. H., Shahid, S., & Chung, E. S. (2022). Differences in multi-model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea. International Journal of Climatology, 42(5), 2688–2716. https://doi.org/10.1002/joc.7386

    Article  Google Scholar 

  • Souza, A. T., Ilarri, M., Campos, J., Ribas, F. O., Marques, J. C., & Martins, I. (2022). Boom and bust: Simulating the effects of climate change on the population dynamics of a global invader near the edge of its native range. Science of The Total Environment, 851, 158294. https://doi.org/10.1016/j.scitotenv.2022.158294

    Article  CAS  Google Scholar 

  • Srivastava, B., Singh, R., Bharthi, V., Meena, A. K., & Prakash, O. (2018). A comparative phytochemical approach for substitution of stem bark with small branches in Buchanania lanzan for medicinal use. Methods, 13, 14.

  • Swayze, N. C., & Tinkham, W. T. (2022). Application of unmanned aerial system structure from motion point cloud detected tree heights and stem diameters to model missing stem diameters. MethodsX, 101729. https://doi.org/10.1016/j.mex.2022.101729

  • Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., et al. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12, 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

    Article  CAS  Google Scholar 

  • Thakur, T. K., Dutta, J., Upadhyay, P., Patel, D. K., Thakur, A., Kumar, M., & Kumar, A. (2022). Assessment of land degradation and restoration in coal mines of central India: A time series analysis. Ecological Engineering, 175, 106493. https://doi.org/10.1016/j.ecoleng.2021.106493

    Article  Google Scholar 

  • Theodorou, P. (2022). The effects of urbanisation on ecological interactions. Current Opinion in Insect Science, 100922. https://doi.org/10.1016/j.cois.2022.100922

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, 102(23), 8245–8250. https://doi.org/10.1073/pnas.0409902102

    Article  CAS  Google Scholar 

  • Tiwari, S., Ghosh, B. G., Vaidya, S. N., Rahaman, S. M., Khatun, M., Garai, S., Saikia, P., & Kumar, A. (2021). Modeling potentially suitable lac cultivation zones of Butea monosperma to promote livelihood security in rural India. Vegetos, 34(3), 630–637. https://doi.org/10.1007/s42535-021-00222-0

    Article  Google Scholar 

  • Tiwari, S., Mishra, S. N., Kumar, D., Kumar, B., Vaidya, S. N., Ghosh, B. G., Rahaman, S. M., Khatun, M., Garai, S., & Kumar, A. (2022). Modeling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecological Processes, 11(1), 1–13. https://doi.org/10.1186/s13717-021-00354-w

    Article  Google Scholar 

  • Vanbergen, A. J., & Initiative, T. I. P. (2013). Threats to an ecosystem service: Pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251–259. https://doi.org/10.1890/120126

    Article  Google Scholar 

  • Vidhyarthy, A. K. (2011). Studies on important value index (IVI) of important tree species in sal forest of Jharkhand. Journal of Tropical Forestry, 27(2), 54–60.

    Google Scholar 

  • Vijay, M. K., Sharma, R. S., Maloo, S. R., Jain, V., & Sharma, A. (2022). Buchanania lanzan Spreng (Chironji): An endangered socio &-economic forest tree species of Central India. The Pharma Innovation Journal, SP-11(6), 336-342.

    Google Scholar 

  • Wani, I. A., Verma, S., Kumari, P., Charles, B., Hashim, M. J., & El-Serehy, H. A. (2021). Ecological assessment and environmental niche modeling of Himalayan rhubarb (Rheum webbianum Royle) in northwest Himalaya. PLoS One, 16(11), e0259345. https://doi.org/10.1371/journal.pone.0259345

    Article  CAS  Google Scholar 

  • Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335–342. https://doi.org/10.1890/10-1171.1

    Article  Google Scholar 

  • Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782

    Article  CAS  Google Scholar 

  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x

    Article  Google Scholar 

  • Yadav, S., Bhattacharya, P., Areendran, G., Sahana, M., Raj, K., & Sajjad, H. (2021). Predicting impact of climate change on geographical distribution of major NTFP species in the Central India Region. Modeling Earth Systems and Environment, 8(1), 449–468. https://doi.org/10.1007/s40808-020-01074-4

    Article  Google Scholar 

  • Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt model v3. 3.3 e tutorial (ArcGIS v10). Natural resource ecology laboratory. Colorado State University and the National Institute of Invasive Species Science.

    Google Scholar 

  • Zhang, J. L., Zhu, J. J., & Cao, K. F. (2007). Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees, 21(6), 631–643. https://doi.org/10.1007/s00468-007-0156-9

    Article  Google Scholar 

  • Zhang, X., Zhao, J., Wang, M., Li, Z., Lin, S., & Chen, H. (2022). Potential distribution prediction of Amaranthuspalmeri S. Watson in China under current and future climate scenarios. Ecology and Evolution, 12(12), e9505. https://doi.org/10.1002/ece3.9505

    Article  Google Scholar 

  • Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2020). Shifting habitats. https://doi.org/10.1038/s41558-020-0789-x

    Book  Google Scholar 

  • Zurlini, G., & Müller, F. (2008). Environmental security. Encyclopedia of Ecology, 2, 1350–1356.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance provided by CAMPA fund (Ministry of Environment, Forest and Climate change) under FGR (Forest Genetic Resources) [Sanction Order No.75/2019/ICFRE (R)/RP/SFRESPE (CAMPA)/FGR/Main File/ 55 dated:10/01/2020]. The authors sincerely acknowledge the Director, the Institute of Forest Productivity, Ranchi for providing institutional support. The authors also acknowledge the administrational assistance provided by the officials of the Jharkhand, Bihar, West Bengal State Forest Department during the field surveys. We acknowledge the resources and services provided by the WorldClim (https://www.worldclim.org/data/cmip6/cmip6climate.html), Diva GIS (https://www.diva-gis.org/) data site and the open-source MAXENT software.

Funding

Authors gratefully acknowledge the receipt of research grant from National Authority Compensatory Afforestation Fund Management, (CAMPA) through Ministry of Environment, Forest and Climate Change, New Delhi, Government of India, [Sanction Order No.75/2019/ICFRE (R)/RP/SFRESPE (CAMPA)/FGR/Main File/ 55 dated:10/01/2020] for the work reported herein.

Author information

Authors and Affiliations

Authors

Contributions

All the authors of this manuscript have contributed towards its conceptualization, designing and implementation. Material preparation, field data collection and analysis were performed by Sanjoy Garai, Yogeshwar Mishra, Ayushman Malakar, Rikesh Kumar. The first draft of the manuscript was written by Sanjoy Garai, Ayushman Malakar, Ronak Singh and Jassi Sharma. Sharad Tiwari supervised the entire manuscript writing and edited the document. All manuscripts are finally approved by all the authors.

Corresponding author

Correspondence to Sharad Tiwari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

B. cochinchinensis habitat showed resilience to future climate change scenarios.

B. cochinchinensis habitat shows a southward shift in the future (2050).

B. cochinchinensis is found as an associate species of Dalbergia sissoo.

B. cochinchinensis is a promising species in wasteland and dry land management.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garai, S., Mishra, Y., Malakar, A. et al. Buchanania cochinchinensis (Lour.) M.R. Almedia habitat exhibited robust adaptability to diverse socioeconomic scenarios in eastern India. Environ Monit Assess 195, 1005 (2023). https://doi.org/10.1007/s10661-023-11611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11611-0

Keywords

Navigation