Skip to main content
Log in

Comparative assessment of soil fertility across varying elevations

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land elevation exerts a significant influence on soil fertility through affecting macro and micro climatic conditions and geomorphological processes. To evaluate the soil fertility at different elevation classes, namely 1600–2000, 2000–2400, 2400–2800, and > 2800 m, 350 surface soil samples (0–30 cm) were collected from the agricultural lands of northwestern Iran. Soil properties, including soil texture, calcium carbonate (CaCO3), pH, electrical conductivity (EC), organic matter (OM), and soil macronutrients (TN, P, and K) and micronutrients (Fe, Mn, Zn, and Cu), were measured. Finally, the interpretation and classification of the soil samples were made using the nutritional value index (NIV). The comparison of the NIV index based on elevation changes showed that the Gomez method classifies the soil properties in an optimal order as evidenced by its tendency towards the center of the data. However, the Common method is more consistent with the observed trend. After classifying the NIV index using the Common method, it was determined that CaCO3 and soil salinity are not the limiting factor for soil fertility in different elevation classes. However, in all elevations, high pH, low OM at elevations > 2800 m, total nitrogen (TN), available phosphorous (AP), and micronutrients deficiencies, except Zn at the elevation of 1600–2000 m, are the main limiting factors for soil fertility of agricultural lands. The results provide further insight into the elevation-based land evaluation and may supports grower’s decision on nutrient management and crop selection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The data of digital elevation model are available in the earth explorer website (https://earthexplorer.usgs.gov/).

References

  • Amadu, F. O., Miller, D. C., & McNamara, P. E. (2020). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167, 106443. https://doi.org/10.1016/j.ecolecon.2019.106443

  • Amara, D. M. K., Patil, P. L., Kamara, A., & Saidu, D. H. (2017). Assessment of soil fertility status using nutrient index approach. Academia Journal of Agricultural Research, 5(2), 28–38.

    CAS  Google Scholar 

  • Badía, D., Ruiz, A., Girona, A., Martí, C., Casanova, J., Ibarra, P., & Zufiaurre, R. (2016). The influence of elevation on soil properties and forest litter in the siliceous Moncayo Massif, SW Europe. Journal of Mountain Science, 13(12). https://doi.org/10.1007/s11629-015-3773-6

  • Beg, K., & Chaurey, R. (2018). Assessment of soil fertility and nutrients status of Simrawal and part of Asrawal watershed. Tons sub-Basin, Ganga Basin.

  • Boudjabi, S., & Chenchouni, H. (2022). Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena, 210, 105910. https://doi.org/10.1016/j.catena.2021.105910

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Bremner, J., & Mulvaney, C. (1982). Nitrogen-total. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy-Soil-Science Society of America, Madison, 595–624.

  • Chen, Z., White, J. F., Malik, K., Chen, H., Jin, Y., Yao, X., Wei, X., Li, C., & Nan, Z. (2022). Soil nutrient dynamics relate to Epichloë endophyte mutualism and nitrogen turnover in a low nitrogen environment. Soil Biology and Biochemistry, 174. https://doi.org/10.1016/j.soilbio.2022.108832

  • Dhamak, A., Meshram, N., & Waikar, S. (2014a). Identification of major soil nutritional constraints in Vertisol, Inceptisol and Entisol from Ambajogai Tahsil of Beed District. Journal of Research in Agriculture and Animal Science, 2(10), 35–39.

    Google Scholar 

  • Dhamak, A. L., Meshram, N., & Waikar, S. L. (2014b). Identification of major soil nutritional constraints in Vertisol, Inceptisol and Entisol from Ambajogai Tahsil of Beed District. (Ed.),^(Eds.).

  • Dinesh, K., Yadav, S., Ramandeep, K., Anirudh, C., & Meena, B. (2017). Soil fertility status and nutrient recommendations based on soil analysis of Jaisalmer district of western Rajasthan. Asian Journal of Soil Science, 12(1), 103–107. https://doi.org/10.15740/HAS/AJSS/12.1/103-107

    Article  Google Scholar 

  • Emadi, M. H., & ROME, F. (2018). Management of salinity in agriculture; Iranian experience. (Ed.),^(Eds.). Consultation meeting on saline agriculture.

  • FAO. (2020). Unpacking the burden on food safety. FAO—Food and Agriculture Organization of the United Nations: Rome, Italy.

  • Garnaik, S., Sekhon, B. S., Sahoo, S., & Dhaliwal, S. S. (2020). Comparative assessment of soil fertility status of various agroecological regions under intensive cultivation in Northwest India. Environmental Monitoring and Assessment, 192, 1–18. https://doi.org/10.1007/s10661-020-08290-6

    Article  CAS  Google Scholar 

  • Harbo, L. S., Olesen, J. E., Liang, Z., Christensen, B. T., & Elsgaard, L. (2022). Estimating organic carbon stocks of mineral soils in Denmark: Impact of bulk density and content of rock fragments. Geoderma Regional, 30, e00560. https://doi.org/10.1016/j.geodrs.2022.e00560

  • Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: What do all the numbers mean? CSIRO publishing. ISBN: 978 0 64309 225 9

  • Herrick, J. E., & Wander, M. M. (2018). Relationships between soil organic carbon and soil quality in cropped and rangeland soils: The importance of distribution, composition, and soil biological activity (Soil processes and the carbon cycle (pp. 405–425). CRC Press. ISBN: 9780203739273

  • Horneck, D. A., Sullivan, D. M., Owen, J. S., & Hart, J. M. (2011). Soil test interpretation guide.

  • Hörner, D., & Wollni, M. (2021). Integrated soil fertility management and household welfare in Ethiopia. Food Policy, 100, 102022. https://doi.org/10.1016/j.foodpol.2020.102022

  • Jat, H., Datta, A., Sharma, P., Kumar, V., Yadav, A., Choudhary, M., Choudhary, V., Gathala, M., Sharma, D., & Jat, M. (2018). Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science, 64(4), 531–545. https://doi.org/10.1080/03650340.2017.1359415

    Article  CAS  Google Scholar 

  • Kabanyegeye, H., Useni Sikuzani, Y., Sambieni, K. R., Masharabu, T., Havyarimana, F., & Bogaert, J. (2021). Trente-trois ans de dynamique spatiale de l’occupation du sol de la ville de Bujumbura, République du Burundi. Afrique Science: Revue Internationale des Sciences et Technologie, 18(1).

  • Kihara, J., Manda, J., Kimaro, A., Swai, E., Mutungi, C., Kinyua, M., Okori, P., Fischer, G., Kizito, F., & Bekunda, M. (2022). Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania. Agricultural Systems, 203, 103496. https://doi.org/10.1016/j.agsy.2022.103496

  • Kumar, R., Chand Hazra, G., Das, R., Majumder, S. P., & Chandra Das, A. (2019). Nutrient index of available S in soils of Howrah and South Dinajpur Districts of West Bengal, India. International Journal of Current Microbiology and Applied Sciences, 8(4), 1024–1032.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Maguire, R., & Heckendorn, S. (2017). Soil test recommendations for Virginia. Virginia Coop. Ext., Virginia Tech, Blacksburg.

  • Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-08066-y

    Article  CAS  Google Scholar 

  • Miran, N., Rasouli Sadaghiani, M. H., Feiziasl, V., Sepehr, E., Rahmati, M., & Mirzaee, S. (2021). Predicting soil nutrient contents using Landsat OLI satellite images in rain-fed agricultural lands, northwest of Iran. Environmental Monitoring and Assessment, 193(9), 1–12. https://doi.org/10.1007/s10661-021-09397-0

    Article  CAS  Google Scholar 

  • Mondal, K., & Ramkala, R. (2016). Fertility map and horizontal soil potassium status of north-eastern region of Haryana. Journal of Applied and Natural Science, 8(4), 2077–2080. https://doi.org/10.31018/jans.v8i4.1093

  • Mousavi Shalmani, M. A., Lakzian, A., Khorassani, R., Zaman, M., Feiziasl, V., Borzouei, A., Khodashenas Rudsari, M., & Naserian Khiabani, B. (2022). Nitrification inhibitor application at stem elongation stage increases soil nitrogen availability and wheat nitrogen use efficiency under drought stress. Archives of Agronomy and Soil Science, 1–18. https://doi.org/10.1080/03650340.2022.2132387

  • Nariyanti, S., Herawati, A., Herdiansyah, G., Irianto, H., Riptanti, E. W., & Qonita, A. (2022). Soil fertility index based on altitude: A comprehensive assessment for the cassava development area in Indonesia. Annals of Agricultural Sciences, 67(2), 158–165. https://doi.org/10.1016/j.aoas.2022.10.001

    Article  Google Scholar 

  • Nelson, RE. (1982). Carbonate and gypsum.--p. 181–197: En: Methods of soil analysis: part 2; chemical and microbiological. https://doi.org/10.2134/agronmonogr9.2.2ed

  • Nouri, A., Yoder, D. C., Raji, M., Ceylan, S., Jagadamma, S., Lee, J., Walker, F. R., Yin, X., Fitzpatrick, J., & Trexler, B. (2021). Conservation agriculture increases the soil resilience and cotton yield stability in climate extremes of the southeast US. Communications Earth & Environment, 2(1), 155. https://doi.org/10.1038/s43247-021-00223-6

    Article  Google Scholar 

  • O’Connell, C., & Osmond, D. (2022). Why soil testing is not enough: A mixed methods study of farmer nutrient management decision-making among US producers. Journal of Environmental Management, 314, 115027. https://doi.org/10.1016/j.jenvman.2022.115027

  • Olsen, S. R., Sommers, L. E., & Page, A. L. (1982). Methods of Soil Analysis. Part, 2(1982), 403–430.

    Google Scholar 

  • Otieno, E., Kiboi, M., Gian, N., Muriuki, A., Musafiri, C., & Ngetich, F. (2021). Uptake of integrated soil fertility management technologies in heterogeneous smallholder farms in sub-humid tropics. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100394

  • Ozsahin, E., & Ozdes, M. (2022). Agricultural land suitability assessment for agricultural productivity based on GIS modeling and multi-criteria decision analysis: The case of Tekirdağ province. Environmental Monitoring and Assessment, 194(1), 41. https://doi.org/10.1007/s10661-021-09663-1

    Article  Google Scholar 

  • Parker, F., Nelson, W., Winters, E., & Miles, I. (1951). The broad interpretation and application of soil test information. Agronomy Journal, 43(3), 105–112.

    Article  CAS  Google Scholar 

  • Pathak, H. (2010). Trend of fertility status of Indian soils. Current Advances in Agricultural Sciences, 2(1), 10–12. https://doi.org/10.1007/s10661-021-09663-1

    Article  Google Scholar 

  • Penning de Vries, F. (2001). Food security? We are losing ground fast! (Ed.),^(Eds.). Crop science: progress and prospects. Papers presented at the Third International Crop Science Congress, Hamburg, Germany, 17–22 August 2000. https://doi.org/10.1079/9780851995304.0001

  • Pezzuolo, A., Dumont, B., Sartori, L., Marinello, F., Migliorati, M. D. A., & Basso, B. (2017). Evaluating the impact of soil conservation measures on soil organic carbon at the farm scale. Computers and Electronics in Agriculture, 135, 175–182. https://doi.org/10.1016/j.compag.2017.02.004

    Article  Google Scholar 

  • Ragheb, H., Gomah, H. H., Youssef, M., & Ali, A. (2017). Fertility status and indices of micronutrients in Nile Valley Soils, East of the Nile River, Assiut Governorate. The Egyptian Journal of Soil Science, 57(2), 189–199. https://doi.org/10.21608/ejss.2017.3829

    Article  Google Scholar 

  • Ravikumar, P. (2013). Evaluation of nutrient index using organic carbon, available P and available K concentrations as a measure of soil fertility in Varahi River basin, India. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(4), 330.

    CAS  Google Scholar 

  • Roy, R. N., Finck, A., Blair, G., & Tandon, H. (2006). Plant nutrition for food security. A guide for integrated nutrient management. FAO Fertilizer and Plant Nutrition Bulletin, 16, 368.

  • Sadeghi, S., Khazayi, M., & Mirnia, S. K. (2022). Effect of soil surface disturbance on overland flow, sediment yield, and nutrient loss in a hyrcanian deciduous forest stand in Iran. Catena, 218, 106546. https://doi.org/10.1016/j.catena.2022.106546

  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem (Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43–53). Springer. https://doi.org/10.1007/978-3-319-96190-3_2

  • Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., Johnston, C., & Sumner, M. (1996). Methods of soil analysis, part 3. Chemical methods, 1085–1121.

  • Sun, L., Sun, R., Chen, L., & Sun, T. (2022). Sensitive indicators of soil nutrients from reservoir effects in the hot-dry valleys of China. CATENA, 216. https://doi.org/10.1016/j.catena.2022.106421

  • Thapa, V. R., Ghimire, R., Paye, W. S., & VanLeeuwen, D. (2023). Soil organic carbon and nitrogen responses to occasional tillage in a continuous no-tillage system. Soil and Tillage Research, 227, 105619. https://doi.org/10.1016/j.still.2022.105619

  • Thejaswini, C., Alur, A. S., Shivanna, M., Kumar, S. A., Prashanth, S., Dhannanjaya, B., & Naikodi, P. K. B. (2019). Land resource inventory and soil mapping for fertility status of Humnabad sub-watershed. International Journal of Current Microbiology and Applied Sciences, 8(2), 3264–3273. https://doi.org/10.20546/ijcmas.2019.802.381

    Article  CAS  Google Scholar 

  • USDA-NRCS, N. (1996). Soil survey laboratory methods manual. Soil Survey Investigations Report No. 42. Version 30 USDA-NRCS.

  • Vinhal-Freitas, I. C., Corrêa, G. F., Wendling, B., Bobuľská, L., & Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, 74, 182–190. https://doi.org/10.1016/j.ecolind.2016.11.020

    Article  CAS  Google Scholar 

  • Yuan, F., Tang, K., & Shi, Q. (2021). Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environmental Science and Pollution Research, 28(5), 6005–6017. https://doi.org/10.1007/s11356-020-10944-4

    Article  CAS  Google Scholar 

  • Zhang, J., Li, X., Chen, M., Huang, L., Li, M., Zhang, X., & Cao, Y. (2023). Response of plant, litter, and soil C: N: P stoichiometry to growth stages in Quercus secondary forests on the Loess Plateau. China. Journal of Forestry Research, 34(3), 595–607. https://doi.org/10.1007/s11676-022-01512-2

    Article  CAS  Google Scholar 

  • Zhang, W., Elias, M., Meinzen-Dick, R., Swallow, K., Calvo-Hernandez, C., & Nkonya, E. (2021). Soil health and gender: Why and how to identify the linkages. International Journal of Agricultural Sustainability, 19(3–4), 269–287. https://doi.org/10.1080/14735903.2021.1906575

    Article  Google Scholar 

  • Zhou, B., Chen, Y., Zeng, L., Cui, Y., Li, J., Tang, H., Liu, J., & Tang, J. (2022). Soil nutrient deficiency decreases the postharvest quality-related metabolite contents of tea (Camellia sinensis (L.) Kuntze) leaves. Food Chemistry, 377, 132003. https://doi.org/10.1016/j.foodchem.2021.132003

Download references

Acknowledgements

The authors would like to thank Iranian National Elite Foundation, Urmia University, Agricultural Jihad Organization of West Azarbaijan province, and the soil laboratory of AZAR KHAK.

Funding

This research was funded by the Iranian National Elite Foundation and Urmia University [No. 3123.14001379.2].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Kamal Khosravi Aqdam; formal analysis: Kamal Khosravi Aqdam; data curation: Farrokh Asadzadeh and Salar Rezapour; writing—original draft preparation: Kamal Khosravi Aqdam; review and editing: Amin Nouri, Farrokh Asadzadeh, and Salar Rezapour; supervision: Farrokh Asadzadeh, Salar Rezapour, and Amin Nouri; funding acquisition: Farrokh Asadzadeh and Salar Rezapour. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Farrokh Asadzadeh.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The NIV is a suitable and practical index for evaluating soil fertility.

• At all elevations, TN and pH were the factors limited soil fertility.

• The EC and CaCO3 do not limit soil fertility at any elevation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi Aqdam, K., Asadzadeh, F., Rezapour, S. et al. Comparative assessment of soil fertility across varying elevations. Environ Monit Assess 195, 1007 (2023). https://doi.org/10.1007/s10661-023-11610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11610-1

Keywords

Navigation