Skip to main content
Log in

Pesticide concentration in three selected fish species and human health risk in the Lake Tana sub-basin, Ethiopia

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pesticide use has increased in the Lake Tana sub-basin due to increased agricultural activity, potentially endangering nontargeted organisms. To assess its potential impact on fish health and fish-consuming human populations, pesticide concentrations in the fillet and liver tissue of three fish species, namely Labeobarbus megastoma, Labeobarbus tsanensis, and Oreochromis niloticus, were investigated in Lake Tana. Fish samples were taken from the lake near the rivers of Ribb and Gumara, which flow through agricultural areas where considerable amounts of pesticides have been applied. A total of 96 fish samples were collected. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) revealed the presence of ten pesticides. Pyrimethanil was frequently detected in 96% of liver and 65% of fillet samples at a median concentration of 33.9 µg kg−1 and 19.7 µg kg−1, respectively. The highest concentration of pyrimethanil was found in L. megastoma (1850.0 µg kg−1). Labeobarbus megastoma also had the highest concentration of oxamyl (507.0 µg kg−1) and flazasulfuron (60.1 µg kg−1) detected in the liver tissue. The highest concentration of carbaryl (56.5 µg kg−1) was found in the liver tissue of O. niloticus. Fish tissue samples from the two study sites contained pyrimethanil, oxamyl, carbaryl, and flazasulfuron. Only pyrimethanil showed a statistically significant difference between the two sites and the species L. megastoma and L. tsanensis. The amounts of pesticides found in the fish species pose no direct risk to the health of fish consumer human population. However, the results show that the lake ecosystem needs immediate attention and regular monitoring of the rising pesticide usage in the lake watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The corresponding author will provide the data upon reasonable request.

References

  • Abera, B., Van Van Echelpoel, W., De De Cock, A., Tytgat, B., Kibret, M., Spanoghe, P., Mengistu, D., Adgo, E., Nyssen, J., Goethals, P. L. M., & Verleyen, E. (2022). Environmental and human health risks of pesticide presence in the Lake Tana Basin (Ethiopia). Sustainability, 14(21), 14008. https://doi.org/10.3390/su142114008

    Article  CAS  Google Scholar 

  • Abera, M. (2017). Agriculture in the Lake Tana sub-basin of Ethiopia. In A. S. and G. G. Stave K. (Ed.). Social and Ecological System Dynamics, 375–397. Springer. https://doi.org/10.1007/978-3-319-45755-0_23

  • Abo-Elyousr, K. A. M., Alamri, S. A. M., Hussein, M. M. A., Hassan, M. A. H., Abd El-Fatah, B. E. S., & Hashem, M. (2020). Molecular disparities among Botrytis species involved in onion umbel blight disease and its management using Bacillus subtilis PHYS7. Egyptian Journal of Biological Pest Control, 30(1), 1–12. https://doi.org/10.1186/s41938-020-0205-x

    Article  Google Scholar 

  • Agmas, B., & Adugna, M. (2020). Attitudes and practices of farmers with regard to pesticide use in NorthWest Ethiopia. Cogent Environmental Science, 6(1), 1791462. https://doi.org/10.1080/23311843.2020.1791462

    Article  CAS  Google Scholar 

  • Akhter, Z. (2019). Pesticide contamination in aquatic ecosystems. International Journal of Scientific Research and Review, 7(January), 2356–2381. https://www.researchgate.net/publication/348150568

  • Alaboudi, A. R., Almashhadany, D. A., & Jarrah B. S. (2021). Effect of cooking and freezing on levels of pesticides residues in local fresh fish. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78(2), 28. https://doi.org/10.15835/buasvmcn-asb:2021.0007

  • Alvarez, F., Arena, M., Auteri, D., Binaglia, M., Federica Castoldi, A., Chiusolo, A., Colagiorgi, A., Colas, M., Crivellente, F., de Lentdecker, C., Egsmose, M., Fait, G., Ferilli, F., Gouliarmou, V., Nogareda, L. H., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., & Villamar‐Bouza, L. (2022). Peer review of the pesticide risk assessment of the active substance oxamyl. EFSA Journal, 20(5). https://doi.org/10.2903/j.efsa.2022.7296

  • Aly, O. M., & El-Dib, M. A. (1971). Studies on the persistence of some carbamate insecticides in the aquatic environment–I. Hydrolysis of sevin, baygon, pyrolan, and dimetilan in waters. Water Research Pergamon Press, 5, 1191–1205.

    Article  CAS  Google Scholar 

  • Amenyogbe, E., Huang, J. S., Chen, G., & Wang, Z. (2021). An overview of the pesticides’ impacts on fishes and humans. International Journal of Aquatic Biology, 9(1), 55–65. https://doi.org/10.22034/ijab.v9i1.972

  • Araújo, C. V. M., Shinn, C., Müller, R., Moreira-Santos, M., Shinn, C., Espíndola, E. L., & Ribeiro, R. (2012). Aquatic ecotoxicity of the fungicide pyrimethanil: Effect profile under optimal and thermal stress conditions. Environmental Pollution, 168, 161–169. https://doi.org/10.1016/j.envpol.2012.04.020

    Article  CAS  Google Scholar 

  • Araújo, C. V. M., Shinn, C., Müller, R., Moreira-Santos, M., Shinn, C., Espíndola, E. L., & Ribeiro, R. (2015). The ecotoxicity of pyrimethanil for aquatic biota skin microbiome of Pelophylax perezi frogs view project the ecotoxicity of pyrimethanil for aquatic biota. https://doi.org/10.13140/RG.2.1.1568.0485

  • Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., & Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199–1215. https://doi.org/10.1007/s13593-015-0327-9

    Article  Google Scholar 

  • Bernabò, I., Guardia, A., MacIrella, R., Tripepi, S., & Brunelli, E. (2017). Chronic exposures to fungicide pyrimethanil: Multi-organ effects on Italian tree frog (Hyla intermedia). Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-07367-6

  • Boran, H., Altinok, I., & Capkin, E. (2010). Histopathological changes induced by maneb and carbaryl on some tissues of rainbow trout. Oncorhynchus Mykiss. Tissue and Cell, 42(3), 158–164. https://doi.org/10.1016/j.tice.2010.03.004

    Article  CAS  Google Scholar 

  • Braunbeck, T., Hinton, D. E., & Streit, B. (1998). Bioaccumulation of contaminants in fish. In T. Braunbeck, D. E. Hinton, & B. Streit (Eds.). Fish Ecotoxicology, 86. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8853-0_12

  • Çilingir Yeltekin, A., Oğuz, A. R., Kankaya, E., Özok, N., & Güneş, İ. (2020). Hematological and biochemical response in the blood of alburnus tarichi (Actinopterygii: Cypriniformes: Cyprinidae) exposed to tebuconazole. Acta Ichthyologica Et Piscatoria, 50(4), 373–379. https://doi.org/10.3750/AIEP/02931

    Article  Google Scholar 

  • De Cock, A., Marie Anne Eurie, F., Niels, D. T., Isabel, G. A., Arne, D., Wout, V. E., Lenin, R. F., Jasmine, D. R., Liesbeth, J., Pieter, S., Luis, D. G., & Peter L. M. G. (2021). From field to plate: Agricultural pesticide presence in the guayas estuary (Ecuador) and commercial mangrove crabs. Environmental Pollution, 289(August). https://doi.org/10.1016/j.envpol.2021.117955

  • Deribe, E., Rosseland, B. O., Borgstrøm, R., Salbu, B., Gebremariam, Z., Dadebo, E., Skipperud, L., & Eklo, O. M. (2013). Biomagnification of DDT and its metabolites in four fish species of a tropical lake. Ecotoxicology and Environmental Safety, 95, 10–18. https://doi.org/10.1016/j.ecoenv.2013.03.020

    Article  CAS  Google Scholar 

  • Di, S., Liu, R., Tian, Z., Cheng, C., Chen, L., Zhang, W., Zhou, Z., & Diao, J. (2017). Assessment of tissue-specific accumulation, elimination and toxic effects of dichlorodiphenyltrichloroethanes (DDTs) in carp through aquatic food web. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-02612-4

    Article  CAS  Google Scholar 

  • Dosnon-Olette, R., Couderchet, M., & Eullaffroy, P. (2009). Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 72(8), 2096–2101. https://doi.org/10.1016/j.ecoenv.2009.08.010

    Article  CAS  Google Scholar 

  • Dosnon-Olette, R., Trotel-Aziz, P., Couderchet, M., & Eullaffroy, P. (2010). Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere, 79(2), 117–123. https://doi.org/10.1016/j.chemosphere.2010.02.005

    Article  CAS  Google Scholar 

  • EFSA. (2011). Review of the existing maximum residue levels (MRLs) for pyrimethanil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 9(11). https://doi.org/10.2903/j.efsa.2011.2454

  • FAO. (2021). FAOSTAT analytical brief 16: Pesticides use global, regional and country trends. https://www.fao.org/3/cb3411en/cb3411en.pdf

  • Forsgren, K. L., Riar, N., & Schlenk, D. (2013). The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. General and Comparative Endocrinology, 186, 101–107. https://doi.org/10.1016/j.ygcen.2013.02.047

    Article  CAS  Google Scholar 

  • Frankart, C., Eullaffroy, P., & Vernet, G. (2003). Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environmental and Experimental Botany, 49, 159–168. www.elsevier.com/locate/envexpbot

  • Gebremedhin, S., Bruneel, S., Getahun, A., Anteneh, W., & Goethals, P. (2019). The endemic species flock of Labeobarbus spp. in L. Tana (Ethiopia) threatened by extinction: Implications for conservation management. Water, 11(12), 2560. https://doi.org/10.3390/w11122560

  • Gultekin, F., Ozturk, M., & Akdogan, M. (2000). The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Archives of Toxicology, 74(9), 533–538. https://doi.org/10.1007/s002040000167

    Article  CAS  Google Scholar 

  • Hamid, A., Yaqub, G., Ahmed, S. R., & Aziz, N. (2017). Assessment of human health risk associated with the presence of pesticides in chicken eggs. Food Science and Technology (brazil), 37(3), 378–382. https://doi.org/10.1590/1678-457x.11616

    Article  Google Scholar 

  • Hernández, A. F., Parrón, T., Tsatsakis, A. M., Requena, M., Alarcón, R., & López-Guarnido, O. (2013). Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology, 307, 136–145. https://doi.org/10.1016/j.tox.2012.06.009

    Article  CAS  Google Scholar 

  • Holden, A. V. (1972). The effects of pesticides on life in fresh waters Author (s): Proceedings of the royal society of London. Series B, Biological Sciences, Mar. 21, 1972, Vol. 180, No. 1061, A Discussion on Freshwater and Estaurine Studie. Biological Sciences, 180(1061), 383–394.

  • Houbraken, M., Spranghers, T., de Clercq, P., Cooreman-Algoed, M., Couchement, T., de Clercq, G., Verbeke, S., & Spanoghe, P. (2016). Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chemistry, 201, 264–269. https://doi.org/10.1016/j.foodchem.2016.01.097

    Article  CAS  Google Scholar 

  • Islam, M. A., Nurul Amin, S. M., Brown, C. L., Juraimi, A. S., Uddin, M. K., & Arshad, A. (2022). Determination of the most efficient household technique for the reduction of pesticide residues from raw fish muscles. Foods, 11(9). https://doi.org/10.3390/foods11091254

  • Jiang, J., Zhang, C., Wang, L., Wang, X., He, H., Wu, S., & Zhao, X. (2022). Insights into the combined effects of environmental concentration of difenoconazole and tebuconazole on zebrafish early life stage. Science of The Total Environment, 830, 154687. https://doi.org/10.1016/j.scitotenv.2022.154687

  • Kim, L., Lee, D., Cho, H. K., & Choi, S. D. (2019). Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends in Environmental Analytical Chemistry, 22(e00063). https://doi.org/10.1016/j.teac.2019.e00063

  • Kortenkamp, A. (2007). Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. In Environmental Health Perspectives, 115(SUPPL1), 98–105. https://doi.org/10.1289/ehp.9357

  • Kumari, K. (2020). Pesticides toxicity in fishes : A review. Journal of Entomology and Zology Studies, 8(5), 1640–1642.

    Google Scholar 

  • Kushwaha, M., Verma, S., & Chatterjee, S. (2016). Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation. Journal of Environmental Quality, 45(5), 1478–1489. https://doi.org/10.2134/jeq2016.03.0100

    Article  CAS  Google Scholar 

  • Lengai, G. M. W., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. In Scientific African, 7(e00239). Elsevier B.V. https://doi.org/10.1016/j.sciaf.2019.e00239

  • Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment, 22(4), 1050–1064. https://doi.org/10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  • Lin, C. C., Hui, M. N. Y., & Cheng, S. H. (2007). Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicology and Applied Pharmacology, 222(2), 159–168. https://doi.org/10.1016/j.taap.2007.04.013

    Article  CAS  Google Scholar 

  • Lozowicka, B. (2015). Health risk for children and adults consuming apples with pesticide residue. Science of the Total Environment, 502, 184–198. https://doi.org/10.1016/j.scitotenv.2014.09.026

    Article  CAS  Google Scholar 

  • Macirella, R., Curcio, V., Ahmed, A. I. M., Pellegrino, D., & Brunelli, E. (2022). Effect of short-term exposure to low concentration of tebuconazole: Morphological, histometric and functional modifications in Danio rerio liver. European Zoological Journal, 89(1), 324–338. https://doi.org/10.1080/24750263.2022.2043469

    Article  CAS  Google Scholar 

  • MacKay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environmental Pollution, 110(3), 375–391. https://doi.org/10.1016/S0269-7491(00)00162-7

    Article  CAS  Google Scholar 

  • Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore. Pakistan. Arabian Journal of Chemistry, 7(1), 91–99. https://doi.org/10.1016/j.arabjc.2013.07.002

    Article  CAS  Google Scholar 

  • Manuelmolina-Ruiz, J., Cieslik, E., Cieslik, I., & Walkowska, I. (2014). Determination of pesticide residues in fish tissues by modified QuEChERS method and dual-d-SPE clean-up coupled to gas chromatography–mass spectrometry. Environmental Science and Pollution Research, 22(1), 369–378. https://doi.org/10.1007/s11356-014-3361-2

    Article  CAS  Google Scholar 

  • Marchand, M. J., Pieterse, G. M., & Barnhoorn, I. E. J. (2010). Sperm motility and testicular histology as reproductive indicators of fish health of two feral fish species from a currently DDT sprayed area, South Africa. Journal of Applied Ichthyology, 26(5), 707–714. https://doi.org/10.1111/j.1439-0426.2010.01558.x

    Article  CAS  Google Scholar 

  • Matos, P., Fontaínhas-Fernandes, A., Peixoto, F., Carrola, J., & Rocha, E. (2007). Biochemical and histological hepatic changes of Nile tilapia Oreochromis niloticus exposed to carbaryl. Pesticide Biochemistry and Physiology, 89(1), 73–80. https://doi.org/10.1016/j.pestbp.2007.03.002

    Article  CAS  Google Scholar 

  • Mengistie, B. T., Mol, A. P. J., & Oosterveer, P. (2016). Private environmental governance in the Ethiopian pesticide supply chain: Importation, distribution and use. NJAS - Wageningen Journal of Life Sciences, 76, 65–73. https://doi.org/10.1016/j.njas.2015.11.005

    Article  Google Scholar 

  • Mhadhbi, L., & Beiras, R. (2012). Acute toxicity of seven selected pesticides (alachlor, atrazine, dieldrin, diuron, pirimiphos-methyl, chlorpyrifos, diazinon) to the marine fish (turbot, Psetta maxima). Water, Air, and Soil Pollution, 223(9), 5917–5930. https://doi.org/10.1007/s11270-012-1328-9

    Article  CAS  Google Scholar 

  • Müller, R., Shinn, C., Waldvogel, A. M., Oehlmann, J., Ribeiro, R., & Moreira-Santos, M. (2019). Long-term effects of the fungicide pyrimethanil on aquatic primary producers in macrophyte-dominated outdoor mesocosms in two European ecoregions. Science of the Total Environment, 665, 982–994. https://doi.org/10.1016/j.scitotenv.2019.02.050

    Article  CAS  Google Scholar 

  • Nagelkerke, L. A. J., Mina, M. V., Wudneh, T., Sibbing, F. A., & Osse, J. W. M. (1995). In Lake Tana, a unique fish fauna needs protection. BioScience, 45(11), 772–775. https://doi.org/10.2307/1312629

    Article  Google Scholar 

  • Olette, R., Couderchet, M., Biagianti, S., & Eullaffroy, P. (2008). Toxicity and removal of pesticides by selected aquatic plants. Chemosphere, 70(8), 1414–1421. https://doi.org/10.1016/j.chemosphere.2007.09.016

    Article  CAS  Google Scholar 

  • Patnaik, L., & Patra, A. K. (2006). Haemoatopoietic alterations induced by carbaryl in Clarias batrachus (LINN). Journal of Applied Sciences and Environmental Management, 10(3), 5–7. www.bioline.org.br/ja

  • Polat, A., Polat, S., Simsek, A., Kurt, T. T., & Ozyurt, G. (2018). Pesticide residues in muscles of some marine fish species and seaweeds of Iskenderun Bay (Northeastern Mediterranean). Turkey. Environmental Science and Pollution Research, 25(4), 3756–3764. https://doi.org/10.1007/s11356-017-0756-x

    Article  CAS  Google Scholar 

  • Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. In Chemical Engineering Journal Advances, 11. Elsevier B.V. https://doi.org/10.1016/j.ceja.2022.100301

  • Ribera, D., Narbonne, J. F., Arnaud, C., & Saint-Denis, M. (2001). Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated arti®cial soil, effects of carbaryl. Soil Biology & Biochemistry, 33, 1123–1130. www.elsevier.com/locate/soilbio

  • Rosseland, B. O., Massabuau, J. -C., Grimalt, J., Hofer, R., Lackner, R., Raddum, G., Rognerud, S., & Vives, I. (2001). Fish ecotoxicology, the EMERGE fish sampling manual for live fish. The EMERGE project (European mountain lake ecosystem: Regionalisation, diagnostic and socio-economics valuation). 1–7.

  • Sabzevari, S., & Hofman, J. (2022). A worldwide review of currently used pesticides’ monitoring in agricultural soils. In Science of the Total Environment, 812(152344). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2021.152344

  • Sarkar, S., Dias Bernardes Gil, J., Keeley, J., Möhring, N., & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food : Study. (the European union). https://doi.org/10.2861/28995

  • Seeland, A., Oehlmann, J., & Müller, R. (2012). Aquatic ecotoxicity of the fungicide pyrimethanil: Effect profile under optimal and thermal stress conditions. Environmental Pollution, 168, 161–169. https://doi.org/10.1016/j.envpol.2012.04.020

    Article  CAS  Google Scholar 

  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. In SN Applied Sciences1(11). Springer Nature. https://doi.org/10.1007/s42452-019-1485-1

  • Sibbing, F. A., & Nagelkerke, L. A. J. (2001). Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Reviews in Fish Biology and Fisheries, 10(4), 393–437. https://doi.org/10.1023/A:1012270422092

    Article  Google Scholar 

  • Sifakis, S., Androutsopoulos, V. P., Tsatsakis, A. M., & Spandidos, D. A. (2017). Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environmental Toxicology and Pharmacology, 51, 56–70. https://doi.org/10.1016/j.etap.2017.02.024

    Article  CAS  Google Scholar 

  • Smith, L. W. (1982). Wildlife toxicity studies with Oxamyl. Environmental Toxicology and Chemistry, I, 157–165.

    Article  Google Scholar 

  • Srivastava, P., Singh, A., & Pandey, A. K. (2016). Pesticides toxicity in fishes: Biochemical, physiological and genotoxic aspects. Biochemical and cellular archives, 16(2), 199–218. www.connectjournals.com/bca

  • Teklu, B. M., Adriaanse, P. I., ter Horst, M. M. S., Deneer, J. W., & van den Brink, P. J. (2015). Surface water risk assessment of pesticides in Ethiopia. Science of the Total Environment, 508, 566–574. https://doi.org/10.1016/j.scitotenv.2014.11.049

    Article  CAS  Google Scholar 

  • Teng, M., Zhu, W., Wang, D., Qi, S., Wang, Y., Yan, J., Dong, K., Zheng, M., & Wang, C. (2018). Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquatic Toxicology, 194, 112–120. https://doi.org/10.1016/j.aquatox.2017.11.009

    Article  CAS  Google Scholar 

  • Tesfahun, A., & Alebachew, S. (2023). Food and feeding habits of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) from Ribb reservoir, Lake Tana sub-basin, Ethiopia. Cogent Food & Agriculture, 9(1). https://doi.org/10.1080/23311932.2023.2212457

  • Tournas, V. H. (2005). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 31(1), 33–44. https://doi.org/10.1080/10408410590886024

    Article  CAS  Google Scholar 

  • US EPA. (2003). Revised EFED risk assessment of carbaryl in support of the reregistration eligibility decision RED. https://www3.epa.gov/pesticides/endanger/litstatus/effects/carb-riskass.pdf

  • US EPA. (2007). Pesticide fact sheet for flazasulfuron. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-119101_17-May-07.pdf

  • Vignet, C., Cappello, T., Fu, Q., Lajoie, K., de Marco, G., Clérandeau, C., Mottaz, H., Maisano, M., Hollender, J., Schirmer, K., & Cachot, J. (2019). Imidacloprid induces adverse effects on fish early life stages that are more severe in Japanese medaka (Oryzias latipes) than in zebrafish (Danio rerio). Chemosphere, 225, 470–478. https://doi.org/10.1016/j.chemosphere.2019.03.002

    Article  CAS  Google Scholar 

  • Vijverberg, J., Gebremedhin, S., Budusa, M., & Mingist, M. (2013). Determining factors for fishers’ income: The case of Lake Tana, Ethiopia. International Journal of Current Research, 5(5), 1182–1186. https://www.researchgate.net/publication/315831813

  • Vonesh, J. R., & Kraus, J. M. (2009). Pesticide alters habitat selection and aquatic community composition. Oecologia, 160(2), 379–385. https://doi.org/10.1007/s00442-009-1301-5

    Article  Google Scholar 

  • WHO & FAO. (2019). Global situation of pesticide management in agriculture and public health. http://www.fao.org/3/ca7032en/ca7032en.pdf

  • Witczak, A. (2009). Effect of heat treatment on organochlorine pesticide residues in selected fish species. Polish Journal of Food and Nutrition Sciences, 59(3), 231–235. http://journal.pan.olsztyn.pl

  • Worku, S. A., Dubale, Y. M., Woldemariam, E. D., & Eklo, O. M. (2022). Levels of organochlorine pesticides in five species of fish from Lake Ziway, Ethiopia. Scientific African, e01252. https://doi.org/10.1016/j.sciaf.2022.e01252

  • Yohannes, Y. B., Ikenaka, Y., Nakayama, S. M. M., Mizukawa, H., & Ishizuka, M. (2017). DDTs and other organochlorine pesticides in tissues of four bird species from the Rift Valley region, Ethiopia. Science of the Total Environment, 574, 1389–1395. https://doi.org/10.1016/j.scitotenv.2016.08.056

    Article  CAS  Google Scholar 

  • Yohannes, Y. B., Ikenaka, Y., Saengtienchai, A., Watanabe, K. P., Nakayama, S. M. M., & Ishizuka, M. (2014). Concentrations and human health risk assessment of organochlorine pesticides in edible fish species from a Rift Valley lake-Lake Ziway, Ethiopia. Ecotoxicology and Environmental Safety, 106, 95–101. https://doi.org/10.1016/j.ecoenv.2014.04.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Belgian Development Cooperation (VLIR-UOS) for financially supporting this research through the Inter-University Cooperation of Flemish and Bahir Dar Universities (IUC-BDU). The VLIR-UOS project staff at Bahir Dar University are acknowledged for the support and logistics provided. We thank Mr. Ferede Tsegaw and Mr. Kassahun Erkyehun for their help in fish specimen collections.

Author information

Authors and Affiliations

Authors

Contributions

Wondie Zelalem: conceptualization, investigation, methodology, formal analysis, writing–original draft; Wassie Anteneh, Minwyelet Mingist: conceptualization, investigation, editing; Mulugeta Kibret, Enyew Adgo, Jan Nyssen, Elie Verleyen: investigation, project administration, editing; Felegush Erarto: investigation, editing; Jasmine De Rop, Andrée De Cock, Pieter Spanoghe, Peter L.M Goethals: methodology, data curation, formal analysis, editing; Alain De Vocht: conceptualization, project administration, methodology, investigation, data curation, editing.

Corresponding author

Correspondence to Wondie Zelalem.

Ethics declarations

Ethics statement

The Ethical Committee of Bahir Dar University, College of Agriculture and Environmental Sciences, approved the study. The care and use of animals followed all applicable international, national, and institutional guidelines.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelalem, W., Anteneh, W., Mingist, M. et al. Pesticide concentration in three selected fish species and human health risk in the Lake Tana sub-basin, Ethiopia. Environ Monit Assess 195, 988 (2023). https://doi.org/10.1007/s10661-023-11594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11594-y

Keywords

Navigation