Skip to main content
Log in

A novel method for the remediation of wastewater containing acid red 131 dye using acoustic cavitation combined with sulphur-doped TiO2 and oxidants

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study investigated the degradation of Acid Red 131 (AR131) dye using a combination of ultrasound-induced cavitation, ultraviolet (UV) irradiation, chemical oxidants, and photocatalyst, focusing on the effect of operating parameters. It was established that acidic pH, higher input power, and lower initial concentration resulted in higher degradation. Sulphur-doped titanium dioxide (S-TiO2) synthesized using a novel ultrasound-assisted method showed an optimum dosage of 300 ppm for the AR131 degradation with sulphur to titanium ratio of 2:1. In the combination approach, the optimum dosage of hydrogen peroxide (H2O2) and potassium persulfate (KPS) was established as 100 ppm and 400 ppm respectively. The maximum degradation of 90.3% was obtained using a combined approach of US + KPS + UV/S-TiO2 whereas, a maximum synergetic coefficient of 1.57 was obtained for the approach of US + UV/S-TiO2 with degradation of 86.96%. It was also elucidated that for combination approaches of US + H2O2, US + H2O2 + KPS, and US + H2O2 + KPS + UV/S-TiO2, the synergetic coefficients were lower than one due to undesirable side reactions and radical scavenging. Scale-up studies performed at 15 times of the laboratory scale volume, elucidated that the maximum degradation was obtained as 58.01% for the approach of US + KPS + UV/S-TiO2. Therefore, the approach of US + KPS + UV/S-TiO2 was elucidated as the most efficient in degrading the AR131 dye at both small and large scale of operation. In terms of synergy, the approach of US + UV/S-TiO2 was more efficient. Overall, an optimized combination approach was successfully demonstrated for the effective degradation of AR131 dye with synergism and better results at a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Agarkoti, C., Chaturvedi, A., Gogate, P. R., & Pandit, A. B. (2023). Degradation of sulfamerazine using ultrasonic horn and pilot scale US reactor in combination with different oxidation approaches. Separation and Purification Technology, 312, 123351.

    Article  CAS  Google Scholar 

  • Agarkoti, C., Gogate, P. R., & Pandit, A. B. (2022). Coupling of acoustic/hydrodynamic cavitation with ozone (O3), hydrogen peroxide (H2O2), magnesium oxide (MgO) and manganese dioxide (MnO2) for the effective treatment of CETP effluent. Separation and Purification Technology, 284, 120281.

    Article  CAS  Google Scholar 

  • Agarkoti, C., Thanekar, P., & Gogate, P. (2021). Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents. Journal of Environmental Management, 300, 113786.

    Article  CAS  Google Scholar 

  • Akhter, P., Arshad, A., Saleem, A., & Hussain, M. (2022). Recent development in non-metal-doped titanium dioxide photocatalysts for different dyes degradation and the study of their strategic factors: A review. Catalysts, 12(11), 1331.

    Article  CAS  Google Scholar 

  • Alkaykh, S., Mbarek, A., & Ali-Shattle, E. E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4), e03663.

    Article  Google Scholar 

  • Almomani, F. A., Shawaqfah, M., Bhosale, R. R., & Kumar, A. (2016). Removal of emerging pharmaceuticals from wastewater by ozone-based advanced oxidation processes. Environmental Progress & Sustainable Energy, 35(4), 982–995.

    Article  CAS  Google Scholar 

  • Batra, V., Kaur, I., Pathania, D., & Chaudhary, V. (2022). Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 11, 100314.

    Article  Google Scholar 

  • Benomara, A., Guenfoud, F., Mokhtari, M., & Boudjemaa, A. (2021). Sonolytic, sonocatalytic and sonophotocatalytic degradation of a methyl violet 2B using iron-based catalyst. Reaction Kinetics, Mechanisms and Catalysis, 132, 513–528.

    Article  CAS  Google Scholar 

  • Bera, S. P., & Tank, S. (2021). Microbial degradation of Procion Red by Pseudomonas stutzeri. Scientific Reports, 11(1), 1–12.

    Article  Google Scholar 

  • Bößl, F., Menzel, V. C., Chatzisymeon, E., Comyn, T. P., Cowin, P., Cobley, A. J., & Tudela, I. (2023). Effect of frequency and power on the piezocatalytic and sonochemical degradation of dyes in water. Chemical Engineering Journal Advances, 14, 100477.

    Article  Google Scholar 

  • Çalışkan, Y., Yatmaz, H. C., & Bektaş, N. (2017). Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Safety and Environmental Protection, 111, 428–438.

    Article  Google Scholar 

  • Daware, G., & Gogate, P. (2021). Intensified sonochemical degradation of 2-Picoline in combination with advanced oxidizing agents. Ultrasonics Sonochemistry, 77, 105702.

    Article  CAS  Google Scholar 

  • Dhanke, P. B., & Wagh, S. M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerging Contaminants, 6, 20–32.

    Article  Google Scholar 

  • Duan, B., Zhu, Z., Sun, C., Zhou, J., & Walsh, A. (2020). Preparing copper catalyst by ultrasound-assisted chemical precipitation method. Ultrasonics Sonochemistry, 64, 105013.

    Article  Google Scholar 

  • Dükkancı, M., & Gündüz, G. (2006). Ultrasonic degradation of oxalic acid in aqueous solutions. Ultrasonics Sonochemistry, 13(6), 517–522.

    Article  Google Scholar 

  • Fedorov, K., Dinesh, K., Sun, X., Soltani, R. D. C., Wang, Z., Sonawane, S., & Boczkaj, G. (2022). Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon–a review. Chemical Engineering Journal, 432, 134191.

    Article  CAS  Google Scholar 

  • Fragoso, C. T., Battisti, R., Miranda, C., & de Jesus, P. C. (2009). Kinetic of the degradation of CI Food Yellow 3 and CI Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. Journal of Molecular Catalysis a: Chemical, 301(1–2), 93–97.

    Article  CAS  Google Scholar 

  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology c: Photochemistry Reviews, 9(1), 1–12.

    Article  CAS  Google Scholar 

  • Ghumra, D. P., Agarkoti, C., & Gogate, P. R. (2021). Improvements in effluent treatment technologies in Common Effluent Treatment Plants (CETPs): Review and recent advances. Process Safety and Environmental Protection, 147, 1018–1051.

    Article  CAS  Google Scholar 

  • Goel, M., Hongqiang, H., Mujumdar, A. S., & Ray, M. B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study. Water Research, 38(19), 4247–4261.

    Article  CAS  Google Scholar 

  • Gogate, P. R. (2022). Intensified sulfate radical oxidation using cavitation applied for wastewater treatment. Current Opinion in Chemical Engineering, 37, 100850.

    Article  Google Scholar 

  • Gogate, P. R., & Bhosale, G. S. (2013). Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chemical Engineering and Processing: Process Intensification, 71, 59–69.

    Article  CAS  Google Scholar 

  • Gore, M. M., Saharan, V. K., Pinjari, D. V., Chavan, P. V., & Pandit, A. B. (2014). Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques. Ultrasonics Sonochemistry, 21(3), 1075–1082.

    Article  CAS  Google Scholar 

  • Guimarães, J. R., Maniero, M. G., & de Araújo, R. N. (2012). A comparative study on the degradation of RB-19 dye in an aqueous medium by advanced oxidation processes. Journal of Environmental Management, 110, 33–39.

    Article  Google Scholar 

  • Hussain, S. T., Mazhar, M., Siddiqa, A., Javid, H., & Siddiq, M. (2012). Cu-S coped TiO2 nanophotocatalyst for the degradation of environmental and industrial pollutants. The Open Catalysis Journal, 5, 21–30.

    Article  CAS  Google Scholar 

  • Humayun, M., Raziq, F., Khan, A., & Luo, W. (2018). Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chemistry Letters and Reviews, 11(2), 86–102.

    Article  CAS  Google Scholar 

  • Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 3(1), 189–218.

    Article  CAS  Google Scholar 

  • Kamal, I. M., Abdeltawab, N. F., Ragab, Y. M., Farag, M. A., & Ramadan, M. A. (2022). Biodegradation, decolorization, and detoxification of di-azo dye direct Red 81 by halotolerant, alkali-thermo-tolerant bacterial mixed cultures. Microorganisms, 10(5), 994.

    Article  CAS  Google Scholar 

  • Karami, M., Sharafi, K., Asadi, A., Bagheri, A., Yosefvand, F., Charganeh, S. S., Mirzaei, N., & Velayati, A. (2016). Degradation of Reactive Red 198 (RR198) from aqueous solutions by advanced oxidation processes (AOPS): O3, H2O2/O3 and H2O2/ultrasonic. Bulgarian Chemical Communications, 48(Specia), 43–49.

  • Karpuraranjith, M., Chen, Y., Rajaboopathi, S., Ramadoss, M., Srinivas, K., Yang, D., & Wang, B. (2022). Three-dimensional porous MoS2 nanobox embedded g-C3N4@ TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. Journal of Colloid and Interface Science, 605, 613–623.

    Article  CAS  Google Scholar 

  • Khan, S., Han, C., Khan, H. M., Boccelli, D. L., Nadagouda, M. N., & Dionysiou, D. D. (2017). Efficient degradation of lindane by visible and simulated solar light-assisted S-TiO2/peroxymonosulfate process: Kinetics and mechanistic investigations. Molecular Catalysis, 428, 9–16.

    Article  CAS  Google Scholar 

  • Khandegar, V., & Saroha, A. K. (2014). Electrochemical treatment of textile effluent containing Acid Red 131 dye. Journal of Hazardous, Toxic, and Radioactive Waste, 18(1), 38–44.

    Article  CAS  Google Scholar 

  • Kongor, A., Panchal, M., Athar, M., Vora, M., Makwana, B., Jha, P., & Jain, V. (2021). Calix [4] pyrrole stabilized PdNPs as an efficient heterogeneous catalyst for enhanced degradation of water-soluble carcinogenic Azo dyes. Catalysis Letters, 151, 548–558.

    Article  CAS  Google Scholar 

  • Kumar, M. S., Sonawane, S., Bhanvase, B., & Bethi, B. (2018). Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s). Journal of Water Process Engineering, 23, 250–256.

    Article  Google Scholar 

  • Kumar, M. S., Sonawane, S., & Pandit, A. B. (2017). Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes. Chemical Engineering and Processing: Process Intensification, 122, 288–295.

    Article  CAS  Google Scholar 

  • Lakshmi, N., Gogate, P. R., & Pandit, A. B. (2021). Treatment of acid violet 7 dye containing effluent using the hybrid approach based on hydrodynamic cavitation. Process Safety and Environmental Protection, 153, 178–191.

    Article  Google Scholar 

  • Lévêque, J.-M., Cravotto, G., Delattre, F., & Cintas, P. (2018). Scaling-up enabling the full potential of industrial applications of ultrasound and hydrodynamic cavitation. In Organic Sonochemistry: Challenges and Perspectives for the 21st Century. Ed. Lévêque, J.-M., Cravotto, G., Delattre, F., Cintas, P. (pp. 113–123). Springer.

  • Mahendran, V., & Gogate, P. R. (2021). Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide. Separation and Purification Technology, 274, 119011.

    Article  CAS  Google Scholar 

  • Manousaki, E., Psillakis, E., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 38(17), 3751–3759.

    Article  CAS  Google Scholar 

  • More, N. S., & Gogate, P. R. (2018). Intensification of degumming of crude soybean oil using ultrasound in combination with oxidizing agents. Chemical Engineering and Processing-Process Intensification, 128, 132–142.

    Article  CAS  Google Scholar 

  • Mosleh, S., Rahimi, M., Ghaedi, M., & Dashtian, K. (2016). Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrasonics Sonochemistry, 32, 387–397.

    Article  CAS  Google Scholar 

  • Nam, S.-H., Kim, T. K., & Boo, J.-H. (2012). Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light. Catalysis Today, 185(1), 259–262.

    Article  CAS  Google Scholar 

  • Nayebi, B., Ghalebizade, M., & Niavol, K. P. (2021). Removal of Acid Red 131 by peroxi-coagulation using stainless steel and aluminum electrodes: A comparative study. Water Conservation Science and Engineering, 6(4), 201–211.

    Article  Google Scholar 

  • Patil, N. N., & Shukla, S. R. (2015). Degradation of Reactive Yellow 145 dye by persulfate using microwave and conventional heating. Journal of Water Process Engineering, 7, 314–327.

    Article  Google Scholar 

  • Patil, P., Raut-Jadhav, S., & Pandit, A. (2021a). Effect of intensifying additives on the degradation of thiamethoxam using ultrasound cavitation. Ultrasonics Sonochemistry, 70, 105310.

    Article  CAS  Google Scholar 

  • Patil, P. B., Bhandari, V. M., & Ranade, V. V. (2021b). Wastewater treatment and process intensification for degradation of solvents using hydrodynamic cavitation. Chemical Engineering and Processing-Process Intensification, 166, 108485.

    Article  CAS  Google Scholar 

  • Piątkowska, A., Janus, M., Szymański, K., & Mozia, S. (2021). C-, N-and S-doped TiO2 photocatalysts: A review. Catalysts, 11(1), 144.

    Article  Google Scholar 

  • Prabakaran, E., & Pillay, K. (2019). Synthesis of N-doped ZnO nanoparticles with cabbage morphology as a catalyst for the efficient photocatalytic degradation of methylene blue under UV and visible light. RSC Advances, 9(13), 7509–7535.

    Article  CAS  Google Scholar 

  • Rajashekarappa, K. K., Mahadevan, G. D., Neelagund, S. E., Sathynarayana, M., Vijaya, D., & Mulla, S. I. (2022). Decolorization of amaranth RI and fast red E azo dyes by thermophilic Geobacillus thermoleovorans KNG 112. Journal of Chemical Technology & Biotechnology, 97(2), 482–489.

    Article  CAS  Google Scholar 

  • Rajoriya, S., Bargole, S., & Saharan, V. K. (2017). Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrasonics Sonochemistry, 37, 192–202.

    Article  CAS  Google Scholar 

  • Rajoriya, S., Carpenter, J., Saharan, V. K., & Pandit, A. B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants. Reviews in Chemical Engineering, 32(4), 379–411.

    Article  CAS  Google Scholar 

  • Raut-Jadhav, S., Pinjari, D. V., Saini, D. R., Sonawane, S. H., & Pandit, A. B. (2016). Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives. Ultrasonics Sonochemistry, 31, 135–142.

    Article  CAS  Google Scholar 

  • Reza, K. M., Kurny, A., & Gulshan, F. (2017). Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Applied Water Science, 7(4), 1569–1578.

    Article  CAS  Google Scholar 

  • Saharan, V. K., Badve, M. P., & Pandit, A. B. (2011). Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chemical Engineering Journal, 178, 100–107.

    Article  CAS  Google Scholar 

  • Sivakumar, M., & Pandit, A. B. (2001). Ultrasound enhanced degradation of Rhodamine B: Optimization with power density. Ultrasonics Sonochemistry, 8(3), 233–240.

    Article  CAS  Google Scholar 

  • Slama, H. B., Chenari Bouket, A., Pourhassan, Z., Alenezi, F. N., Silini, A., Cherif-Silini, H., Oszako, T., Luptakova, L., Golińska, P., & Belbahri, L. (2021). Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences, 11(14), 6255.

    Article  CAS  Google Scholar 

  • Soumia, F., & Petrier, C. (2016). Effect of potassium monopersulfate (oxone) and operating parameters on sonochemical degradation of cationic dye in an aqueous solution. Ultrasonics Sonochemistry, 32, 343–347.

    Article  CAS  Google Scholar 

  • Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Agriculture and Natural Resources, 42(5), 357–361.

    Google Scholar 

  • Thanekar, P., & Gogate, P. R. (2019). Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent. Ultrasonics Sonochemistry, 53, 202–213.

    Article  CAS  Google Scholar 

  • Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81(3), 454–456.

    Article  CAS  Google Scholar 

  • Vončina, D. B., & Majcen-Le-Marechal, A. (2003). Reactive dye decolorization using combined ultrasound/H2O2. Dyes and Pigments, 59(2), 173–179.

    Article  Google Scholar 

  • Wang, K., Jin, R.-Y., Qiao, Y.-N., He, Z.-D., Wang, Y., & Wang, X.-J. (2019). The removal of Rhodamine B by H2O2 or ClO2 combined with hydrodynamic cavitation. Water Science and Technology, 80(8), 1571–1580.

    Article  CAS  Google Scholar 

  • Wang, X., Jia, J., & Wang, Y. (2011). Degradation of CI Reactive Red 2 through photocatalysis coupled with water jet cavitation. Journal of Hazardous Materials, 185(1), 315–321.

    Article  CAS  Google Scholar 

  • Watzke, E. & Kloss, T. (1996). Borosilicate glass having improved UV transmission, thermal and chemical properities and methods of making and using same. United States patent 5,547,904. Aug 20, 1996.

  • Wijetunga, S., Xiufen, L., Wenquan, R., & Chen, J. (2012). Removal mechanisms of acid dyes of different chemical groups under anaerobic mixed culture. Ruhuna Journal of Science, 2(1), 96–110.

  • Wu, C.-H. (2007). Sonocatalytic degradation of CI Reactive Red 198 in H2O2-based systems. Reaction Kinetics and Catalysis Letters, 92(2), 377–384.

    Article  CAS  Google Scholar 

  • Xie, A., Zhou, X., Zhou, W., Luo, S., & Yao, C. (2017). Preparation and enhanced photocatalytic activity of S-doped TiO2/palygorskite composites. Materials Technology, 32(4), 265–271.

    Article  Google Scholar 

  • Yaseen, D., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16(2), 1193–1226.

    Article  CAS  Google Scholar 

  • Zafar, Z., Fatima, R., & Kim, J.-O. (2021). Experimental studies on water matrix and influence of textile effluents on photocatalytic degradation of organic wastewater using Fe–TiO2 nanotubes: Towards commercial application. Environmental Research, 197, 111120.

    Article  CAS  Google Scholar 

  • Zampeta, C., Bertaki, K., Triantaphyllidou, I.-E., Frontistis, Z., & Vayenas, D. V. (2021). Treatment of real industrial-grade dye solutions and printing ink wastewater using a novel pilot-scale hydrodynamic cavitation reactor. Journal of Environmental Management, 297, 113301.

    Article  CAS  Google Scholar 

Download references

Funding

CA would like to acknowledge the funding from DST as a fellowship during the PhD degree. SD would like to acknowledge the funding of AICTE for fellowship during the Master’s degree.

Author information

Authors and Affiliations

Authors

Contributions

Subhamita Das: Experimental methodology, Investigation, Writing the first draft. Chandrodai Agarkoti: Data Analysis, Review and Editing of draft. Parag R. Gogate: Supervision, Reviewed and Editing of draft.

Corresponding author

Correspondence to Parag R. Gogate.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Cavitational yield for the AR131 degradation using US horn

Volume = 200 mL

Time = 180 min

Optimum input power = 140 W

Duty cycle = 70%

Power dissipation per unit volume = 700 W/L

Energy dissipation per unit volume = (Power dissipation per unit volume × Time × Duty cycle)/100 = 5,292,000 J/L

AR131 degraded in 180 min for US + KPS + UV/S-TiO2 = (AR131 degradation (%) × Initial concentration)/100 = (90.29 × 25)/100 = 22.57 mg/L

Cavitational yield = AR131 degraded in 180 min / Energy dissipation per unit volume = 8.96 × 10–6 mg/J

Appendix B: Cavitational yield for the AR131 degradation using US reactor

Volume = 3000 mL

Time = 180 min

Optimum input power = 1000 W

Duty cycle = 70%

Power dissipation per unit volume = 333.33 W/L

Energy dissipation per unit volume = (Power dissipation per unit volume × Time × Duty cycle)/100 = 2,520,000 J/L

AR131 degraded in 180 min for US + KPS + UV/S-TiO2 = (AR131 degradation (%) × Initial concentration)/100 = (58.01 × 25)/100 = 14.50 mg/L

Cavitational yield = AR131 degraded in 180 min / Energy dissipation per unit volume = 5.75 × 10–6 mg/J

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Agarkoti, C. & Gogate, P.R. A novel method for the remediation of wastewater containing acid red 131 dye using acoustic cavitation combined with sulphur-doped TiO2 and oxidants. Environ Monit Assess 195, 972 (2023). https://doi.org/10.1007/s10661-023-11583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11583-1

Keywords

Navigation