Skip to main content
Log in

Microplastics in green mussels (Perna viridis) from Jakarta Bay, Indonesia, and the associated hazards to human health posed by their consumption

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Jakarta Bay is the estuary for thirteen rivers that flow through densely populated and industrialized upstream regions. This condition has the potential to pollute the Jakarta Bay with microplastics that are transported from the upstream river. Meanwhile, people, particularly fishermen, continue to use Jakarta Bay for fishing and aquaculture. This study examined microplastics (MP) abundance in the whole tissues of green mussels (Perna viridis) grown in Jakarta Bay, Indonesia, and their health risks. MP was identified in all 120 green mussels, with fiber > film > fragment being the most common kinds. The abundance of fiber was 19 items/g of tissue, whereas the abundances of fragments and film were 14.5 items/g and 15 item/g, respectively. Fourier transform infrared spectroscopy tests on MP from the tissues of green mussels showed that there were 12 different types of MP polymers. The estimated amount of MP that humans consume each year varied from 29,120 MP items/year to 218,400 MP items/year for different age groups. Based on the total mean number of MP found in the tissues of green mussels and the amount of shellfish consumed per person in Indonesia, it was estimated that people ate 775,180 MP through shellfish each year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Ahmed, A. S. S., Billah Md. M., Ali, M. M., Bhuiyan, Md. K. A., Guo, L., Mohinuzzaman, M., Hossain, M. B., Rahman, M. S., Islam, Md. S., Yan, M., & Cai W. (2023). Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. Science of the Total Environment, 876, 162414. https://doi.org/10.1016/j.scitotenv.2023.162414

  • Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2018). Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environmental Pollution, 232, 154–163.

    Article  CAS  Google Scholar 

  • Asefnejad, A., Khorasani, M. T., Behnamghader, A., Farsadzadeh, B., & Bonakdar, S. (2011). Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: Physical properties and in vitro assay. International Journal of Nanomedicine, 6, 2375.

    Article  CAS  Google Scholar 

  • Bao, Y., Zhang, Y., Liu, P., Ma, J., Zhang, W., Liu, C., & Simion, D. (2019). Novelfabrication of stable pickering emulsion and latex by hollow silica nanoparticles. Journal of Colloid & Interface Science, 553, 83–90.

    Article  CAS  Google Scholar 

  • Barboza, L. G. A., Lopes, C., Oliveira, P., Bessa, F., Otero, V., Henriques, B., Raimundo, J., Caetano, M., Vale, C., & Guilhermino, L. (2020). Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of the Total Environment, 717, 134625. https://doi.org/10.1016/j.scitotenv.2019.134625

  • Besseling, E., Wang, B., Lürling, M., & Koelmans, A. A. (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48(20), 12336–12343.

  • Browne, M. A., Galloway, T., & Thompson, R. (2007). Microplastic–an emergingcontaminant of potential concern? Integrated Environmental Assessment & Management, 3(4), 559–561.

    Article  Google Scholar 

  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science & Technology, 45(21), 9175–9179.

  • Buwono, N. R., Risjani, Y., & Soegianto, A. (2021). Distribution of microplastic in relationto water quality parameters in the Brantas River, East Java, Indonesia. Environmental Technology & Innovation, 24, 101915. https://doi.org/10.1016/j.chemosphere.2022.133543

  • Buwono, N. R., Risjani, Y., & Soegianto, A. (2022). Spatio-temporal patterns of occurrence of microplastics in the freshwater fish Gambusia affinis from the Brantas River, Indonesia. Environmental Pollution, 311, 119958. https://doi.org/10.1016/j.envpol.2022.119958

  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (pp. 10815–10837). John Wiley & Sons Ltd.

    Google Scholar 

  • Cordova, M. R., Hadi, T. A., & Prayudha, B. (2018). Occurrence and abundance ofmicroplastics in coral reef sediment: a case study in Sekotong, Lombok-Indonesia. AES Bioflux, 10(1), 23–29.

  • Daniels, P. H. (2009). A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. Journal of Vinyl & Additive Technology, 15(4), 219–223.

    Article  CAS  Google Scholar 

  • De Falco, F., Di Pace, E., Cocca, M., & Avella, M. (2019). The contribution of washingprocesses of synthetic clothes to microplastic pollution. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-43023-x

    Article  CAS  Google Scholar 

  • De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K., & Robbens, J. (2014). Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Marine Pollution Bulletin, 85, 146–155.

    Article  Google Scholar 

  • Dwiyitno, D., Andayani, F., Unissah, U., Januar, H. I., & Wibowo, S. (2020). Concentrationand characteristic of floating plastic debris in Jakarta Bay: A preliminary study. Squalen Bulletin of Marine & Fisheries Postharvest & Biotechnology, 15, 109–117.

    Article  Google Scholar 

  • Eales, J., Bethel, A., Galloway, T., Hopkinson, P., Morrissey, K., Short, R.E., & Garside, R. (2022). Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environment International, 158, 106903. https://doi.org/10.1016/j.envint.2021.106903

  • EFSA - European Food Safety Authority. (2014). Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. European Food Safety Authority Journal, 12(7), 3761.

    Google Scholar 

  • Fahmi, R., Saleh, S. M., & Isya, M. (2017). The effect of the length of the marine water immersion on the durability of the concrete asphalt mixture using asphalt pen. 60/70 substituted by Ethylene Vinyl Acetate (EVA) waste. Jurnal Teknik Sipil, 6(3), 271–282. (in Indonesia language).

  • Fossi, M., Pedà, C., Compa, M., Tsangaris, C., Alomar, C., Claro, F., Ioakeimidis, C., Galgani, F., Hema, T., Deudero, S., Romeo, T., Battaglia, P., Andaloro, F., Caliani, I., Casini, S., Panti, C., & Baini, M. (2018). Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity. Environmental Pollution, 237, 1023–1040. https://doi.org/10.1016/j.envpol.2017.11.019

    Article  CAS  Google Scholar 

  • Frias, J. P. G. L., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147.

    Article  CAS  Google Scholar 

  • Gregorova, V., Ledererova, M., & Stefunkova, Z. (2017). Investigation of influence ofrecycled plastics from cable, ethylene vinyl acetate and polystyrene waste onlightweight concrete properties. Procedia Engineering, 195, 127–133.

    Article  CAS  Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in themarine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060–3075.

    Article  CAS  Google Scholar 

  • Hiwari, H., Purba, N. P., Ihsan, Y. N., Yuliadi, L. P., & Mulyani, P. G. (2019). Condition of microplastic garbage in sea surface water at around Kupang and Rote, East Nusa Tenggara Province. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 5(2), 165–171.

    Google Scholar 

  • Ivleva, N. P., Wiesheu, A. C., & Niessner, R. (2017). Microplastic in aquatic ecosystems. Angewandte Chemie International Edition, 56(7), 1720–1739.

  • Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., & Shi, H. (2017). Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221, 141–149.

    Article  CAS  Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.

    Article  CAS  Google Scholar 

  • Jamieson, A. J., Brooks, L. S. R., Reid, W. D. K., Piertney, S. B., Narayanaswamy, B. E., & Linley, T. D. (2019). Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on earth. Royal Society Open Science, 6, 180667. https://doi.org/10.1098/rsos.180667

  • Jang, K. S. (2020). Low-density polycarbonate composites with robust hollow glassmicrospheres by tailorable processing variables. Polymer Testing, 84, 106408.

    Article  CAS  Google Scholar 

  • Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez, C. V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S. J., Hyrenbach, K. D., Jensen, B. A., & Lynch, J. M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061

    Article  CAS  Google Scholar 

  • Khoironi, A., Anggoro, S., & Sudarno (2018). The existence of microplastic in Asian green mussels. IOP Conf. Series: Earth & Environmental Science, 131, 012050. https://doi.org/10.1088/1755-1315/131/1/012050

  • Kılıç, E., & Yücel, N. (2022). Microplastic occurrence in the gastrointestinal tract and gill of bioindicator fish species in the northeastern Mediterranean. Marine Pollution Bulletin, 177, 113556. https://doi.org/10.1016/j.marpolbul.2022.113556

  • Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K., & Shi, H. (2018). Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Science of the Total Environment, 610–611, 635–640.

    Article  Google Scholar 

  • Kong, X., & Narine, S. S. (2007). Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules, 8(7), 2203–2209.

    Article  CAS  Google Scholar 

  • Kou, S. C., Lee, G., Poon, C. S., & Lai, W. L. (2009). Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Management, 29(2), 621–628.

    Article  CAS  Google Scholar 

  • Law, K. L., & Thompson, R. C. (2014). Microplastic in the seas. Science, 345, 144–145.

    Article  CAS  Google Scholar 

  • Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177–184.

    Article  CAS  Google Scholar 

  • Lindberg, W. P. D. R. (2008). Phylogeny and Evolution of the Mollusca. University of California Press.

  • Mandal, A., Banerjee, A., Debnath, M., & Pramanick, K. (2022). Plasticisers: A potential reproductive-toxicant for humans. Chettinad Health City Medical Journal, 11(1), 29–37. https://doi.org/10.24321/2278.2044.202206

  • Ministry of Environment and Forestry of Indonesia. (2015). Album of environmental sensitivities map of the coastal and marine area of the Jakarta Bay. (in Indonesian language).

  • Ministry of Fisheries and Marine Affairs of the Republic of Indonesia. (2022). Fish Consumption Rate. AKI-Angka Konsunsi Ikan-Statistik KKP. https://statistik.kkp.go.id. (in Indonesian language).

  • Naguib, H. E., Park, C. B., Panzer, U., & Reichelt, N. (2002). Strategies for achieving ultra-low-density polypropylene foams. Polymer Engineering & Science, 42(7), 1481–1492.

    Article  CAS  Google Scholar 

  • Naidoo, T., Glassom, D., & Smit, A. J. (2015). Plastic pollution in five urban estuaries of KwaZulu-Natal, South Africa. Marine Pollution Bulletin, 101, 473–480.

    Article  CAS  Google Scholar 

  • Naidu, S. A. (2019). Preliminary study and first evidence of presence of microplastics and colorants in green mussel, Perna viridis (Linnaeus, 1758), from southeast coast of India. Marine Pollution Bulletin, 140, 416–422.

    Article  Google Scholar 

  • National Plastic Action Partnership Indonesia. (2023). https://wri-indonesia.org/id/inisiatif/indonesia-national-plastic-action-partnership-npap

  • Noda, I., Dowrey, A. E., Haynes, J. L., & Marcott, C. (2007). Group frequency assignments for major infrared bands observed in common synthetic polymers. In: Mark, J.E. (Ed.), Physical Properties of Polymers Handbook. Springer Science +Business Media, LLC, New York, pp. 395–406.

  • Nursyahra, N., & Widiana, R. (2013). Types of natural foods freshwater shells Corbicula sumatrana in Lake Singkarak. Prosiding Semirata, 1(1). (in Indonesia language)

  • Permana, R., Akbarsyah, N., & Zahidah, Z. (2022). Impact of microplastic exposure on changes in the morphology and physiology of phytoplankton. World Scientific News, 172, 55–69.

    CAS  Google Scholar 

  • Phaksopa, J., Sukhsangchan, R., Keawsang, R., Tanapivattanakul, K., Asvakittimakul, B., Thamrongnawasawat, T., & Worachananant, S. (2023). Assessment of microplastics in green mussel (Perna viridis) and surrounding environments around Sri Racha Bay. Thailand. Sustainability, 15, 9. https://doi.org/10.3390/su15010009

    Article  Google Scholar 

  • Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. Trends in Analytical Chemistry, 110, 150–159.

    Article  CAS  Google Scholar 

  • Ramli, R., Yaqin, K., & Rukminasari, N. (2021). Microplastics contamination in green mussels Perna viridis in Pangkajene Kepulauan Waters, South Sulawesi, Indonesia. Akuatikisle: Jurnal Akuakultur, Pesisir dan Pulau-Pulau Kecil, 5(1), 1–5. https://doi.org/10.29239/j.akuatikisle.5.1.1-5

  • Renzi, M., Guerranti, C., & Blaskovic, A. (2018). Microplastic contents from maricultured and natural mussels. Marine Pollution Bulletin, 131, 248–251.

    Article  CAS  Google Scholar 

  • Sawalman, R., Werorilangi, S., Ukkas, M., Mashoreng, S., Yasir, I., & Tahir, A. (2021). Microplastic abundance in sea urchins (Diadema setosum) from seagrassbeds of Barranglompo Island, Makassar, Indonesia. IOP Conference Series: Earth & Environmental Science, 763(1), 012057.

    Google Scholar 

  • Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine, 171(7), 453–457.

    Article  Google Scholar 

  • Shariatmadari, M. R. (2009). Finite element analysis into the foot—Footwear interactionusing EVA footwear foams. In 13th International Conference on Biomedical Engineering (pp. 1627–1630). Springer, Berlin, Heidelberg.

  • Shukla, A. K., Alam, J., & Alhoshan, M. (2022). Recent advancements in polyphenylsulfone membrane modification methods for separation applications. Membranes, 12, 247. https://doi.org/10.3390/membranes12020247

    Article  CAS  Google Scholar 

  • Simbolon, A. R. (2018). Health risk analysis of Lead (Pb) pollution in green mussels (Perna viridis) in the Cilincing coastal waters of DKI Jakarta. OLDI (oseanologi Dan Limnologi Di Indonesia), 3(3), 197–208. (in Indonesia language).

    Article  Google Scholar 

  • Singhal, P., Rodriguez, J. N., Small, W., Eagleston, S., Van de Water, J., Maitland, D. J., & Wilson, T. S. (2012). Ultra-low density and highly crosslinked biocompatible shape memory polyurethane foams. Journal of Polymer Science, Part b: Polymer Physics, 50(10), 724–737.

    Article  CAS  Google Scholar 

  • Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5, 375–386.

    Article  CAS  Google Scholar 

  • Sparks, C. (2020). Microplastics in mussels along the coast of Cape Town, South Africa. Bulletin of Environmental Contamination and Toxicology, 104(4), 423–431. https://doi.org/10.1007/s00128-020-02809-w

    Article  CAS  Google Scholar 

  • Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., Goic, N. L., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-pont, I., Soudant, P., & Huvet, A. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences of the United States of America, 113, 2430–2435.

    Article  CAS  Google Scholar 

  • Verleye, G.A., Roeges, N.P., & De Moor, M.O. (2001). Easy Identification of Plastics and Rubbers. Rapra Technology Limited, Shropshire, pp. 174.

  • Waddell, E. N., Lascelles, N., & Conkle, J. L. (2020). Microplastic contamination in Corpus Christi Bay blue crabs. Callinectes Sapidus. Limnology & Oceanography Letters, 5(1), 92–102.

    Article  Google Scholar 

  • Woods, M. N., Stacka, M. E., Fields, D. M., Shawa, S. D., & Matraib, P. A. (2018). Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin, 137, 638–645.

    Article  CAS  Google Scholar 

  • Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.

    Article  CAS  Google Scholar 

  • Yang, H., He, Y., Yan, Y., Junaid, M., & Wang, J. (2021). Characteristics, toxic effects, and analytical methods of microplastics in the atmosphere. Nanomaterials, 11, 2747. https://doi.org/10.3390/nano11102747

    Article  CAS  Google Scholar 

  • Ye, X., Wang, P., Wu, Y., Zhou, Y., Sheng, Y., & Lao, K. (2020). Microplastic acts as avector for contaminants: The release behavior of dibutyl phthalate from polyvinylchloride pipe fragments in water phase. Environmental Science & Pollution Research, 27(33), 42082–42091.

    Article  CAS  Google Scholar 

  • Yokota, K., Waterfield, H., Hastings, C., Davidson, E., Kwietniewski, E., & Wells, B. (2017). Finding the missing piece of the aquatic plastic pollution puzzle: Interaction betweenprimary producers and microplastics. Limnology & Oceanography Letters, 2(4), 91–104.

    Article  Google Scholar 

  • Zafar, M. S. (2020). Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers, 12, 2299. https://doi.org/10.3390/polym12102299

  • Zhou, Y., Yao, Y., Chen, C.-Y., Moon, K., Wang, H., & Wong, C.-P. (2014). The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation. Scientific Report, 4, 4779. https://doi.org/10.1038/srep04779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to express gratitude to local fishermen for their assistance in collecting of green mussels.

Funding

The study was partially funded by Universitas Airlangga under contract number 254/UN3/2023.

Author information

Authors and Affiliations

Authors

Contributions

Yulia Irnidayanti, Agoes Soegianto: Conceptualization, Methodology, Formal analysis, Investigation, Software, Resources, Writing – original draft, preparation, Writing – review and editing, Supervision. Aurigha Haidar Brabo, Fabian Muhammad Abdilla, Khudrotul Nisa Indriyasari, Nailul Muthiati Rahmatin, Trisnadi Widyaleksono Catur Putranto: Methodology, Formal analysis, Investigation, Software, Resources, Carolyn Melissa Payus: Methodology, Writing – original draft, preparation, Writing – review and editing.

Corresponding author

Correspondence to Agoes Soegianto.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irnidayanti, Y., Soegianto, A., Brabo, A.H. et al. Microplastics in green mussels (Perna viridis) from Jakarta Bay, Indonesia, and the associated hazards to human health posed by their consumption. Environ Monit Assess 195, 884 (2023). https://doi.org/10.1007/s10661-023-11535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11535-9

Keywords

Navigation