Skip to main content

Advertisement

Log in

A novel biomass pyrogenic index and its application coupled with black carbon for improving polycyclic aromatic hydrocarbon source identification

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To accurately subdivide the sources of polycyclic aromatic hydrocarbons (PAHs), the composition characteristics of 36 total polycyclic hydrocarbons (T-PAHs; 16 parent PAHs and 20 alkylated PAHs [A-PAHs]) in biomass-residue samples were analyzed. A novel biomass pyrogenic index (BPI) was defined based on A-PAH-fingerprinting differences between biomass-combustion and petroleum sources of PAHs and the sum of the concentrations of pyrene, fluoranthene, benzo[a]anthracene, and alkylated homologs) divided by the value of EPA PAHs with 2–3 rings. BPIs of < 0.5 and > 0.5 indicated that the PAHs originated mainly from biomass combustion and petroleum, respectively. And the targeted A-PAH pairs influencing the BPI/black carbon (BC) ratio was used to identify PAH sources in surface-sediment samples, using 0.5 as the threshold to distinguish between different sources across the strait. The columnar sediments were used to verify the accuracy of two source-identification methods. The results revealed that the main PAH sources changed since 2005, which is highly consistent with those obtained using positive matrix factors and a changing trend in the main types of local energy use. These results highlight the significance of A-PAHs in accurately identifying PAH sources and suggest that applying compositional differences in BC from different sources for PAH-source identification merits further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data mentioned in this paper are generated in the lab. They will be available on request.

References

  • Ambade, B., Kurwadkar, S., Sankar, T. K., & Kumar, A. (2021). Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown. Air Quality, Atmosphere and Health, 14, 1081–1095.

    Article  CAS  Google Scholar 

  • Augusto, S., Gonzalez, C., Vieira, R., Máguas, C., & Branquinho, C. (2011). Evaluating sources of PAHs in urban streams based on land use and biomonitors. Environmental Science and Technology, 45, 3731–3738.

    Article  CAS  Google Scholar 

  • Bai, L., Chen, W. Y., He, Z. J., Sun, S. Y., & Qin, J. (2020). Pollution characteristics, sources and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in an office building in northern areas, China. Sustain. Cities and Society, 53, 101891.

  • Boehm, P. D., Pietari, J., Cook, L. L., & Saba, T. (2018). Improving rigor in polycyclic aromatic hydrocarbon source fingerprinting. Environ. Forensics, 19, 172–184.

    Article  CAS  Google Scholar 

  • Cai, M., Lin, Y., Chen, M., Yang, W., Du, H., Xu, Y., Cheng, S., Xu, F., Hong, J., Chen, M., & Ke, H. (2017). Improved source apportionment of PAHs and Pb by integrating Pb stable isotopes and positive matrix factorization application (PAHs): A historical record case study from the northern South China Sea. Science of the Total Environment, 609, 577–586.

    Article  CAS  Google Scholar 

  • Casal, C. S., Arbilla, G., & Correa, S. M. (2014). Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust. Atmospheric Environment, 96, 107–116.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Gadhavi, H., Prithiviraj, B., Mukhopadhyay, M., Khuman, S. N., Nakamura, M., & Spak, S. N. (2021). Passive air sampling of PCDD/Fs, PCBs, PAEs, DEHA, and PAHs from informal electronic waste recycling and allied sectors in Indian megacities. Environmental Science and Technology, 55, 9469–9478.

    Article  CAS  Google Scholar 

  • del Rosario Sienra, M., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75, 267.

    Article  Google Scholar 

  • Du, W., Yun, X., Chen, Y., Zhong, Q., Wang, W., Wang, L., Qi, M., Shen, G., & Tao, S. (2020). PAHs emissions from residential biomass burning in real-world cooking stoves in rural China. Environmental Pollution, 267, 115592.

    Article  CAS  Google Scholar 

  • Dvorska, A., Lammel, G., & Klanova, J. (2011). Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45, 420–427.

    Article  CAS  Google Scholar 

  • Famiyeh, L., Chen, K., Xu, J., Sun, Y., Guo, Q., Wang, C., Lv, J., Tang, Y. T., Yu, H., Snape, C., & He, J. (2021). A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Science of the Total Environment, 789, 147741.

    Article  CAS  Google Scholar 

  • Genualdi, S. A., Killin, R. K., Woods, J., Wilson, G., Schmedding, D., & Simonich, S. L. M. (2009). Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America. Environmental Science and Technology, 43, 1061.

    Article  CAS  Google Scholar 

  • Han, Y., Bandowe, B. A. M., Schneider, T., Pongpiachan, S., Ho, S. S. H., Wei, C., Wang, Q., Xing, L., & Wilcke, W. (2021). A 150-year record of black carbon (soot and char) and polycyclic aromatic compounds deposition in Lake Phayao, north Thailand. Environmental Pollution, 269, 116148.

    Article  CAS  Google Scholar 

  • Han, Y., Cao, J., An, Z., Chow, J. C., Watson, J. G., Jin, Z., Fung, K., & Liu, S. (2007). Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere, 69, 526–533.

    Article  CAS  Google Scholar 

  • Hindersmann, B., & Achten, C. (2018). Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environmental Pollution, 242, 1217–1225.

    Article  CAS  Google Scholar 

  • Huang, Q., Zhu, Y., Wu, F., & Zhang, Y. (2021). Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait, China: Characteristics, sources and ecological risk assessment. Chemosphere, 265, 129168.

    Article  CAS  Google Scholar 

  • Kakhki, F. V., Zakaria, M. P., Mohammadi, M., Aris, A. Z., & Tajik, H. (2020). Fingerprinting techniques investigation to detect petroleum hydrocarbon origin in coastal sediments of Persian Gulf. Polycyclic Aromatic Compounds, 40, 355–371.

    Article  Google Scholar 

  • Kang, Y. J., Wang, X. C., Dai, M. H., Feng, H., Li, A. C., & Song, Q. (2009). Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China’s marginal seas. Chinese Journal of Oceanology and Limnology, 27, 297–308.

    Article  CAS  Google Scholar 

  • Katsoyiannis, A., & Breivik, K. (2014). Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environmental Pollution, 184, 488–494.

    Article  CAS  Google Scholar 

  • Kayee, J., Sompongchaiyakul, P., Sanwlani, N., Bureekul, S., Wang, X., & Das, R. (2020). Metal concentrations and source apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a biomass burning season. ACS Earth Space Chem., 4, 1213–1226.

    Article  CAS  Google Scholar 

  • Khodadadi, M., Mabit, L., Zaman, M., Porto, P., & Gorji, M. (2019). Using Cs-137 and Pb-210(ex) measurements to explore the effectiveness of soil conservation measures in semi-arid lands: A case study in the Kouhin region of Iran. Journal of Soils and Sediments, 19, 2103–2113.

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., & Lohmann, R. (2015). Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 134, 52–59.

    Article  CAS  Google Scholar 

  • Lohmann, R., MacFarlane, J. K., & Gschwend, P. M. (2005). Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediments. Environmental Science and Technology, 39, 141–148.

    Article  CAS  Google Scholar 

  • Lv, M., Luan, X. L., Liao, C. Y., Wang, D. Q., Liu, D. Y., Zhang, G., Jiang, G. B., & Chen, L. X. (2020). Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones. Nature Sustainability, 3, 878-+.

  • Mummullage, S., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2016). Sources of hydrocarbons in urban road dust: Identification, quantification and prediction. Environmental Pollution, 216, 80–85.

    Article  CAS  Google Scholar 

  • Prince, R. C., Owens, E. H., & Sergy, G. A. (2002). Weathering of an Arctic oil spill over 20 years: The BIOS experiment revisited. Baffin Island Oil Spill. Marine Pollution Bulletin, 44, 1236–1242.

    Article  CAS  Google Scholar 

  • Ren, P., Zhu, Y. X., Chen, X., & Zhang, Y. (2020). Investigation on the interaction differences of algogenic dissolved organic matter released by Prorocentrum donghaiense with phenanthrene and 3-methylphenanthrene using spectroscopy. Environmental Pollution, 267, 115459.

    Article  CAS  Google Scholar 

  • Saha, M., Takada, H., & Bhattacharya, B. (2012). Establishing criteria of relative abundance of alkyl polycyclic aromatic hydrocarbons (PAHs) for differentiation of pyrogenic and petrogenic PAHs: An application to Indian sediment. Environ. Forensics, 13, 312–331.

    Article  CAS  Google Scholar 

  • Saha, M., Togo, A., Mizukawa, K., Murakami, M., Takada, H., Zakaria, M. P., Chiem, N. H., Tuyen, B. C., Prudente, M., Boonyatumanond, R., Sarkar, S. K., Bhattacharya, B., Mishra, P., & Tana, T. S. (2009). Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Marine Pollution Bulletin, 58, 189–200.

    Article  CAS  Google Scholar 

  • Sánchez-García, L., Cato, I., & Gustafsson, Ö. (2010). Evaluation of the influence of black carbon on the distribution of PAHs in sediments from along the entire Swedish continental shelf. Marine Chemistry, 119, 44–51.

    Article  Google Scholar 

  • Sander, M., & Pignatello, J. J. (2005). Characterization of charcoal adsorption sites for aromatic compounds: Insights drawn from single-solute and bi-solute competitive experiments. Environmental Science and Technology, 39, 1606–1615.

    Article  CAS  Google Scholar 

  • Song, J., Peng, P., & Huang, W. (2002). Black carbon and kerogen in soils and sediments. 1. Quantification and Characterization. Environ Sci Technol, 36, 3960–3967.

    Article  CAS  Google Scholar 

  • Sun, W., Niu, X., Teng, H., Ma, Y., Ma, L., & Liu, Y. (2022). A 133-year record of eutrophication in the Chaihe Reservoir. Southwest China. Ecol. Indic., 134, 108469.

    Article  CAS  Google Scholar 

  • Tan, Z. H., Wu, C., Han, Y. M., Zhang, Y. Z., Mao, L. J., Li, D. X., Liu, L., Su, G. R., & Yan, T. T. (2020). Fire history and human activity revealed through poly cyclic aromatic hydrocarbon (PAH) records at archaeological sites in the middle reaches of the Yellow River drainage basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110015.

  • Thomson, M., & Mitra, T. (2018). A radical approach to soot formation. Science, 361, 978–979.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • Verma, P. K., Sah, D., Dubey, J., Kumari, K. M., & Lakhani, A. (2021). Mutagenic and cancer risk estimation of particulate bound polycyclic aromatic hydrocarbons from the emission of different biomass fuels. Chemical Research in Toxicology, 34, 743–753.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Hollebone, B., & Fingas, M. (2006). Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products. Environmental Science and Technology, 40, 5636–5646.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Yang, Z., Sun, J., Hollebone, B., Brown, C., & Landriault, M. (2011). Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill. J. Environ. Monit: JEM, 13, 3004–3017.

    Article  CAS  Google Scholar 

  • Wang, Z. D., Fingas, M., Shu, Y. Y., Sigouin, L., Landriault, M., Lambert, P., Turpin, R., Campagna, P., & Mullin, J. (1999). Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs - The 1994 mobile burn study. Environmental Science and Technology, 33, 3100–3109.

    Article  CAS  Google Scholar 

  • Wu, Y., Salamova, A., & Venier, M. (2021). Using diagnostic ratios to characterize sources of polycyclic aromatic hydrocarbons in the Great Lakes atmosphere. Science of the Total Environment, 761, 143240.

    Article  CAS  Google Scholar 

  • Ya, M., Wu, Y., Wang, X., Li, Y., & Su, G. (2020). The importance of compound-specific radiocarbon analysis in source identification of polycyclic aromatic hydrocarbons: A critical review. Critical Reviews in Environment Science and Technology, 52, 937–978.

    Article  Google Scholar 

  • Ya, M., Xu, L., Wu, Y., Li, Y., Zhao, S., & Wang, X. (2018). Fossil fuel-derived polycyclic aromatic hydrocarbons in the Taiwan Strait, China, and fluxes across the air–water interface. Environmental Science and Technology, 52, 7307–7316.

    Article  CAS  Google Scholar 

  • Yan, B., Abrajano, T. A., Bopp, R. F., Chaky, D. A., Benedict, L. A., & Chillrud, S. N. (2005). Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City. Environmental Science and Technology, 39, 7012–7019.

    Article  CAS  Google Scholar 

  • Yuan, K., Wang, X. W., Lin, L., Zou, S. C., Li, Y., Yang, Q. S., & Luan, T. G. (2015). Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the Pearl River Estuary, Daya Bay and northern South China Sea: Influence of riverine input. Environmental Pollution, 199, 66–72.

    Article  CAS  Google Scholar 

  • Zhang, H. S., Huang, Q., Han, P., Zhang, Z. C., Jiang, S. T., & Yang, W. (2022a). Source identification and toxicity apportionment of polycyclic aromatic hydrocarbons in surface soils in Beijing and Tianjin using a PMF-TEQ method. PLoS ONE, 17, e0268615.

    Article  CAS  Google Scholar 

  • Zhang, Z. F., Chen, J. C., Zhao, Y. X., Wang, L., Teng, Y. Q., Cai, M. H., Zhao, Y. H., Nikolaev, A., & Li, Y. F. (2022b). Determination of 123 polycyclic aromatic hydrocarbons and their derivatives in atmospheric samples. Chemosphere, 296, 134025.

    Article  CAS  Google Scholar 

Download references

Funding

All the funders are mentioned in the manuscript. The work received financial support from the National Natural Science Foundation of China (Nos. 21627814 and 22276154).

Author information

Authors and Affiliations

Authors

Contributions

Xiang Wang: conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, and visualization. Shuai Guo: software, validation, and formal analysis. Qi Huang: software, validation, resources, visualization, and investigation. Yaxian Zhu: resources, data curation, visualization, project administration, and funding acquisition. Yong Zhang: conceptualization, methodology, validation, formal analysis, writing—original draft, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1296 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, S., Huang, Q. et al. A novel biomass pyrogenic index and its application coupled with black carbon for improving polycyclic aromatic hydrocarbon source identification. Environ Monit Assess 195, 882 (2023). https://doi.org/10.1007/s10661-023-11494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11494-1

Keywords

Navigation