Skip to main content
Log in

Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Air pollution has become the most important environmental and human health threat as it is accounting for about 7 million deaths across the globe every year. Particulate matter (PM) derived from the combustion of fossil fuels, biomass, and other agricultural residues pollutes the atmospheric air which affects the quality of the environment and poses a great threat to human health. Ecological imbalance, climatic variation, and cardiovascular and respiratory problems among humans are significant extortions due to PM pollution. Scientific approaches were initiated to limit the levels of PM in the atmospheric air and the use of nanofiber mats has received wide attention as these possess versatile properties including nanoscale-sized pore structure, homogeneity in their size distribution with high specific surface area, and low basis weight. To exploit their filtration potential towards wide classes of pollutants and also to enhance the capturing efficacy, functionalized nanofibers are currently in practice with tailor-made modifications on the surface. The present review provides a comprehensive report on the different fabrication processes of functionalized nanofibers along with the controlling factors affecting the efficacy of the gas separation process. Also, it provides technical insights on the mass transfer aspects of PM filtration by elucidation their mechanism which can provide vital information on the rate-controlling diffusive flux(es). Conclusively, the practical challenges encountered in the large-scale air filtration systems such as filter cleaning, flow-rate regulation, pressure drop, and extent of reusability are discussed, and the review has identified potential gaps in the current research and can be considered for the prospective research in the area of PM separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abdo, H. S., Khalil, K. A., El-Rayes, M. M., Marzouk, W. W., Hashem, A. F. M., & Abdel-Jaber, G. T. (2020). Ceramic nanofibers versus carbon nanofibers as a reinforcement for magnesium metal matrix to improve the mechanical properties. Journal of King Saud University-Engineering Sciences, 32(5), 346–350.

    Article  Google Scholar 

  • Achoi, M. F., Noman, M. A. A., Kato, S., Kishi, N., & Soga, T. (2021). Synthesis of bismuth triiodidenanofibers by spin-coating at room temperature. Materialia, 16, 101077.

    Article  CAS  Google Scholar 

  • Air Quality Guidelines. (2006). Global Update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.

  • Alabdali, A. Y. M., Khalid, R., Kzar, M., Ezzat, M. O., Huei, G. M., Hsia, T. W., & Khalivulla, S. I. (2022). Design, synthesis, in silico and antibacterial evaluation of new curcumin derivatives loaded nanofiber as potential wound healing agents. Journal of King Saud University-Science, 102205.

  • Al-Attabi, R., Morsi, Y., Schütz, J. A., & Dumée, L. F. (2019). One-pot synthesis of catalytic molybdenum based nanocompositenano-fiber membranes for aerosol air remediation. Science of the Total Environment, 647, 725–733.

    Article  CAS  Google Scholar 

  • Alexeeff, S. E., Liao, N. S., Liu, X., Van Den Eeden, S. K., & Sidney, S. (2021). Long-term PM2. 5 exposure and risks of ischemic heart disease and stroke events: review and meta-analysis. Journal American Heart Association, 10, e016890.

  • Ali, M., Ain, Q., & HuanHe, J. (2020). Branched nanofibers for biodegradable facemasks by double bubble electrospinning. Acta Chemica Malaysia, 4(2), 40–44. https://doi.org/10.2478/acmy-2020-0007

    Article  Google Scholar 

  • Aluigi, A., Vineis, C., Tonin, C., Tonetti, C., Varesano, A., & Mazzuchetti, G. (2009). Wool keratin-based nanofibres for active filtration of air and water. Journal of Biobased Materials and Bioenergy, 3, 311–319.

    Article  CAS  Google Scholar 

  • Appert-Collin, J.-C., & Thomas, D. (2017). 2—Fibrous media. In D. Thomas, A. Charvet, N. Bardin-Monnier, & J.-C. Appert- Collin (Eds.), Aerosol filtration (pp. 31–47). Elsevier.

    Chapter  Google Scholar 

  • Azarakhsh, S., Bahiraei, H., & Haidari, G. (2022). Electrospun synthesis of silver/poly (vinyl alcohol) nano-fibers: Investigation of microstructure and antibacterial activity. Materials Letters, 309, 131370.

    Article  CAS  Google Scholar 

  • Azzam, S. A., Alshafei, F. H., Lopez-Ausens, T., Ghosh, R., Biswas, A. N., Sautet, P., Prikhodko, S., & Simonetti, D. A. (2019). Effects of morphology and surface properties of copper oxide on the removal of hydrogen sulfide from gaseous streams. Industrial and Engineering Chemistry Research58(40), 18836–18847.

  • Barhate, R. S., Loong, C. K., & Ramakrishna, S. (2006). Preparation and characterization of nanofibrous filtering media. Journal of Membrane Science, 283, 209–218.

    Article  CAS  Google Scholar 

  • Barhate, R. S., & Ramakrishna, S. (2007). Nanofibrous filtering media: Filtration problems and solutions from tiny materials. Journal of Membrane Science, 296, 1–8.

    Article  CAS  Google Scholar 

  • Brauer, M., Casadei, B., Harrington, R. A., Kovacs, R., & Sliwa, K. (2021). Taking a stand against air pollution—the impact on cardiovascular disease: A joint opinion from the World Heart Federation, American College of Cardiology, American Heart Association, and the European Society of Cardiology. Journal of the American College of Cardiology, 77, 1684–1688.

    Article  CAS  Google Scholar 

  • Bulejko, P., Krištof, O., Dohnal, M., & Svˇerák, T. (2019). Fine/ultrafine particle air filtration and aerosol loading of hollow-fiber membranes: A comparison of mathematical models for the most penetrating particle size and dimensionless permeability with experimental data. Journal of Membrane Science, 592, 117393.

    Article  CAS  Google Scholar 

  • Celebioglu, A., & Uyar, T. (2018). Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90, 135–141. https://doi.org/10.1007/s10847-017-0764-y

    Article  CAS  Google Scholar 

  • Champion, W. M., Connors, L., & Montoya, L. D. (2017). Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation, Journal of the Air and Waste Management Association, 67(9), 1020–1035. https://doi.org/10.1080/10962247.2017.1334717

  • Chen, R., Zhang, X., Wang, P., Xie, K., Jian, J., Zhang, Y., & Xu, J. (2018). Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants. Nanotechnology, 30(1), 015703.

    Article  Google Scholar 

  • Cheng, C.-Y., Cheng, S.-Y., Chen, C.-C., Pan, H.-Y., Wu, K.-H., & Cheng, F.-J. (2019). Ambient air pollution is associated with pediatric pneumonia: A time-stratified case−crossover study in an urban area. Environmental Health, 18, 1–9.

    Article  Google Scholar 

  • Cheng, R., Liang, Z. B., Shen, H., Guo, J., Wang, C. F., & Chen, S. (2022). In-situ synthesis of stable perovskite quantum dots in core-shell nanofibers via microfluidic electrospinning. Chinese Chemical Letters. https://doi.org/10.1016/j.cclet.2022.03.107

    Article  Google Scholar 

  • Chuang, Y.-H., Hong, G.-B., & Chang, C.-T. (2013). Study on particulates and volatile organic compounds removal with TiO2 efficiency filter materials: Filtration potential, thermal treatment, and their continuous production. Journal of Applied Polymer Science, 128, 1061–1069.

    Article  Google Scholar 

  • Cui, Yi., KaizhengXu, B. Z., Shilei, Hu., Chen, Y., DongfengLv, Y. Y., Jinglong, Bu., Wei, H., & Liang, Bo. (2022). Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas. Journal of Alloys and Compounds, 907, 164453.

    Article  CAS  Google Scholar 

  • De Almeida, D. S., Martins, L. D., Muniz, E. C., Rudke, A. P., Squizzato, R., Beal, A., De Souza, P. R., Bonfim, D. P. F., Aguiar, M. L., & Gimenes, M. L. (2020). Biodegradable CA/CPB electrospun nanofibers for efficient retention of airborne nanoparticles. Process Safety and Environment Protection, 144, 177–185.

    Article  Google Scholar 

  • Deng, N., He, H., Yan, J., Zhao, Y., Ben Ticha, E., Liu, Y., Kang, W., & Cheng, B. (2019). One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration. Polymer, 165, 174–179.

    Article  CAS  Google Scholar 

  • Deng, Y., Lu, T., Cui, J., Samal, S. K., Xiong, R., & Huang, C. (2021). Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: A review. Separation and Purification Technology, 277, 119623.

    Article  CAS  Google Scholar 

  • Desai, K., Kit, K., Li, J., Davidson, P. M., Zivanovic, S., & Meyer, H. (2009). Nanofibrous chitosan non-wovens for filtration applications. Polymer, 50, 3661–3669.

    Article  CAS  Google Scholar 

  • Ding, B., Kim, C. K., Kim, H. Y., et al. (2004). Titanium dioxide nanofibers prepared by using electrospinning method. Fibers and Polymers, 5, 105–109. https://doi.org/10.1007/BF02902922

    Article  CAS  Google Scholar 

  • Ding, J., Chen, M., Chen, W., He, M., Zhou, X., & Yin, G. (2018). Vapor-assisted crosslinking of a FK/PVA/PEO nanofiber membrane. Polymers, 10(7), 747.

    Article  Google Scholar 

  • Doiron, D., Bourbeau, J., de Hoogh, K., Hansell, A. L. (2021). Ambient air pollution exposure and chronic bronchitis in the lifelines cohort. Thorax, 216142.

  • Du, X. B., Dong, F., Tang, Z. C., & Zhang, J. Y. (2020). Precise design and synthesis of Pd/InOx@ CoOx core-shell nanofibers for the highly efficient catalytic combustion of toluene. Nanoscale, 12, 12133–12145.

    Article  CAS  Google Scholar 

  • Ehrmann, A. (2021). Non-toxic crosslinking of electrospun gelatin nanofibers for tissue engineering and biomedicine—a review. Polymers, 13(12), 1973.

    Article  CAS  Google Scholar 

  • El Fawal, G. F., Hassan, H. S., El-Aassar, M. R., & Elkady, M. F. (2019). Electrospun polyvinyl alcohol nanofibers containing titanium dioxide for gas sensor applications. Arabian Journal for Science and Engineering, 44(1), 251–257.

    Article  Google Scholar 

  • Elahi, M. F., Lu, W., Guoping, G., & Khan, F. (2013). Core-shell fibers for biomedical applications-a review. Journal of Biomedical Science, 3, 1–14.

    Article  Google Scholar 

  • Fan, T., Miao, J., Li, Z., & Cheng, B. (2019). Bio-inspired robust superhydrophobic-superoleophilic polyphenylene sulfide membrane for efficient oil/water separation under highly acidic or alkaline conditions. Journal of Hazardous Materials, 373, 11–22. https://doi.org/10.1016/j.jhazmat.2019.03.008

    Article  CAS  Google Scholar 

  • Fang, Q., Zhu, M., Yu, S., Sui, G., & Yang, X. (2016). Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Materials Science and Engineering B, 214, 1–10.

    Article  CAS  Google Scholar 

  • Farris, S., Song, J., & Huang, Q. (2010). Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry, 58(2), 998–1003. https://doi.org/10.1021/jf9031603

    Article  CAS  Google Scholar 

  • Filatov, Y., Budyka, A., Kirichenko, V. (2007). Electrospinning of micro and nanofibers; Begell House, Inc. Publishers: New York.

  • Fu, L. F., & Dempsey, B. A. (1998). Modeling the effect of particle size and charge on the structure of the filter cake in ultrafiltration. Journal of Membrane Science, 149, 221–240.

    Article  Google Scholar 

  • Guibo, Y., Qing, Z., Yahong, Z., Yin, Y., & Yumin, Y. (2013). The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: filtration potential, thermal treatment, and their continuous production, Journal of Applied Polymer Science, 128–2, Special Issue: Fibers, 1061–1069.

  • Guo, M. X., Wang, Z. H., & Huang, F. Y. (2015). Kang, Preparation of graphene/carbon hybrid nanofibers and their performance for NO oxidation. Carbon, 87, 282–291.

    Article  CAS  Google Scholar 

  • Guo, S., Yu, B., Ahmed, A., Cong, H., & Shen, Y. (2022). Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. Journal of Hazardous Materials, 424, 127602.

  • Guo, Z., Liang, Q. H., Yang, Z., Liu, S., Huang, Z. H., & Kang, F. Y. (2016). Modifying porous carbon nanofibers with MnOx-CeO2-Al2O3 mixed oxides for NO catalytic oxidation at room temperature. Catalysis Science and Technology, 6, 422–425.

  • Haleem, N., Khattak, A., Jamal, Y., Sajid, M., Shahzad, Z., & Raza, H. (2022). Development of poly vinyl alcohol (PVA) based biochar nanofibres for carbon dioxide (CO2) adsorption. Renewable and Sustainable Energy Reviews157 ISSN, 112019, 1364–2321. https://doi.org/10.1016/j.rser.2021.112019

  • Han, S., Kim, J., & Ko, S. H. (2021). Advances in air filtration technologies: Structure-based and interaction-based approaches. Materials Today Advances, 9, 100134.

    Article  CAS  Google Scholar 

  • Huang, X., Wang, Y.-J., & Di, Y.-H. (2007). Experimental study of wool fiber on purification of indoor air. Text. Research Journal, 77, 946− 950.

  • Huang, X., Jiao, T., Liu, Q., Zhang, L., Zhou, J., Li, B., & Peng, Q. (2019). Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture. Science China Materials62, 423–436. https://doi.org/10.1007/s40843-018-9320-4

  • Huang, Z.-X., Liu, X., Zhang, X., Wong, S.-C., Chase, G. G., Qu, J.-P., & Baji, A. (2017). Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment. Polymer, 131, 143–150.

    Article  CAS  Google Scholar 

  • Hung, C. M., Phuong, H. V., Thinh, V. V., Hong, L. T., Thắng, N. T., Hanh, N. H., Dich, N. Q., Duy, N. V., Hieu, N. V., & Hoa, N. D. (2021). Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sensors and Actuators A-Physical, 317, 112454.

  • Hutten, I. M. (2016). Chapter 1—Introduction to Nonwoven Filter Media. In I. M. Hutten (Ed.), Handbook of Nonwoven Filter Media (2nd ed., pp. 1–52). Butterworth-Heinemann.

    Google Scholar 

  • Iqbal, N., Wang, X., Yu, J., & Ding, B. (2017). Advanced Sustainable Systems, 1, 1600028. https://doi.org/10.1002/adsu.201600028

    Article  CAS  Google Scholar 

  • Jia, M., Zhang, X. F., Feng, Y., Zhou, Y., & Yao, J. (2020). In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation. Journal of Membrane Science, 595, 117579.

    Article  CAS  Google Scholar 

  • Joo, Y. L. (2005). Silica nanofiber mats containing vanadium pentoxide for gas sensing. MRS Online Proceedings Library (OPL), 876.

  • Kadam, V., Truong, Y. B., Schutz, J., Kyratzis, I. L., Padhye, R., & Wang, L. (2021). Gelatin/β–cyclodextrin bio–nanofibres as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. Journal of Hazardous Materials, 403. ISSN, 123841, 0304–3894. https://doi.org/10.1016/j.jhazmat.2020.123841

    Article  CAS  Google Scholar 

  • Kale, S. M., Kirange, P. M., Kale, T. V., Kanu, N. J., Gupta, E., Chavan, S. S., & Singh, G. K. (2021). Synthesis of ultrathin ZnO, nylon-6, 6 and carbon nanofibers using electrospinning method for novel applications. Materials Today: Proceedings47, 3186–3189.

  • Kang, J. (2020). Hwang, Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment. Chemical Engineering Journal, 379, 122315.

    Article  CAS  Google Scholar 

  • Kang, S., & Hwang, J. (2020). Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment. Chemical Engineering Journal, 379, 122315, ISSN 1385–8947, https://doi.org/10.1016/j.cej.2019.122315

  • Kang, S., Hoon Park, D., & Hwang, J. (2022). Hierarchical ZnO nano-spines grown on a carbon fiber seed layer for efficient VOC removal and airborne virus and bacteria inactivation. Journal of Hazardous Materials424, Part A. ISSN, 127262, 0304–3894. https://doi.org/10.1016/j.jhazmat.2021.127262

    Article  CAS  Google Scholar 

  • Karliansyah, M. R. (2020). Air pollution impacts on human health and policies to reduce air pollution. Medical Journal of Indonesia, 29, 6–7.

    Article  Google Scholar 

  • Katepalli, H., Bikshapathi, M., Sharma, C. S., Verma, N., & Sharma, A. (2011). Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chemical Engineering Journal, 171(3). ISSN, 1194–1200, 1385–8947. https://doi.org/10.1016/j.cej.2011.05.025

    Article  CAS  Google Scholar 

  • Khalid, B., Bai, X., Wei, H., Huang, Y., Wu, H., & Cui, Y. (2017). Direct blow-spinning of nanofibers on a window screen for highly efficient PM2. 5 removal. Nano Letters, 17(2), 1140–1148.

  • Kim, D., Kim, Y., Kim, D., Son, D., Doh, S. J., Kim, M., Lee, H., & Yoon, K. R. (2022). Rational process design for facile fabrication of dual functional hybrid membrane of MOF and electrospun nanofiber towards high removal efficiency of PM2.5 and toxic gases. Macromolecular Rapid Communications, 43, 2100648. https://doi.org/10.1002/marc.202100648

  • Kou, X., Meng, F., Chen, K., Wang, T., Sun, P., Liu, F., Yan, X., Sun, Y., Liu, F., Shimanoe, K., & Lu, G. (2020). High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sensors and Actuators B: Chemical, 320, 128292.

    Article  CAS  Google Scholar 

  • Lee, K. W., & Liu, B. Y. H. (1982). Theoretical study of aerosol filtration by fibrous filters. Aerosol Science and Technology, 1, 147–161.

    Article  Google Scholar 

  • Lee, T., Ku, B. K., Walker, R., Kulkarni, P., Barone, T., & Mischler, S. (2020). Aerodynamic size separation of glass fiber aerosols. Journal of Occupational and Environmental Hygiene, 17, 301–311.

    Article  CAS  Google Scholar 

  • Li, Y., Ban, H., & Yang, M. (2016a). Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheetnanocomposites. Sensors Actuators B-Chem, 224, 449–457.

    Article  CAS  Google Scholar 

  • Li, M., Liu, D., Wei, D., Song, X., Wei, D., & Wee, A. T. (2016b, May 17). Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications. Advanced Science (Weinh), 3(11), 1600003. https://doi.org/10.1002/advs.201600003. PMID: 27980983; PMCID: PMC5102669.

  • Li, Z. M., Zhu, S. X., Mao, F. F., Zhou, Y., Zhu, W., & Tao, D. J. (2022). CTAB-controlled synthesis of phenolic resin-based nanofiber aerogels for highly efficient and reversible SO2 capture. Chemical Engineering Journal, 431, 133715. https://doi.org/10.1016/j.cej.2021.133715

  • Liang, W., Xu, Y., Li, X., Wang, X. X., Zhang, H. D., Yu, M., & Long, Y. Z. (2019). Transparent polyurethane nanofiber air filter for high-efficiency PM2. 5 capture. Nanoscale Research Letters, 14(1), 1–9.

  • Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M. A., Amann, M., Anderson, H. R., et al. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2224–2260. https://doi.org/10.1016/S0140-6736(12)61766-8

    Article  Google Scholar 

  • Lin, H., Tao, J., Du, Y., Liu, T., Qian, Z., Tian, L., Di, Q., Zeng, W., Xiao, J., Guo, L., et al. (2016). Differentiating the effects of characteristics of PM pollution on mortality from ischemic and hemorrhagic strokes. International Journal of Hygiene and Environmental Health, 219, 204–211.

    Article  CAS  Google Scholar 

  • Liu, C., Hsu, P.-C., Lee, H.-W., Ye, M., Zheng, G., Liu, N., Li, W., & Cui, Y. (2015). Transparent air filter for high-efficiency PM 2.5 capture. Nature Communications, 6, 1−9.

  • Liu, K., Liu, C., Hsu, P.-C., Xu, J., Kong, B., Wu, T., Zhang, R., Zhou, G., Huang, W., Sun, J., & Cui, Y. (2018). Core−shell nanofibrous materials with high particulate matter removal efficiencies and thermally triggered flame retardant properties. ACS Central Science, 4(7), 894–898.

    Article  CAS  Google Scholar 

  • Liu, C., Dai, Z., Zhou, R., Ke, Q., & Huang, C. (2019). Fabrication of polypropylene-g-(diallylaminotriazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology. Journal of Chemistry, 2019, 3435095.

    Article  Google Scholar 

  • Lulu, W., Yongchun, Z., & Junying, Z. (2017). Photochemical removal of SO2 over TiO2-based nanofibers by a dry photocatalytic oxidation process. Energy and Fuels, 31(9), 9905–9914. https://doi.org/10.1021/acs.energyfuels.7b01514

    Article  CAS  Google Scholar 

  • Lv, D., Wang, R., Tang, G., Mou, Z., Lei, J., Han, J., De Smedt, S., Xiong, R., & Huang, C. (2019). Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: Highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Applied Materials & Interfaces, 11, 12880–12889.

    Article  CAS  Google Scholar 

  • Lv, S., Zhao, X., Shi, L., Zhang, G., Wang, S., Kang, W., & Zhuang, X. (2018). Preparation and properties of sc-PLA/PMMA transparent nanofiber air filter. Polymers, 10, 996.

    Article  Google Scholar 

  • Maddah, B., Yavaripour, A., Ramedani, S. H., Hosseni, H., & Hasanzadeh, M. (2020). Electrospun PU nanofiber composites based on carbon nanotubes decorated with nickel-zinc ferrite particles as an adsorbent for removal of hydrogen sulfide from air. Environmental Science and Pollution Research, 27(28), 35515–35525.

  • Mai, Z., Fan, S., Wang, Y., Chen, J., Chen, Y., Bai, K., & Xiao, Z. (2022). Catalytic nanofiber composite membrane by combining electrospinning precursor seeding and flowing synthesis for immobilizing ZIF-8 derived Ag nanoparticles. Journal of Membrane Science, 643, 120045.

    Article  CAS  Google Scholar 

  • Mamun, A., Trabelsi, M., Klöcker, M., Lukas Storck, J., Böttjer, R., & Sabantina, L. (2020). Needleless electrospun polyacrylonitrile/konjac glucomannan nanofiber mats. Journal of Engineered Fibers and Fabrics, 15, 1558925020964806.

    CAS  Google Scholar 

  • Mao, J., Tang, Y., Wang, Y., Huang, J., Dong, X., Chen, Z., & Lai, Y. (2019). Particulate matter capturing via naturally dried ZIF-8/graphene aerogels under harsh conditions. iScience, 16, 133−144.

  • Maruccia, E., Ferrari, S., Bartoli, M., Lucherini, L., Meligrana, G., Pirri, C. F., Saracco, G., & Gerbaldi, C. (2021). Effect of thermal stabilization on PAN-derived electrospun carbon nanofibers for CO2 capture. Polymers, 13(23), 4197. https://doi.org/10.3390/polym13234197

    Article  CAS  Google Scholar 

  • Mbandi, A. M. (2020). Air pollution in Africa in the time of COVID-19: The air we breathe indoors and outdoors. Clean Air J., 30, 1–3.

    Article  Google Scholar 

  • Myong, J.-P. (2016). Health effects of particulate matter. Korean Journal of Medicine, 91, 106–113.

    Article  Google Scholar 

  • Neira, M. P. (2019). Air pollution and human health: A comment from the World Health Organization. Annals of Global Health, 85, 141.

    Article  Google Scholar 

  • Nemati, S., Kim, S. J., Shin, Y. M., & Shin, H. (2019). Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence, 6(1), 1–16.

    Article  CAS  Google Scholar 

  • Nithya, R., Thirunavukkarasu, A., & Sivasankari, C. (2022). Comparative profile of green and chemically synthesized nanomaterials from bio-hydrometallurgical leachate of e-waste on crystal violet adsorption kinetics, thermodynamics, and mass transfer and statistical models. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02269-0

    Article  Google Scholar 

  • Orlando, R., Polat, M., Afshari, A., Johnson, M. S., & Fojan, P. (2021). Electrospun nanofibre air filters for particles and gaseous pollutants. Sustainability, 13(12), 6553. https://doi.org/10.3390/su13126553

    Article  CAS  Google Scholar 

  • Othman, F. E. C., Yusof, N., Samitsu, S., Abdullah, N., Hamid, M. F., Nagai, K., Abidin, M. N. Z., Azali, M. A., Ismail, A. F., Jaafar, J., Aziz, F., & Salleh, W. N. W. (2021). Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides. Journal of CO2 Utilization, 45 ISSN, 101434, 2212–9820. https://doi.org/10.1016/j.jcou.2021.101434

    Article  CAS  Google Scholar 

  • Patanaik, A., Jacobs, V., & Anandjiwala, R. D. (2010). Performance evaluation of electrospun nanofibrous membrane. Journal of Membrane Science, 352, 136–142.

    Article  CAS  Google Scholar 

  • Plowman, J. E., Deb-Choudhury, S., & Dyer, J. M. (2013). Fibrous protein nanofibers. Methods in Molecular Biology, 996, 61–76.

    Article  CAS  Google Scholar 

  • Podgorski, A., Bałazy, A., & Gradoń, L. (2006). Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science, 61, 6804−6815.

  • Prado, A. C. F., Malafatti, J. O. D., Oliveira, J. A., Ribeiro, C., Joya, M. R., Luz, A. P., & Paris, E. C. (2021). Preparation and application of Nb2O5 nanofibres in CO2 photoconversion. Nanomaterials, 11(12), 3268. https://doi.org/10.3390/nano11123268

    Article  CAS  Google Scholar 

  • Rajarathinam, N., Arunachalam, T., Raja, S., Selvasembian, R. (2020). Fenalan Yellow G adsorption using surface-functionalized green nanoceria: an insight into mechanism and statistical modelling. Environmental Research, 181, 108920, https://doi.org/10.1016/j.envres.2019.108920

  • Ramos-Brito, F., Alejo-Armenta, C., García-Hipólito, M., Camarillo, E., Hernández, J. A., Falcony, C., & Murrieta, H. (2011). Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature. Journal of Luminescence, 131(5), 874–879. https://doi.org/10.1016/j.jlumin.2010.12.017

    Article  CAS  Google Scholar 

  • Riisgård, H. U., & Larsen, P. S. (2010). Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecology Progress Series, 418, 255–293.

    Article  Google Scholar 

  • Rodrigues, M. V., Barrozo, M. A. S., Gonçalves, J. A. S., & Coury, J. R. (2017). Effect of particle electrostatic charge on aerosol filtration by a fibrous filter. Powder Technology, 313, 323–331.

  • Sambaer, W., Zatloukal, M., & Kimmer, D. (2011). 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chemical Engineering Science, 66, 613–623. https://doi.org/10.1016/j.ces.2010.10.035

    Article  CAS  Google Scholar 

  • Saraga, D., Maggos, T., Sadoun, E., Fthenou, E., Hassan, H., Tsiouri, V., Karavoltsos, S., Sakellari, A., Vasilakos, C., & Akosimos, K. (2017). Chemical characterization of indoor and outdoor particulate matter (PM2. 5, PM10) in Doha, Qatar. Aerosol and Air Quality Research, 17, 1156−1168.

  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change; John Wiley & Sons.

  • Selatile, M. K., Ray, S. S., Ojijo, V., & Sadiku, R. (2018). Depth filtration of airborne agglomerates using electrospun bio-based polylactide membranes. Journal of Environmental Chemical Engineering, 6, 762–772.

    Article  CAS  Google Scholar 

  • Sepahvand, S., Bahmani, M., Ashori, A., Pirayesh, H., Qingliang, Yu., & Dafchahi, M. N. (2021). Preparation and characterization of air nanofilters based on cellulose nanofibres. International Journal of Biological Macromolecules, 182. ISSN, 1392–1398, 0141–8130. https://doi.org/10.1016/j.ijbiomac.2021.05.088

    Article  CAS  Google Scholar 

  • Sh, M. S., George, S., Radiah, A. D., Hoey, D., Abdullah, N., & Kamarudin, S. (2022). Synthesis of bioactive glass using cellulose nanofibre template. Journal of the Mechanical Behavior of Biomedical Materials, 130, 105174.

    Article  Google Scholar 

  • Shin, HU., Lolla, D., Nikolov, Z., & Chase, G.G. (2016). Pd-Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO. Journal of Industrial and Engineering Chemistry, 33, 91–98.

  • Sinclair, D. (1976). Penetration of HEPA filters by submicron aerosols. Journal of Aerosol Science, 7(2), 175–179.

    Article  CAS  Google Scholar 

  • Sivashankar, R., Sivasubramanian, V., Kishore, K. A., et al. (2022). Metanil Yellow dye adsorption using green and chemical mediated synthesized manganese ferrite: An insight into equilibrium, kinetics and thermodynamics. Chemosphere, 307(4), 136218. https://doi.org/10.1016/j.chemosphere.2022.136218

  • Sivashankar, R., Thirunavukkarasu, A., Nithya, R., et al. (2020). Sequestration of methylene blue dye from aqueous solution by magnetic biocomposite: Three level Box-Behnken experimental design optimization and kinetic studies. Separation Science and Technology, 55(10), 1752–1765. https://doi.org/10.1080/01496395.2019.1607382

    Article  CAS  Google Scholar 

  • Song, X., Wang, Z., Li, Z., & Wang, C. (2008). Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitrile solution. Journal of Colloid and Interface Science, 327, 388–392.

  • Souzandeh, H., Scudiero, L., Wang, Y., & Zhong, W. H. (2017). A disposable multi-functional air filter: Paper towel/protein nanofibers with gradient porous structures for capturing pollutants of broad species and sizes. ACS Sustain. Chemical Engineering, 5, 6209–6217.

    Article  CAS  Google Scholar 

  • Souzandeh, H., Wang, Y., & Zhong, W. H. (2016). Green nano-filters: Fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Advances, 6, 105948–105956.

    Article  CAS  Google Scholar 

  • Stanek, L. W., Sacks, J. D., Dutton, S. J., & Dubois, J.-J.B. (2011). Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmospheric Environment, 45, 5655–5663.

    Article  CAS  Google Scholar 

  • Su, P. G., & Peng, Y. T. (2014). Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sensors Actuators B-Chem, 193, 637–643.

    Article  CAS  Google Scholar 

  • Sun, M., Liang, Q., Ma, Y., Wang, F., Lin, L., Li, T., Sun, Z., & Duan, J. (2020). Particulate matter exposure and biomarkers associated with blood coagulation: A meta-analysis. Ecotoxicology and Environmental Safety, 206, 111417.

    Article  CAS  Google Scholar 

  • Sun, M., Wang, X., Li, Y., Zhao, Z., & Qiu, J. (2022). Selective catalytic oxidation of pollutant H2S over co-decorated hollow N-doped carbon nanofibers for high-performance Li-S batteries. Applied Catalysis B: Environmental, 317. ISSN, 121763, 0926–3373. https://doi.org/10.1016/j.apcatb.2022.121763

    Article  CAS  Google Scholar 

  • Sun, T., WenjiZheng, J. C., Dai, Y., Li, X., XuehuaRuan, X. Y., & He, G. (2021). Nanofibers interpenetrating network mimicking “reinforced-concrete” to construct mechanically robust composite membrane for enhanced CO2 separation. Journal of Membrane Science, 639, 119749.

    Article  CAS  Google Scholar 

  • Tajer, M., Anbia, M., & Salehi, S. (2021). Fabrication of polyacrylonitrile hybrid nanofiber scaffold containing activated carbon by electrospinning process as nanofilter media for SO2, CO2, and CH4 adsorption. Environmental Progress Sustainable Energy, 40(1), e13498. https://doi.org/10.1002/ep.13498

  • Tavangar, A., Tan, B., & Venkatakrishnan, K. (2013). Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air. Journal of Applied Physics, 113, 023102–023110.

    Article  Google Scholar 

  • Tcharkhtchi, A., Abbasnezhad, N., ZarbiniSeydani, M., Zirak, N., Farzaneh, S., & Shirinbayan, M. (2021). An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioactive Materials, 6, 106–122.

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, A., Muthukumaran, K., & Nithya, R. (2018). dsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: Comparative studies on kinetics, isotherm, thermodynamics, and diffusion analysis. Journal of the Taiwan Institute of Chemical Engineers, 93, 211–225. https://doi.org/10.1016/j.jtice.2018.07.006

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, A., & Nithya, R. (2020). Adsorption of acid orange 7 using green synthesized CaO/CeO2 composite: An insight into kinetics, equilibrium, thermodynamics, mass transfer and statistical models. Journal of the Taiwan Institute of Chemical Engineers, 111, 44–62. https://doi.org/10.1016/j.jtice.2020.04.007

    Article  CAS  Google Scholar 

  • Thirunavukkarasu, A., Nithya, R., & Sivashankar, R. (2021). Continuous fixed-bed biosorption process: a review. Biochemical Engineering Journal, 8, 100188. https://doi.org/10.1016/j.ceja.2021.100188

  • Tian, J., Chen, X., Wang, T., Pei, W., Li, F., Li, D., & …& Dong, X. (2021). Modification of indium oxide nanofibers by polyoxometalate electron acceptor doping for enhancement of gas sensing at room temperature. Sensors and Actuators b: Chemical, 344, 130227.

    Article  CAS  Google Scholar 

  • Topuz, F., Abdulhamid, M. A., Hardian, R., Holtzl, T., & Szekely, G. (2022). Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal–organic frameworks for capturing volatile organic compounds. Journal of Hazardous Materials424, Part A. ISSN, 127347, 0304–3894. https://doi.org/10.1016/j.jhazmat.2021.127347

    Article  CAS  Google Scholar 

  • Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 29, 3527–3544.

    Article  CAS  Google Scholar 

  • Vitchuli, N., Shi, Q., Nowak, J., McCord, M., Bourham, M., & Zhang, X. (2010). Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science, 116, 2181–2187.

    CAS  Google Scholar 

  • Wang, H., Zheng, G., Wang, X., & Sun, D. (2010). Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters. In Proceedings of the IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 387–390.

  • Wang, Z., Zhao, C., & Pan, Z. (2015). Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. Journal Colloid Interface and Science, 441, 121–129.

    Article  CAS  Google Scholar 

  • Wortmann, G., Zwiener, G., Sweredjuk, R., Doppelmayer, F., & Wortmann, F. J. (1999). Uptake and bonding of indoor pollutants by wool exemplified with formaldehyde. DWI Reports, 122, 590–595.

    CAS  Google Scholar 

  • Wu, Y. B., Bi, J., Lou, T. et al. (2015). Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2International Journal of Minerals, Metallurgy and Materials, 22, 437–445. https://doi.org/10.1007/s12613-015-1091-1

  • Xu, Z. (2013). Filtration mechanism of fine particle. In Fundamentals of air cleaning technology and its application in cleanrooms; Springer: Berlin/Heidelberg, Germany, 133–183.

  • Yadav, T. P., Yadav, R. M., & Singh, D. P. (2012). Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology, 2(3), 22–48.

    Article  Google Scholar 

  • Yang, X., Zhang, L., Chen, X., Liu, F., Shan, A., Liang, F., Li, X., Wu, H., Yan, M., Ma, Z., et al. (2021). Long-term exposure to ambient PM2.5 and stroke mortality among urban residents in northern China. Ecotoxicol. Environmental Safety, 213, 112063.

  • Yarin, A. L., Pourdeyhimi, B., & Ramakrishna, S. (2014). Fundamentals and applications of micro-and nanofibers; Cambridge University Press.

  • Yin, L., Min, Hu., Li, D., Chen, J., Yuan, K., Liu, Y., Zhong, Z., & Xing, W. (2020). Multifunctional ZIF-67@SiO2 membrane for high efficiency removal of particulate matter and toxic gases. Industrial & Engineering Chemistry Research, 59(40), 17876–17884. https://doi.org/10.1021/acs.iecr.0c03091

    Article  CAS  Google Scholar 

  • Yu, X., Li, C., Tian, H., Yuan, L., Xiang, A., Li, J., Wang, C., & Rajulu, A. V. (2020). Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability. Chemical Engineering Journal, 396, 125373.

    Article  CAS  Google Scholar 

  • Zhang, Y., Yuan, S., Feng, X., Li, H., Zhou, J., & Wang, Bo. (2016a). Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. Journal of the American Chemical Society, 2016138(18), 5785–5788. https://doi.org/10.1021/jacs.6b02553

    Article  CAS  Google Scholar 

  • Zhang, R., Liu, C., Hsu, P. C., Zhang, C., Liu, N., Zhang, J., & Cui, Y. (2016b). Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources. Nano Letters, 16(6), 3642–3649.

  • Zhang, B., Zhang, Z. G., Yan, X., Wang, X. X., Zhao, H., Guo, J., & Long, Y. Z. (2017a). Chitosan nanostructures by in situ electrospinning for high-efficiency PM2. 5 capture. Nanoscale, 9(12), 4154–4161.

  • Zhang, X. F., Feng, Y., Huang, C., Pan, Y., & Yao, J. (2017b). Temperature-induced formation of cellulose nanofiber film with remarkably high gas separation performance. Cellulose, 24(12), 5649–5656.

    Article  CAS  Google Scholar 

  • Zhang, H., Liu, J., Zhang, X., Huang, C., & Jin, X. (2018). Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Advances, 8, 7932–7941.

  • Zhang, K., Narang, S. B., Simonsen, N. M., Vinkel, M., Gudik-Sorensen, L., Han, F., & Akhtar, A. (2020). Kaiser. Highly Structured Nanofiber Zeolite Materials for Biogas Upgrading, Energy Technology, 8, 1900781.

    CAS  Google Scholar 

  • Zhang, X., Ru, Z., Sun, Y., Zhang, M., Wang, J., Ge, M., & Feng, Y. (2022a). Recent advances in applications for air pollutants purification and perspectives of electrospun nanofibers. Journal of Cleaner Production, 134567.

  • Zhang, Y., Zhu, C., Zhang, L., Yan, J., Yu, J., & Ding, B. (2022b). Polymer nanoreactor mediated controllable synthesis of flexible semiconductor quantum dot nanofiber films. Journal of Chemical Engineering, 137614.

  • Zhang, X., Ziwei, Ru., Wang, T., Feng, W., Zhang, M., Wang, J., Mi, J., Mingzheng Ge, Yu., & Feng. (2023). Insights to the microwave effect in formation and performance promotion of iron-based carbon nanofibrous composites for H2S removal, Composites Communications, Volume 37. ISSN, 101468, 2452–2139. https://doi.org/10.1016/j.coco.2022.101468

    Article  Google Scholar 

  • Zhao, X., Wang, S., Yin, X., Yu, J., & Ding, B. (2016). Slip-effect functional air filter for efficient purification of PM2.5. Scientific Reports, 6, 35472.

  • Zhai, Z., Wang, J., Sun, Y., Hao, X., Niu, B., Xie, H., & Li, C. (2023). MOFs/nanofibre-based capacitive gas sensors for the highly selective and sensitive sensing of trace SO2. Applied Surface Science, 613 ISSN, 155772, 0169–4332. https://doi.org/10.1016/j.apsusc.2022.155772

    Article  CAS  Google Scholar 

  • Zhu, M., Hua, D., Zhong, M., Zhang, L., Wang, F., Gao, B., Xiong, R., & Huang, C. (2018). Antibacterial and effective air filtration membranes by “green” electrospinning and citric acid crosslinking. Colloids and Interface Science Communications, 23, 52–58.

    Article  CAS  Google Scholar 

  • Zhu, M., Xiong, R., & Huang, C. (2019). Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydrate Polymers, 205, 55–62.

    Article  Google Scholar 

  • Zhu, M., Cao, Q., Liu, B., Guo, H., Wang, X., Han, Y., Sun, G., Li, Y., & Zhou, J. (2020). A novel cellulose acetate/poly (ionic liquid) composite air filter. Cellulose, 27, 3889–3902.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rajarathinam Nithya, Arunachalam Thirunavukkarasu, and Hemavathy—drafted the main manuscript text; Raja Sivashankar, Kola Anand Kishore, Radoor Sabarish—prepared tables and figures and revised the final draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Arunachalam Thirunavukkarasu.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithya, R., Thirunavukkarasu, A., Hemavathy, R.V. et al. Functionalized nanofibers in gas sorption process: a critical review on the challenges and prospective research. Environ Monit Assess 195, 969 (2023). https://doi.org/10.1007/s10661-023-11491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11491-4

Keywords

Navigation