Skip to main content

Advertisement

Log in

Effect of climate change on reservoir water balance and irrigation water demand: a case of Gidabo irrigation project, Rift Valley Basin, Ethiopia

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The consequences of climate change on agriculture water demand are among the current and prospective challenges. The amount of water needed by crops is significantly affected by the regional climate. The influence of climate change on irrigation water demand and reservoir water balance components were examined. The results of seven regional climate models were compared, and the top-performing model was chosen for the study area. After model calibration and validation, the HEC-HMS model was used to forecast future water availability in the reservoir. The results show that under the RCP 4.5 and RCP 8.5 emission scenarios, the reservoir’s water availability in the 2050s will decline by approximately 7% and 9%, respectively. The CROPWAT results showed that the required irrigation water might rise by 26 to 39% in the future. However, the water supply for irrigation may be drastically reduced due to the drop in reservoir water storage. As a result, the irrigation command area could drop up to 21% (2878.4 ha) to 33% (4502 ha) in future climatic conditions. Therefore, we recommend alternative watershed management techniques and climate change adaptation measures to endure upcoming water shortages in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be supplied upon request.

References

  • Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., & Haile, A. T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin. Ethiopia. Hydrological Processes: An International Journal, 23(26), 3661–3669. https://doi.org/10.1002/hyp.7363

    Article  Google Scholar 

  • Alehu, B. A., Desta, H. B., & Daba, B. I. (2021). Assessment of climate change impact on hydro-climatic variables and its trends over Gidabo watershed. Modeling Earth Systems and Environment, 1–23. https://doi.org/10.1007/s40808-021-01327-w

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.

    Google Scholar 

  • Arnell, N. W. (2003). Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: Future streamflows in Britain. Journal of Hydrology, 270(3–4), 195–213. https://doi.org/10.1016/S0022-1694(02)00288-3

    Article  Google Scholar 

  • Asadi, A., & Boustani, F. (2013). Performance evaluation of the HEC-HMS hydrologic model for lumped and semi-distributed stormflow simulation (Study Area : Delibajak Basin). American Journal of Engineering Research (AJER), 2(11), 115–121.

    Google Scholar 

  • Awal, R., Fares, A., & Bayabil, H. (2018). Assessing potential climate change impacts on irrigation requirements of major crops in the Brazos headwaters basin, texas. Water, 10(11), 1610. https://doi.org/10.3390/w10111610

    Article  Google Scholar 

  • Azmat, M., Qamar, M. U., Ahmed, S., Hussain, E., & Umair, M. (2017). Application of HEC-HMS for the event and continuous simulation in high altitude scarcely-gauged catchment under changing climate. European Water, 57, 77–84.

    Google Scholar 

  • Baimoung, S., Oki, T., Archevarahuprok, B., Yuttaphan, A., & Pangpom, M. (2014). Bias correction techniques for meteorological data of A2 scenario climate model output in Chao Phraya River Basin of Thailand. Hydrological Research Letters, 8(1), 71–76. https://doi.org/10.3178/hrl.8.71

    Article  Google Scholar 

  • Bennett, T. H., & Peters, J. C. (2000). Continuous soil moisture accounting in the hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). In Building Partnerships, 1–10.

  • Berhe, A. G., Mesfin, H. S., Abraha, A. Z., Abraha, G. G., Misgna, S. H., & Gebremicael, T. G. (2018). The impact of climate change on irrigation water requirement of maize and onion: The case of Gum-Selasa small-scale irrigation scheme, Tigray. Ethiopia. Journal of the Drylands, 8(1), 729–740.

    Google Scholar 

  • Beyene, T., Lettenmaier, D. P., & Kabat, P. (2010). Hydrologic impacts of climate change on the Nile River Basin: Implications of the 2007 IPCC scenarios. Climatic Change, 100, 433–461. https://doi.org/10.1007/s10584-009-9693-0

    Article  Google Scholar 

  • Bhima, K. J. (2018). Climate change impact on water availability and demand of irrigation water-a review. International Journal of Current Microbiology and Applied Sciences, 7(7), 4349–4360. https://doi.org/10.20546/ijcmas.2018.707.507

    Article  Google Scholar 

  • Brekke, L. D., Maurer, E. P., Anderson, J. D., Dettinger, M. D., Townsley, E. S., Harrison, A., & Pruitt, T. (2009). Assessing reservoir operations risk under climate change. Water Resources Research, 45(4). https://doi.org/10.1029/2008WR006941

  • Change, I. P. O. C. (2001). Climate change 2007: Impacts, adaptation, and vulnerability. Genebra, Suíça.

  • Chernet, H. H., Sc, M., Alfredsen, K., & Midttømme, G. H. (2014). Safety of hydropower dams in a changing climate. Journal of Hydrologic Engineering, 19(March), 569–582. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000836

    Article  Google Scholar 

  • Cheung, W. H., Senay, G. B., & Singh, A. (2008). Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. International Journal of Climatology, 28(13), 1723–1734. https://doi.org/10.1002/joc.1623

    Article  Google Scholar 

  • Chowdhury, S., Al-Zahrani, M., & Abbas, A. (2016). Implications of climate change on crop water requirements in arid region: An example of Al-Jouf, Saudi Arabia. Journal of King Saud University – Engineering Sciences, 28, 21–31. https://doi.org/10.1016/j.jksues.2013.11.001

    Article  Google Scholar 

  • Chu, H. J., & Chang, L. C. (2009). Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering, 14(9), 1024–1027.

    Article  Google Scholar 

  • Combalicer, E. A., Cruz, R. V. O., Lee, S., & Im, S. (2010). Assessing climate change impacts on water balance in the Mount Makiling forest. Philippines. Journal of Earth System Science, 119(3), 265–283. https://doi.org/10.1007/s12040-010-0025-6

    Article  Google Scholar 

  • Coulibaly, N., Coulibaly, T. J. H., Mpakama, Z., & Savané, I. (2018). The impact of climate change on water resource availability in a trans-boundary basin in West Africa: The case of Sassandra. Hydrology, 5(1), 12. https://doi.org/10.3390/hydrology5010012

    Article  Google Scholar 

  • Cunderlik, J., & Simonovic, S. P. (2004). Calibration, verification and sensitivity analysis of the HEC-HMS Hydrologic Model. Water Resources Research Report, 11. https://ir.lib.uwo.ca/wrrr/11

  • Daba, M. H., & You, S. (2020). Assessment of climate change impacts on river flow regimes in the upstream of Awash Basin, Ethiopia: Based on IPCC fifth assessment report (AR5) climate change scenarios. Hydrology, 7(4), 98. https://doi.org/10.3390/hydrology7040098

    Article  Google Scholar 

  • Dile, Y. T., Berndtsson, R., & Setegn, S. G. (2013). Hydrological response to climate change for gilgel abay river, in the lake tana basin-upper blue Nile basin of Ethiopia. PloS one, 8(10), e79296. https://doi.org/10.1371/journal.pone.0079296

    Article  CAS  Google Scholar 

  • Doll, P. (2002). Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change, 54, 269–293. https://doi.org/10.1023/A:1016124032231

    Article  Google Scholar 

  • Elshamy, M. E., Seierstad, I. A., & Sorteberg, A. (2009). Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrology and Earth System Sciences, 13(5), 551–565. https://doi.org/10.5194/hess-13-551-2009

    Article  Google Scholar 

  • Emiru, N. C., Recha, J. W., Thompson, J. R., Belay, A., Aynekulu, E., Manyevere, A., & Solomon, D. (2021). Impact of climate change on the hydrology of the upper Awash river basin. Ethiopia. Hydrology, 9(1), 3. https://doi.org/10.3390/hydrology9010003

    Article  Google Scholar 

  • Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., & Panitz, H. J. (2015). Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Climate Dynamics, 46(9–10), 2821–2846. https://doi.org/10.1007/s00382-015-2734-7

    Article  Google Scholar 

  • Endris, H. S., Omondi, P., Jain, S., Lennard, C., Hewitson, B., & Chang’a, L., … Tazalika, L. (2013). Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. Journal of Climate, 26(21), 8453–8475. https://doi.org/10.1175/JCLI-D-12-00708.1

    Article  Google Scholar 

  • Ewaid, S. H., Abed, S. A., & Al-Ansari, N. (2019). Crop water requirements and irrigation schedules for some major crops in Southern Iraq. Water, 11(4), 756. https://doi.org/10.3390/w11040756

    Article  Google Scholar 

  • Feldman, A. D. (2000). Hydrologic modeling system HEC-HMS: technical reference manual. HEC 609 Second St. Davis, CA 95616-4687: U.S. Army Corps of Engineering.

    Google Scholar 

  • Gebre, S. L. (2015). Application of the HEC-HMS model for runoff simulation of upper Blue Nile river basin. Hydrology: Current Research, 6(2), 1.

    Google Scholar 

  • Gebre, S. L., & Ludwig, F. (2015). Hydrological response to climate change of the upper blue Nile River Basin: Based on IPCC fifth assessment report (AR5). Journal of Climatology & Weather Forecasting, 3(01), 1–15.

    Google Scholar 

  • Gelete, G., Gokcekus, H., & Gichamo, T. (2020). Impact of climate change on the hydrology of Blue Nile basin, Ethiopia: A review. Journal of Water and Climate Change, 11(4), 1539–1550. https://doi.org/10.2166/wcc.2019.014

    Article  Google Scholar 

  • Gemechu, T. (2016). Impact of climatological parameters on crop water use of maize and sorghum: A case of Adami-Tulu Jido-Kombolcha Woreda, central rift valley of Ethiopia. Journal of Earth Science & Climatic Change, 7(10). https://www.omicsonline.org/open-acce

  • Gergis, J., Baillie, Z., Ingallina, S., Ashcroft, L., & Ellwood, T. A. (2021). Historical climate dataset for southwestern Australia, 1830–1875. International Journal of Climatology, 41, 4898–4919. https://doi.org/10.1002/joc.7105

    Article  Google Scholar 

  • Giorgi, F., Jones, C., & R, A. G. (2009). Addressing climate information needs at the regional level : The CORDEX framework. WMO Bulletin, 58(July), 175–183.

    Google Scholar 

  • Gurara, M. A., Jilo, N. B., & Tolche, A. D. (2021). Impact of climate change on potential evapotranspiration and crop water requirement in upper Wabe Bridge watershed, Wabe Shebele river basin, Ethiopia. Journal of African Earth Sciences, 180, 104223. https://doi.org/10.1016/j.jafrearsci.2021.104223

    Article  Google Scholar 

  • Haile, A. T., Akawka, A. L., & Berhanu, B. (2017). Changes in water availability in the upper Blue Nile basin under the representative concentration pathways scenario. Hydrological Sciences Journal, 62(13), 2139–2149. https://doi.org/10.1080/02626667.2017.1365149

    Article  Google Scholar 

  • Haile, A. T., & Rientjes, T. H. M. (2015). Evaluation of regional climate model simulations of rainfall over the upper Blue Nile basin. Atmospheric Research, 161–162, 57–64. https://doi.org/10.1016/j.atmosres.2015.03.013

    Article  Google Scholar 

  • Hailemariam, K. (1999). Impact of climate change on the water resources of Awash river basin. Ethiopia. Climate Research, 12(2–3), 91–96. https://doi.org/10.3354/cr012091

    Article  Google Scholar 

  • Hedberg, S. (2015). Regional quantification of climatic and anthropogenic impacts on streamflows in Sweden. Uppsala University.

    Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Der Linden, P. J. V., Dai, X., & Johnson, C. A. (2001). Climate Change 2001: The scientific basis is the most comprehensive and up-to-date scientific assessment of past, present and future climate change (pp. 1–83).

  • Hussen, B., Mekonnen, A., & Pingale, S. M. (2018). Integrated water resources management under climate change scenarios in the sub-basin of Abaya-Chamo. Ethiopia. Modeling Earth Systems and Environment, 4(1), 221–240. https://doi.org/10.1007/s40808-018-0438-9

    Article  Google Scholar 

  • IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switze

  • Jang, S., Kavvas, M. L., Ishida, K., Trinh, T., Ohara, N., & Kure, S. (2017). A performance evaluation of dynamical downscaling of precipitation over Northern California. Sustainability, 2017(9), 1457. https://doi.org/10.3390/su9081457

    Article  Google Scholar 

  • Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F., Zimdars, P. A., & Jack, C. (2014). Evaluation of the CORDEX-Africa multi-RCM hindcast: Systematic model errors. Climate Dynamics, 42(5–6), 1189–1202. https://doi.org/10.1007/s00382-013-1751-7

    Article  Google Scholar 

  • Koutroulis, A. G., Tsanis, I. K., Daliakopoulos, I. N., & Jacob, D. (2013). Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of Hydrology, 479, 146–158. https://doi.org/10.1016/j.jhydrol.2012.11.055

    Article  Google Scholar 

  • Kumilachew, Y. W., & Hatiye, S. D. (2022). The dual impact of climate change on irrigation water demand and reservoir performance: A case study of Koga irrigation scheme. Ethiopia. Sustainable Water Resources Management, 8(1), 1–20. https://doi.org/10.1007/s40899-022-00617-0

    Article  Google Scholar 

  • Lafon, T., Dadson, S., & Prudhomme, C. (2013). Bias correction of daily precipitation simulated by a regional climate model : A comparison of methods. International Journal of Climatology, 33(May 2012), 1367–1381. https://doi.org/10.1002/joc.3518

    Article  Google Scholar 

  • Legates, D. R., & McCabe, G. J., Jr. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.

    Article  Google Scholar 

  • Luhunga, P., Botai, J., & Kahimba, F. (2016). Evaluation of the performance of CORDEX regional climate models in simulating present climate conditions of Tanzania. Journal of Southern Hemisphere Earth Systems Science, 32–54.

  • Mana, T. T., & Abebe, B. W. (2023). Assessment of hydro-meteorological regimes of gidabo river basin under representative concentration pathway scenarios. Modeling Earth Systems and Environment, 9(1), 473–491. https://doi.org/10.1007/s40808-022-01516-1

    Article  Google Scholar 

  • Mohan, S., & Ramsundram, N. (2014). Climate change and its impact on irrigation water requirements on temporal scale. Irrigation & Drainage Systems Engineering, 3(1), 1–8. https://doi.org/10.4172/2168-9768.1000118

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Article  Google Scholar 

  • Mutayoba, E., & Kashaigili, J. J. (2017). Evaluation for the performance of the CORDEX regional climate models in simulating rainfall characteristics over Mbarali river catchment in the Rufiji basin, Tanzania. Journal of Geoscience and Environment Protection, 2017(5), 139–151. https://doi.org/10.4236/gep.2017.54011

    Article  Google Scholar 

  • Negewo, T. F., & Sarma, A. K. (2021). Estimation of water yield under baseline and future climate change scenarios in Genale watershed, Genale Dawa river basin, Ethiopia, using SWAT model. Journal of Hydrologic Engineering, 26(3), 05020051. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002047

    Article  Google Scholar 

  • Nguyen, A., Cochrane, T. A., & Pahlow, M. (2021). A framework to assess the reliability of a multipurpose reservoir under uncertainty in land use. Water, 13(3), 287.

    Article  Google Scholar 

  • Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., & van Meijgaard, E. (2012). Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. Journal of Climate, 25(18), 6057–6078. https://doi.org/10.1175/JCLI-D-11-00375.1

    Article  Google Scholar 

  • Orke, Y. A., & Li, M. H. (2022). Impact of climate change on hydrometeorology and droughts in the Bilate watershed. Ethiopia. Water, 14(5), 729. https://doi.org/10.3390/w14050729

    Article  Google Scholar 

  • Orkodjo, T. P., Kranjac-Berisavijevic, G., & Abagale, F. K. (2022). Impact of climate change on future precipitation amounts, seasonal distribution, and streamflow in the Omo-Gibe basin. Ethiopia. Heliyon, 8(6), e09711. https://doi.org/10.1016/j.heliyon.2022.e09711

    Article  Google Scholar 

  • Park, J. Y., & Kim, S. J. (2014). Potential impacts of climate change on the reliability of water and hydropower supply from a multipurpose dam in South Korea 1. Journal of the American Water Resources Association, 50(5). https://doi.org/10.1111/jawr.12190

  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO 56: Past and future. Agricultural Water Management, 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031

    Article  Google Scholar 

  • Peres, D. J., Modica, R., & Cancelliere, A. (2019). Assessing future impacts of climate change on water supply system performance: Application to the Pozzillo Reservoir in Sicily, Italy. Water, 11(12), 2531.

    Article  Google Scholar 

  • Sanjay, J., Krishnan, R., & Bhakta, A. (2017). ScienceDirect Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models. Advances in Climate Change Research, 8(3), 185–198. https://doi.org/10.1016/j.accre.2017.08.003

    Article  Google Scholar 

  • Santra, P., Kumar, M., Kumawat, R. N., Painuli, D. K., Hati, K. M., Heuvelink, G. B. M., & Batjes, N. H. (2018). Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. Journal of Earth System Science, 127(3), 1–16. https://doi.org/10.1007/s12040-018-0937-0

    Article  CAS  Google Scholar 

  • Savva, A. P., & Frenken, K. (2002). Crop water requirements and irrigation scheduling (p. 132). Harare: FAO Sub-Regional Office for East and Southern Africa.

  • Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3–4), 163–176. https://doi.org/10.1016/S0022-1694(01)00466-8

    Article  Google Scholar 

  • Seleshi, Y., & Zanke, U. (2004). Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24(8), 973–983. https://doi.org/10.1002/joc.1052

    Article  Google Scholar 

  • Setegn, S. G., Rayner, D., Melesse, A. M., Dargahi, B., Srinivasan, R., & Wörman, A. (2011). Climate change impact on agricultural water resources variability in the Northern Highlands of Ethiopia. In Nile River Basin, 241–265. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0689-7_12

  • Shahid, S. (2011). Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Climatic Change, 105, 433–453. https://doi.org/10.1007/s10584-010-9895-5

    Article  Google Scholar 

  • Shrestha, S., & Khatiwada, M. (2014). Impact of climate change on river flow and hydropower production in Kulekhani Hydropower Project of Nepal. Environ. Process., 2014, 231–250. https://doi.org/10.1007/s40710-014-0020-z

    Article  Google Scholar 

  • Taye, M. T., Dyer, E., Hirpa, F. A., & Charles, K. (2018). Climate change impact on water resources in the Awash basin. Ethiopia. Water, 10(11), 1560. https://doi.org/10.3390/w10111560

    Article  Google Scholar 

  • Tekle, A. (2015). Assessment of climate change impact on water availability of Bilate watershed, Ethiopian Rift Valley Basin. In AFRICON, 1–5. IEEE. https://doi.org/10.1109/AFRCON.2015.7332041

  • Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies : Review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Verbeiren, B., Khanh Nguyen, H., Wirion, C., & Batelaan, O. (2016). An Earth observation based method to assess the influence of seasonal dynamics of canopy interception storage on the urban water balance. Belgeo. Revue Belge de Géographie, (2).

  • Walther, A., Jeong, J. H., Nikulin, G., Jones, C., & Chen, D. (2013). Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmospheric Research, 119, 131–139. https://doi.org/10.1016/j.atmosres.2011.10.012

    Article  Google Scholar 

  • Wang, L., Ranasinghe, R. W. M. R. J., Maskey, S., van Gelder, P. H. A. J., & Vrijling, J. K. (2016). Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: A case study of the Huai River Basin. China. International Journal of Climatology, 36(1), 145–164. https://doi.org/10.1002/joc.4334

    Article  Google Scholar 

  • Worako, A. W., Haile, A. T., & Taye, M. T. (2022). Implication of bias correction on climate change impact projection of surface water resources in the Gidabo sub-basin, Southern Ethiopia. Journal of Water and Climate Change, 13(5), 2070–2088. https://doi.org/10.2166/wcc.2022.396

    Article  Google Scholar 

  • Yimere, A., & Assefa, E. (2022). Current and future irrigation water requirement and potential in the Abbay river basin. Ethiopia: Air, Soil and Water Research. https://doi.org/10.1177/11786221221097929

    Book  Google Scholar 

  • Yira, Y., Diekkrüger, B., Steup, G., & Bossa, A. Y. (2017). Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations. Hydrology and Earth System Sciences, 2143–2161. https://doi.org/10.5194/hess-21-2143

Download references

Acknowledgements

We acknowledge the Water Resource Research Center at Arba Minch University for allowing us to perform this investigation. The Ethiopian National Meteorological Agency (NMA), which gave daily meteorological data for this study, is also acknowledged by the authors. We also credit Ethiopia's Ministry of Water and Energy (MoWE) for providing streamflow data.

Funding

This study was supported by a small grants research fund provided by Arba Minch University, Water Resource Research Center under the Project Code of GOV/AMU/31/WRRC/03/2019.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, statistical analysis, data interpretation, and manuscript writing were all done by the first author, Tegegn Takele Mana. The statistical analysis, data interpretation, literature review, development process, and writing of certain manuscript portions were all the responsibility of Berhanu Wegayehu Abebe. Samuel Dagalo Hatiye made contributions to this study through the compilation of the paper, the drafting of the literature review, editing, and comments on the overall research work.

Corresponding author

Correspondence to Tegegn Takele Mana.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mana, T.T., Abebe, B.W. & Hatiye, S.D. Effect of climate change on reservoir water balance and irrigation water demand: a case of Gidabo irrigation project, Rift Valley Basin, Ethiopia. Environ Monit Assess 195, 866 (2023). https://doi.org/10.1007/s10661-023-11484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11484-3

Keywords

Navigation