Skip to main content

Advertisement

Log in

The impact of anthropogenic pollutants on the distribution of a marine top predator within a coastal estuarine system

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Due to anthropogenic pressures, estuarine systems are among the most broadly impacted areas for marine top predator species. Given this, it is crucial to study the interaction between the vulnerable marine species that inhabit these regions with environmental and anthropogenic variables. This study aims to determine whether nutrient pollution is related to the presence of bottlenose dolphins in a coastal environment. Using a multi-year dataset and GAMs, we studied the relationship between marine pollutants and the presence of bottlenose dolphins in this highly impacted coastal marine environment. We observed that urban fertilizers were linked to the spatial distribution of bottlenose dolphins. There was a higher presence of bottlenose dolphins in areas with high levels of phosphoric acid. In contrast, at higher concentrations of nitrate, the presence of bottlenose dolphins decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data/code availability

Data/code will be provided under request.

References

  • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265.

    Article  Google Scholar 

  • Álvarez-Salgado, X. A., Rosón, G., Pérez, F. F., Figueiras, F. G., & Pazos, Y. (1996). Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). I. Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Marine Ecology Progress Series, 135, 259–273.

    Article  Google Scholar 

  • Álvarez I, Decastro M, Gomez-Gesteira M, Prego R (2005) Inter- and intra-annual analysis of the salinity and temperature evolution in the Galician Rías Baixas–ocean boundary (North-West Spain). Journal of Geophysical Research. https://doi.org/10.1029/2004JC002504

  • Bachman, M. J., Keller, J. M., West, K. L., & Jensen, B. A. (2014). Persistent organic pollutant concentrations in blubber of 16 species of cetaceans stranded in the Pacific Islands from 1997 through 2011. The Science of the Total Environment, 488, 115–123. https://doi.org/10.1016/j.scitotenv.2014.04.073

    Article  CAS  Google Scholar 

  • Ballantine, D., Walling, D., & Leeks, G. (2008). Mobilisation and transport of sediment-associated phosphorus by surface runoff. Water Air and Soil Pollution, 196, 311–320. https://doi.org/10.1007/s11270-008-9778-9

    Article  CAS  Google Scholar 

  • Beale, C. M., & Monaghan, P. (2004). Behavioural responses to human disturbance: A matter of choice? Animal Behaviour., 68, 1065–1069.

    Article  Google Scholar 

  • Bejder, L., Samuels, A., Whitehead, H., & Gales, N. (2006). Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conservation Biology, 20(6), 1791–1798.

    Article  Google Scholar 

  • Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F., & De Clerck, O. (2018). In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity and Distributions, 24(2), 144–157. https://doi.org/10.1111/ddi.12668

    Article  Google Scholar 

  • Carpenter, S. R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences, 105(32), 11039–11040.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Chang, N. N., Shiao, J. C., & Gong, G. C. (2012). Diversity of demersal fish in the East China Sea: Implication of eutrophication and fishery. Continental Shelf Research, 47, 42–54. https://doi.org/10.1016/j.csr.2012.06.011

    Article  Google Scholar 

  • Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. BioScience, 61(2), 117–124. https://doi.org/10.1525/bio.2011.61.2.6

    Article  Google Scholar 

  • DeMaster, D. P., Fowler, C. W., Perry, S. L., & Richlen, M. E. (2001). Predation and competition: The impact of fisheries on marine-mammal populations over the next one hundred years. Journal of Mammalogy, 82, 641–651.

    Article  Google Scholar 

  • Díaz López, B. (2006). Bottlenose dolphin (Tursiops truncatus) predation on a marine fin fish farm: Some underwater observations. Aquatic Mammals, 32(3), 305–310.

    Article  Google Scholar 

  • Díaz López, B. (2012). Bottlenose dolphins and aquaculture: Interaction and site fidelity on the north-eastern coast of Sardinia (Italy). Marine Biology, 159(10), 2161–2172. https://doi.org/10.1007/s00227-012-2002-x

    Article  Google Scholar 

  • Díaz López, B. (2019). Hot deals at sea: Responses of a top predator (Bottlenose dolphin, Tursiops truncatus) to humaninduced changes in the coastal ecosystem. Behavioral Ecology, 30(2), 291–300.

    Article  Google Scholar 

  • Díaz López, B. (2020). When personality matters: Personality and social structure in wild bottlenose dolphins, Tursiops truncatus. Animal Behaviour, 163, 73–84. https://doi.org/10.1016/j.anbehav.2020.03.001

    Article  Google Scholar 

  • Díaz López, B., & Methion, S. (2017). The impact of shellfish farming on common bottlenose dolphins’ use of habitat. Marine Biology, 164, 83. https://doi.org/10.1007/s00227-017-3125-x

    Article  Google Scholar 

  • Díaz López, B., & Methion, S. (2018). Does interspecific competition drive patterns of habitat use and relative density in harbour porpoises? Marine Biology, 165, 92. https://doi.org/10.1007/s00227-018-3345-8

    Article  Google Scholar 

  • Díaz López, B., Bunke, M., & Shirai, J. A. B. (2008). Marine aquaculture off Sardinia Island (Italy): Ecosystem effects evaluated through a trophic mass-balance model. Ecological Modelling, 212, 292–303.

    Article  Google Scholar 

  • Díaz López, B., Grandcourt, E., Methion, S., Das, H., Bugla, I., Al Hameli, M., Al Hameri, H., Abdulla, M., Al Blooshi, A., & Al Dhaheri, S. (2018). The distribution, abundance and group dynamics of Indian Ocean humpback dolphins (Sousa plumbea) in the Emirate of Abu Dhabi (UAE). Journal of the Marine Biological Association of the United Kingdom, 98(5), 1119–1127. https://doi.org/10.1017/S0025315417001205

    Article  Google Scholar 

  • Díaz López, B., Methion, S., Das, H., Bugla, I., Al Hameli, M., Al Ameri, H., Al Hashmi, A., & Grandcourt, E. (2021). Vulnerability of a top marine predator in one of the world’s most impacted marine environments (Arabian Gulf). Marine Biology, 168(7), 112. https://doi.org/10.1007/s00227-021-03921-z

    Article  Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.

    Article  CAS  Google Scholar 

  • Diehl, S. (1988). Foraging efficiency of three freshwater fishes: Effects of structural complexity and light. Oikos, 53(2), 207–214. https://doi.org/10.2307/3566064

    Article  Google Scholar 

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., & Münkemüller, T. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46.

    Article  Google Scholar 

  • Evans, G., & Prego, R. (2003). Rias, estuaries and incised valleys: is a ria an estuary? Marine Geology, 196(3), 171–175.

    Article  Google Scholar 

  • Furness, R.W., & Camphuysen, K. (C. J. ). (1997). Seabirds as monitors of the marine environment. ICES Journal of Marine Science, 54(4), 726–737.https://doi.org/10.1006/jmsc.1997.0243.

  • Gächter, R., Ngatiah, J. M., & Stamm, C. (1998). Transport of phosphate from soil to surface waters by preferential flow. Environmental Science Technology, 32, 1865–1869.

    Article  Google Scholar 

  • Ge, C., Chai, Y., Wang, H., & Kan, M. (2017). Ocean acidification: One potential driver of phosphorus eutrophication. Marine Pollution Bulletin, 115(1–2), 149–153.

    Article  CAS  Google Scholar 

  • Gill, J. A., Norris, K., & Sutherland, W. J. (2001). Why behavioural responses may not reflect the population consequences of human disturbance. Biological Conservation, 97, 265–268.

    Article  Google Scholar 

  • Giralt Paradell, O., DíazLópez, B., & Methion, S. (2019). Modelling common dolphin (Delphinus delphis) coastal distribution and habitat use: Insights for conservation. Ocean and Coastal Management, 179, 104836. https://doi.org/10.1016/j.ocecoaman.2019.104836

    Article  Google Scholar 

  • Giralt Paradell, O., Díaz López, B., & Methion, S. (2020). Food-web interactions in a coastal ecosystem influenced by upwelling and terrestrial runoff off North-West Spain. Marine Environmental Research, 157, 104933

  • Giralt Paradell, O., Methion, S., Rogan, E., & DíazLópez, B. (2021). Modelling ecosystem dynamics to assess the effect of coastal fisheries on cetacean species. Journal of Environmental Management, 285, 112175. https://doi.org/10.1016/j.jenvman.2021.112175

    Article  Google Scholar 

  • Gong, W., Zhang, G., Yuan, L., Zhang, H., & Zhu, L. (2021). Effect of the Coriolis force on salt dynamics in convergent partially mixed estuaries. JGR Oceans, 126(12). https://doi.org/10.1029/2021JC017391.

  • Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., et al. (2008). A global map of human impact on marine ecosystems. Science, 319, 948–952.

    Article  CAS  Google Scholar 

  • Harwood, J. (2001). Marine mammals and their environment in the twenty-first century. Journal of Mammalogy, 82(3), 630–640.

    Article  Google Scholar 

  • Harzen, S., & Brunnick, B. J. (1997). Skin disorders in bottlenose dolphins (Tursiops truncatus), resident in the Sado estuary, Portugal. Aquatic mammals, 23(1), 59–68.

    Google Scholar 

  • Kajiwara, N., Kamikawa, S., Ramu, K., Ueno, D., Yamada, T. K., Subramanian, A., et al. (2006). Geographical distribution of polybrominated diphenyl ethers (PBDEs) and Kajiwara organochlorines in small cetaceans from Asian waters. Chemosphere, 64, 287–29.

    Article  CAS  Google Scholar 

  • Katona, S., & Whitehead, H. (1988). Are Cetacea ecologically important? Oceanography & Marine Biology Annual Reviews, 26, 553–568.

    Google Scholar 

  • Kennish, M. J. (2002). Environmental threats and environmental future of estuaries. EnvironmentalConservation, 29, 78–107.

    Google Scholar 

  • Kim, W., Yeager, S., & Danabasoglu, G. (2018). Key role of internal ocean dynamics in atlantic multidecadal variability during the last half century. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL080474.

  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05

    Article  Google Scholar 

  • Lehtiniemi, M., Engström-Öst, J., & Viitasalo, M. (2005). Turbidity decreases anti-predator behaviour in pike larvae, Esox lucius. Environmental Biology of Fishes, 73. https://doi.org/10.1007/s10641-004-5568-4.

  • Lorenzo, N., Taboada, J., Lorenzo, J., & Ramos, A. (2012). Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Regional Environmental Change, 13. https://doi.org/10.1007/s10113-012-0387-1.

  • Marini, C., Fossa, F., Paoli, C., Bellingeri, M., Gnone, G., & Vassallo, P. (2015). Predicting bottlenose dolphin distribution along Liguria coast (Northwestern Mediterranean Sea) through different modeling techniques and indirect predictors. Journal of Environmental Management, 150, 9–20. https://doi.org/10.1016/j.jenvman.2014.11.008

    Article  CAS  Google Scholar 

  • Mazzoil, M., Reif, J. S., Youngbluth, M., Murdoch, M. E., Bechdel, S. E., Howells, E., McCulloch, S. D., Hansen, L. J., & Bossart, G. D. (2008). Home ranges of Bottlenose Dolphins (Tursiops Truncatus) in the Indian River Lagoon, Florida: Environmental correlates and implications for management strategies. Eco Health, 5(3), 278–288. https://doi.org/10.1007/s10393-008-0194-9

    Article  Google Scholar 

  • Methion, S., & Díaz López, B. (2018). Abundance and demographic parameters of bottlenose dolphins in a highly affected coastal ecosystem. Marine and Freshwater Research, 69, 1–10. https://doi.org/10.1071/MF17346

    Article  Google Scholar 

  • Methion, S., & Díaz López, B. (2019). Natural and anthropogenic drivers of foraging behaviour in bottlenose dolphins: Influence of shellfish aquaculture. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(6), 927–937. https://doi.org/10.1002/aqc.3116

    Article  Google Scholar 

  • Methion, S., & Díaz López, B. (2020). Individual foraging variation drives social organization in bottlenose dolphins. Behavioral Ecology, 31(1), 97–106. https://doi.org/10.1093/beheco/arz160

    Article  Google Scholar 

  • Methion, S., & Díaz López, B. (2021). Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. https://doi.org/10.1007/s10211-021-00363-0

    Article  Google Scholar 

  • Methion, S., Giralt Paradell, O., Padín, X. A., Corrège, T., & Díaz López, B. (2023). Group size varies with climate and oceanographic conditions in bottlenose dolphins. Marine Biology, 170, 7. https://doi.org/10.1007/s00227-022-04154-4

    Article  Google Scholar 

  • Mombiela, F. A., Nelson, L. A., Fernandez, A., & Gonzalez-Andujar, J. L. (1986). Residual soil P values for permanent pastures on reclaimed scrubland from Galicia (NW Spain). Fertilizer Research, 9, 199–212. https://doi.org/10.1007/BF01050346

    Article  Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling. Ecography, 37(2), 191–203.

    Article  Google Scholar 

  • Otero, P., Ruiz-Villarreal, M., Peliz, Á., & Cabanas, J. M. (2010). Climatology and reconstruction of runoff time series in northwest Iberia: influence in the shelf buoyancy budget off Ría de Vigo. Scientia Marina, 74(2), 247–266.

    Article  Google Scholar 

  • Piñeiro, J., & González, A. (2002). Grasslands in Galicia. Lowland grasslands of Europe: Utilization and development (p. 282). Rome: FAO.

  • Pirotta, E., Matthiopoulos, J., MacKenzie, M., Scott-Hayward, L., & Rendell, L. (2011). Modelling sperm whale habitat preference: A novel approach combining transect and follow data. Marine Ecology Progress Series, 436, 257–272. https://doi.org/10.3354/meps09236

    Article  Google Scholar 

  • Pirotta, E., Laesser, B. E., Hardaker, A., Riddoch, N., Marcoux, M., & Lusseau, D. (2013). Dredging displaces bottlenose dolphins from an urbanised foraging patch. Marine Pollution Bulletin, 74(1), 396–402. https://doi.org/10.1016/j.marpolbul.2013.06.020

    Article  CAS  Google Scholar 

  • Pitchford, J. L., Howard, V. A., Shelley, J. K., Serafin, B. J. S., Colemen, A. T., & Solangi, A. M. (2015). Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(2), 289–306. https://doi.org/10.1002/aqc.2547

    Article  Google Scholar 

  • Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., & Lyons, T. W. (2010). The evolution of the marine phosphate reservoir. Nature, 467(7319), 1088–1090. https://doi.org/10.1038/nature09485

    Article  CAS  Google Scholar 

  • R Development Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 Apr 2022

  • Randive, K., Raut, T., & Jawadand, S. (2021). An overview of the global fertilizer trends and India’s position in 2020. Mineral Economics, 34(3), 371–384. https://doi.org/10.1007/s13563-020-00246-z

    Article  Google Scholar 

  • Real, C., Barreiro, R., & Carballeira, A. (1993). Heavy metal mixing behaviour in estuarine sediments in the Ria de Arousa (NW Spain). Differences between metals. Science of the Total Environment, 128, 51–67. https://doi.org/10.1016/0048-9697(93)90179-A

    Article  CAS  Google Scholar 

  • Redfern, J. V., Ferguson, M. C., Becker, E. A., Hyrenbach, K. D., Good, C., Barlow, J., Kaschner, K., Baumgartner, M. F., Forney, K. A., Balance, L. T., Fauchald, P., Halpin, P., Hamazaki, T., Pershing, A. J., Qian, S. S., Read, A., Reilly, S. B., Torres, L., & Werner, F. (2006). Techniques for cetacean-habitat modeling. Marine Ecology Progress Series, 310, 271–295.

    Article  Google Scholar 

  • Romanelli, A., Soto, D. X., Matiatos, I., Martínez, D. E., & Esquius, S. A. (2020). Biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Science of the Total Environment, 715, 136909.

    Article  CAS  Google Scholar 

  • Rosón, G., Pérez, F. F., Alvarez-Salgado, X. A., & Figueiras, F. G. (1995). Variation of both thermohaline and chemical properties in an estuarine upwelling ecosystem: Ria de Arousa; I. Time evolution. Estuarine Coastal and Shelf Science, 41, 195–213. https://doi.org/10.1006/ecss.1995.0061

    Article  Google Scholar 

  • Rosón, G., Álvarez-Salgado, X. A., & Pérez, F. F. (1997). A non-stationary box model to determine residual fluxes in a partially mixed estuary, based on both thermohaline properties: Application to the Ría de Arousa (NW Spain). Estuarine Coastal and Shelf Science, 44, 249–262.

    Article  Google Scholar 

  • Santos, M., Fernández, R., López, A., Martínez, J., & Pierce, G. (2007). Variability in the diet of bottlenose dolphin, Tursiops truncatus, in Galician waters, north-western Spain, 1990–2005. Journal of the Marine Biological Association of the United Kingdom, 87(1), 231–241. https://doi.org/10.1017/s0025315407055233

    Article  Google Scholar 

  • Small, C., & Cohen, J. E. (2004). Continental physiography, climate, and the global distribution of human population. Current Anthropology, 45(2), 269–277.

    Article  Google Scholar 

  • Smil, V. (2000). Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment, 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53

    Article  Google Scholar 

  • Smith, V. H. (2006). Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and oceanography, 51(1part2), 377–384.

  • Turner, A. M., & Chislock, M. F. (2010). Blinded by the stink: Nutrient enrichment impairs the perception of predation risk by freshwater snails. Ecological Applications, 20, 2089–2095.

    Article  Google Scholar 

  • Vale, C. G., Arenas, F., Barreiro, R., & Piñeiro-Corbeira, C. (2021). Understanding the local drivers of beta-diversity patterns under climate change: The case of seaweed communities in Galicia, north west of the Iberian Peninsula. Diversity and Distributions, 27(9), 1696–1705. https://doi.org/10.1111/ddi.13361

    Article  Google Scholar 

  • van Beusekom, J. E. E., & de Jonge, V. N. (1998). Retention of phosphorus and nitrogen in the Ems Estuary. Estuaries, 21(4), 527–539. https://doi.org/10.2307/1353292

    Article  Google Scholar 

  • Vassallo, P., Marini, C., Paoli, C., Bellingeri, M., Dhermain, F., Nuti, S., Airoldi, S., Bonelli, P., Laran, S., Santoni, M. C., & Gnone, G. (2020). Species-specific distribution model may be not enough: The case study of bottlenose dolphin (Tursiops truncatus) habitat distribution in Pelagos Sanctuary. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(8), 1689–1701. https://doi.org/10.1002/aqc.3366

    Article  Google Scholar 

  • Villares, R., Puente, X., & Carballeira, A. (1999). Nitrogen and phosphorus in Ulva sp. in the Galician Rias Bajas (northwest Spain): Seasonal fluctuations and influence on growth. Boletin Instituto Espanol de Oceanografia, 15(4), 337–342.

    Google Scholar 

  • Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., & Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and space Science, 2(8), 331–345.

    Article  Google Scholar 

  • Wells, R. S., & Scott, M. D. (2002). Bottlenose dolphins. In W. F. Perrin, B. Würsig, & J. G. M. Thewissen (Eds.), The encyclopedia of marine mammals (pp. 122–128). Academic Press.

    Google Scholar 

  • Wells, R. S., Rhinehart, H. L., Hansen, L. J., Sweeney, J. C., Townsend, F. I., Stone, R., Casper, D. R., Scott, M. D., Hohn, A. A., & Rowles, T. K. (2004). Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth, 1(3), 246–254.

    Article  Google Scholar 

  • Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (b), 73(1), 3–36.

    Article  Google Scholar 

  • Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., & Zhang, Y. (2018). Human perturbation of the global phosphorus cycle: Changes and consequences. Environmental Science & Technology, 52(5), 2438–2450. https://doi.org/10.1021/acs.est.7b03910

    Article  CAS  Google Scholar 

  • Zacharias, M. A., & Roff, J. C. (2001). Use of focal species in marine conservation and management: A review and critique. Aquatic Conservation: Marine and Freshwater Ecosystems, 11(1), 59–76. https://doi.org/10.1002/aqc.429

    Article  Google Scholar 

  • Zaitsev, Y. P. (1999). Eutrophication on the Black Sea and its major consequences (pp. 57–67). In: L. D. Mee, & G. Topping (Eds.), Black Sea pollution assessment (Vol. 380, pp. 58–74). New York: UN Publ.

  • Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology & Evolution, 1(1), 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

This study would not have been possible without the cooperation of Niki Karagouni, Sara Simoes, Oriol Giralt Paradell and all BDRI members and volunteers who generously gave their time to help with field work. Data collection complies with the current laws of the country in which it was performed (Spain).

Funding

Funding for this research came from the Bottlenose Dolphin Research Institute (BDRI).

Author information

Authors and Affiliations

Authors

Contributions

Cheyenne Bridge: conceptualization, writing—original draft, formal analysis, review and editing. Séverine Methion: conceptualization, investigation, data curation, writing—review and editing, project administration, funding acquisition. Bruno Díaz López: conceptualization, investigation, data curation, methodology, software, formal analysis, writing—review and editing, supervision, funding acquisition.

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Corresponding author

Correspondence to Bruno Díaz López.

Ethics declarations

Ethics approval

This research was exclusively observational and adhered to ASAB/ABS guidelines, the legal requirements of Spain (the country in which it was conducted), and all institutional guidelines.

Consent to participate

All authors gave final approval to participate.

Consent for publication

All authors gave final approval for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridge, C., Methion, S. & Díaz López, B. The impact of anthropogenic pollutants on the distribution of a marine top predator within a coastal estuarine system. Environ Monit Assess 195, 898 (2023). https://doi.org/10.1007/s10661-023-11477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11477-2

Keywords

Navigation