Skip to main content

Advertisement

Log in

Potentially toxic metals contamination, health risk, and source apportionment in the agricultural soils around industrial areas, Firozabad, Uttar Pradesh, India: a multivariate statistical approach

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people’s health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area’s centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0–15 cm) was done in farmers’ fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg−1), Zn (82.5 mg kg−1), and Cr (15.3 mg kg−1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson’s correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

PTMs:

Potentially toxic metals

PCA:

Principal component analysis

GDP:

Gross domestic product

I geo :

Geo-accumulation index

CF:

Contamination factor

Cdeg :

Contamination degree

EF:

Enrichment factor

ERI:

Ecological risk index

PLI:

Pollution load index

ICP:

Inductively coupled plasma

AAS:

Atomic absorption spectroscopy

CDDing :

Chronic daily dose exposure through ingestion

CDDinh :

Chronic daily dose exposure through inhalation

CDDder :

Chronic daily dose exposure through dermal contact

IngR:

Ingestion rate

ED:

Exposure duration

EF:

Exposure frequency

BW:

Body weight

InhR:

Inhalation rate

AT:

Average time

PEF:

Particle emission factor

SA:

Surface area

AF:

Dermal adherence factor

SAF:

Skin absorption factor

HQ:

Hazard quotient

RfD:

Reference dose

HI:

Hazard index

CR:

Carcinogenic risk

SF:

Slope factor

TCR:

Total cancer risk

IDW:

Inverse distance weighting

PC:

Principle component

SOC:

Soil organic carbon

TOC:

Total organic carbon

FAO:

Food and Agriculture Organization

WHO:

World Health Organization

PM:

Particulate matter

CV:

Coefficient of variance

CDD:

Chronic daily dose

PERI:

Potential ecological risk index

CDDing :

Chronic daily dose ingestion

CDDderm :

Chronic daily dose dermal contact

CDDinh :

Chronic daily dose inhalation

References

  • Adimalla, N. (2020). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1), 59–75.

    Article  CAS  Google Scholar 

  • Adimalla, N., Qian, H., & Wang, H. (2019). Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environmental Monitoring and Assessment, 191(4), 1–15.

    Article  CAS  Google Scholar 

  • Adimalla, N., Chen, J., & Qian, H. (2020). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406.

    Article  CAS  Google Scholar 

  • Ali, L., Rashid, A., Khattak, S. A., Gao, X., Jehan, S., & Javed, A. (2021). Geochemical modeling, fate distribution, and risk exposure of potentially toxic metals in the surface sediment of the Shyok suture zone, northern Pakistan. International Journal of Sediment Research, 36(5), 656–667.

    Article  Google Scholar 

  • Banik, S. (2018). Small scale industries in India: Opportunities and challenges. International Journal of Creative Research Thoughts, 6(1), 337–341.

    Google Scholar 

  • Birch, G. (2013). Use of Sedimentary-metal indicators in assessment of estuarine system. In J. Shroder Jr., A. Switzer, D. Kennedy (Eds.), Treatise on geomorphology, v14. Academic Press, San Diego.

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153.

    Article  Google Scholar 

  • Chen, Y., Li, X., Zhu, T., Han, Y., & Lv, D. (2017). PM2. 5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Science of the Total Environment, 586, 255–264.

    Article  CAS  Google Scholar 

  • Cheng, Z., Chen, L.-J., Li, H.-H., Lin, J.-Q., Yang, Z.-B., Yang, Y.-X., Xu, X.-X., Xian, J.-R., Shao, J.-R., & Zhu, X.-M. (2018). Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Science of the Total Environment, 619, 621–629.

    Article  Google Scholar 

  • D’Souza, R., Varun, M., Pratas, J., & Paul, M. S. (2013). Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: Implications for phytoremediation. Soil and Sediment Contamination: An International Journal, 22(1), 1–20.

    Article  Google Scholar 

  • Das, K. K., Reddy, R. C., Bagoji, I. B., Das, S., Bagali, S., Mullur, L., Khodanpur, J. P., & Biradar, M. (2019). Primary concept of nickel toxicity–an overview. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 141–152.

    Article  CAS  Google Scholar 

  • Datta, S., Rao, A. S., & Ganeshamurthy, A. (1997). Effect of electrolytes coupled with variable stirring on soil pH. Journal of the Indian Society of Soil Science, 45(1), 185–187.

    Google Scholar 

  • De Vos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley-Black analysis of forest soil organic carbon: Recovery, limitations and uncertainty. Soil Use and Management, 23(3), 221–229.

    Article  Google Scholar 

  • Devi, R., Behera, B., Raza, M. B., Mangal, V., Altaf, M. A., Kumar, R., Tiwari, R. K., Lal, M. K., & Singh, B. (2021). An insight into microbes mediated heavy metal detoxification in plants: a review. Journal of Soil Science and Plant Nutrition, 2(1), 914–936.

  • Dhyan, S., Chhonkar, P. K., & Dwivedi, B. S. (2005). Manual on soil, plant and water analysis. Westville Publishing House.

  • Du, H., & Lu, X. (2022). Spatial distribution and source apportionment of heavy metal (loid) s in urban topsoil in Mianyang. Southwest China. Scientific Reports, 12(1), 1–12.

    Google Scholar 

  • Fageria, N. K., & Nascente, A. S. (2014). Management of soil acidity of South American soils for sustainable crop production. Advances in Agronomy, 128, 221–275.

    Article  Google Scholar 

  • Gashi, F., Frančišković-Bilinski, S., Bilinski, H., Shala, A., & Gashi, A. (2017). Impact of Kishnica and Badovci flotation tailing Dams on levels of heavy metals in water of Graçanica river (Kosovo). Journal of Chemistry, 2017. https://doi.org/10.1155/2017/5172647

  • Ghani, J., Nawab, J., Faiq, M. E., Ullah, S., Alam, A., Ahmad, I., Ali, S. W., Khan, S., Ahmad, I., Muhammad, A., Rahman, S. A. U., Muhammad, A., Rashid, A., & Hasan, S. Z. (2022). Multi-geostatistical analyses of the spatial distribution and source apportionment of potentially toxic elements in urban children’s park soils in Pakistan: A risk assessment study. Environmental Pollution, 311, 119961.

    Article  CAS  Google Scholar 

  • Golui, D., Datta, S., Dwivedi, B., Meena, M., Varghese, E., Sanyal, S., Ray, P., Shukla, A. K., & Trivedi, V. (2019). Assessing soil degradation in relation to metal pollution–A multivariate approach. Soil and Sediment Contamination: An International Journal, 28(7), 630–649.

    Article  CAS  Google Scholar 

  • Golui, D., Datta, S. P., Dwivedi, B., Meena, M., Ray, P., & Trivedi, V. (2021). A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. Environmental Earth Sciences, 80(19), 1–12.

    Article  Google Scholar 

  • Goumenou, M., & Tsatsakis, A. (2019). Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicology Reports, 6, 632–636. https://doi.org/10.1016/j.toxrep.2019.06.010

    Article  CAS  Google Scholar 

  • Halim, M., Majumder, R., & Zaman, M. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arabian Journal of Geosciences, 8(6), 3391–3401.

    Article  CAS  Google Scholar 

  • Huang, J., Guo, S., Zeng, G.-M., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W., & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, 49–58.

    Article  CAS  Google Scholar 

  • Imai, A., & Gloyna, E. (1990). Effects of pH and oxidation state of chromium on the behavior of chromium in the activated sludge process. Water Research, 24(9), 1143–1150.

    Article  CAS  Google Scholar 

  • Jiang, F., Ren, B., Hursthouse, A., Deng, R., & Wang, Z. (2019). Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environmental Science and Pollution Research, 26, 16556–16567.

    Article  CAS  Google Scholar 

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.

    Article  Google Scholar 

  • Karimi, A., Naghizadeh, A., Biglari, H., Peirovi, R., Ghasemi, A., & Zarei, A. (2020). Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environmental Science and Pollution Research, 27(10), 10317–10327.

    Article  CAS  Google Scholar 

  • Kaur, J., Bhatti, S. S., Bhat, S. A., Nagpal, A. K., Kaur, V., & Katnoria, J. K. (2021). Evaluating potential ecological risks of heavy metals of textile effluents and soil samples in vicinity of textile industries. Soil Systems, 5(4), 63.

    Article  CAS  Google Scholar 

  • Kirschbaum, M. U. F. (2006). The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry, 38(9), 2510–2518.

    Article  CAS  Google Scholar 

  • Kumar, V., Chopra, A., Srivastava, S., Tomar, V., Thakur, R., & Singh, J. (2016). Impact of glass industry effluent disposal on soil characteristics in Haridwar region. India Journal of Environmental Health, 2(2), 1–10.

    CAS  Google Scholar 

  • Liu, L., Chen, H., Cai, P., Liang, W., & Huang, Q. (2009). Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials, 163(2–3), 563–567.

    Article  CAS  Google Scholar 

  • Ma, L., & Han, C. (2019). Water quality ecological risk assessment with sedimentological approach. In Water Quality-Science, Assessments and Policy (pp. 1–6): IntechOpen.

  • Majhi, P. K., Raza, B., Behera, P. P., Singh, S. K., Shiv, A., Mogali, S. C., Bohi, T. K., Patra, B., & Behera, B. (2022). Future-proofing plants against climate change: A path to ensure sustainable food systems. In Biodiversity, functional ecosystems and sustainable food production (pp. 73–116). Springer International Publishing. https://doi.org/10.1007/978-3-031-07434-9_3

  • McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management Module, 8(2), 1–12.

    Google Scholar 

  • Meena, R., Datta, S., Golui, D., Dwivedi, B., & Meena, M. (2016). Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain. Environmental Science and Pollution Research, 23(14), 14269–14283.

    Article  CAS  Google Scholar 

  • Mikel, D. K. (2002). Quality assurance guidance document: model quality assurance project plan for the national air toxics trends stations. https://www.epa.gov/sites/default/files/2021-03/documents/natts_model_qapp.pdf. Accessed 15 June 2023

  • Mohammed, A. S., Kapri, A., & Goel, R. (2011). Heavy metal pollution: Source, impact, and remedies. In: Biomanagement of metal-contaminated soils (pp. 1–28). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1914-9_1

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Muller, G. (1981). Schwermetallbelstung der sedimente des neckars und seiner nebenflusse: Eine estandsaufnahme. Chemical Zeitung, 105, 157–164.

    Google Scholar 

  • Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve. Iran. Chemical Speciation & Bioavailability, 26(2), 99–105.

    Article  Google Scholar 

  • Omeka, M. E., Igwe, O., & Unigwe, C. O. (2022). An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria. Environmental Monitoring and Assessment, 194(3), 1–30.

    Article  Google Scholar 

  • Pan, L., Wang, Y., Ma, J., Hu, Y., Su, B., Fang, G., Wang, L., & Xiang, B. (2018). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environmental Science and Pollution Research, 25(2), 1055–1069.

    Article  CAS  Google Scholar 

  • Pawar, A. B., Kumawat, C., Verma, A. K., Meena, R. K., Raza, M. B., Anil, A. S., & Trivedi, V. K. (2017). Threshold limits of soil in relation to various soil functions and crop productivity. International Journal of Current Microbiology and Applied Sciences, 6(5), 2293–2302.

    Article  CAS  Google Scholar 

  • Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trac Trends in Analytical Chemistry, 17(5), 289–298.

    Article  CAS  Google Scholar 

  • Rashid, A., Khan, S., Ayub, M., Sardar, T., Jehan, S., Zahir, S., Khan, M. S., Muhammad, J., Khan, R., Ali, A., & Ullah, H. (2019). Mapping human health risk from exposure to potential toxic metal contamination in groundwater of Lower Dir, Pakistan: Application of multivariate and geographical information system. Chemosphere, 225, 785–795.

    Article  CAS  Google Scholar 

  • Rashid, A., Farooqi, A., Gao, X., Zahir, S., Noor, S., & Khattak, J. A. (2020). Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai. Pakistan. Chemosphere, 243, 125409.

    Article  CAS  Google Scholar 

  • Rashid, A., Ayub, M., Khan, S., Ullah, Z., Ali, L., Gao, X., Li, C., & EI-Serehy, H. A., Kaushik, P., & Rasool, A. (2022). Hydrogeochemical assessment of carcinogenic and non-carcinogenic health risks of potentially toxic elements in aquifers of the Hindukush ranges, Pakistan: insights from groundwater pollution indexing, GIS-based, and multivariate statistical approaches. Environmental Science and Pollution Research, 29(50), 75744–75768. https://doi.org/10.1007/s11356-022-21172-3

    Article  CAS  Google Scholar 

  • Raza, M. B., Datta, S. P., Golui, D., Barman, M., Das, T. K., Sahoo, R. N., Upadhyay, D., Rahman, M. M., Behera, B., & Naveenkumar, A. (2023a). Synthesis and performance evaluation of novel bentonite-supported nanoscale zero valent iron for remediation of arsenic contaminated water and soil. Molecules, 28(5), 2168.

  • Raza, B., Sahoo, J., Behera, B., Anil, A. S., Tiwari, R. K., & Lal, M. K. (2023b). Soil microorganisms and nematodes for bioremediation and amelioration of polluted soils. In: Biology and Biotechnology of Environmental Stress Tolerance in Plants (pp. 3–39). Apple Academic Press.

  • Reena, S., Neetu, G., Anurag, M., & Rajiv, G. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246–253.

    Article  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    Article  CAS  Google Scholar 

  • Sahibin, A., Zulfahmi, A., Lai, K., Errol, P., & Talib, M. (2002). Heavy metals content of soil under vegetables cultivation in Cameron Highland. In: Proceedings of the regional symposium on environment and natural resources. Hotel Renaissance Kuala Lumpur, Malaysia, (Vol. 1, pp. 660–667).

  • Salomons, W., & Förstner, U. (2012). Metals in the Hydrocycle: Springer Science & Business Media.

  • Samal, S. K., Datta, S. P., Dwivedi, B. S., Meena, M. C., Nogiya, M., Choudhary, M., Golui, D., & Raza, M. B. (2023). Phytoextraction of nickel, lead, and chromium from contaminated soil using sunflower, marigold, and spinach: comparison of efficiency and fractionation study. Environmental Science and Pollution Research, 30(17), 50847–50863. https://doi.org/10.1007/s11356-023-25806-y

  • Saraswat, A., Nath, T., Omeka, M., Unigwe, C. O., Anyanwu, I. E., Ugar, S. I., Latare, A., Raza, M. B., Behera, B., Adhikary, P. P., Scopa, A., & Abdelrahman, M. A. (2023). Irrigation suitability and health risk assessment of groundwater resources in the Firozabad industrial area of north-central India: An integrated indexical, statistical, and geospatial approach. Frontiers in Environmental Science, 11, 296.

    Article  Google Scholar 

  • Shen, F., Mao, L., Sun, R., Du, J., Tan, Z., & Ding, M. (2019). Contamination evaluation and source identification of heavy metals in the sediments from the Lishui River Watershed, Southern China. International Journal of Environmental Research and Public Health, 16(3), 336.

    Article  CAS  Google Scholar 

  • Simex, S., & Helz, G. (1981). Regional geochemistry of trace elements in Chesapeake Bay. Environmental Geology, 3(6), 315–323.

    Article  Google Scholar 

  • Sodango, T. H., Li, X., Sha, J., & Bao, Z. (2018). Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. Journal of Health and Pollution, 8(17), 53–70.

    Article  Google Scholar 

  • Subramanian, R. P. (2008). Towards Cleaner Technologies: a process story in the Firozabad glass industry cluster. The energy and resources institute (TERI). https://bookstore.teri.res.in/docs/books/Firozabad%20glass%20industry%20cluster.pdf. Accessed 15 June 2023

  • Thomilson, D., Wilson, D., Harris, C., & Jeffrey, D. (1980). Problem in heavy metals in estuaries and the formation of pollution index. Helgol. Wiss. Meeresunlter, 33(1–4), 566–575.

    Google Scholar 

  • USEPA, S. (1986). Test methods for evaluating solid waste: physical/chemical methods. https://nepis.epa.gov/Exe/ZyPDF.cgi/50000U6E.PDF?Dockey=50000U6E.PDF (Accessed on 25th February, 2023)

  • USEPA, M. (2002). Supplemental guidance for developing soil screening levels for superfund sites. In: US Environmental protection agency washington, office of solid waste and emergency response (pp. 4–24). Washington, DC, USA. OSWER 9355.

  • USEPA, M. (2005). Guidelines for carcinogen risk assessment. Paper presented at the Risk Assessment Forum US Environmental Protection Agency, Washington, DC EPA/630/P-03 F.

  • Varun, M., D’Souza, R., Pratas, J., & Paul, M. S. (2012). Metal contamination of soils and plants associated with the glass industry in North Central India: Prospects of phytoremediation. Environmental Science and Pollution Research, 19(1), 269–281.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359.

    Article  CAS  Google Scholar 

  • World Bank Group. (2007). Environmental, health, and safety guidelines for glass manufacturing. https://documents1.worldbank.org/curated/en/890101490072833164/pdf/113621-WP-ENGLISH-Glass-Manufacturing-PUBLIC.pdf. Accessed 16 May 2023

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Anuj Saraswat: conceptualization, manuscript-design, writing—original draft, sampling, laboratory analysis, data analysis. Shri Ram: supervision, validation, manuscript—review, and editing. Md. Basit Raza: conceptualization, manuscript-design, writing—original draft, data analysis, validation. Sadikul Islam: data analysis, manuscript-review, and editing, software provision. Sonal Sharma: laboratory analysis, data analysis, manuscript—review and editing. Michael E. Omeka: data analysis, data validation. Biswaranjan Behera: mapping, manuscript—review and editing. Roomesh K. Jena: supervision, manuscript-review and editing, mapping. Abdur Rashid: manuscript—review and editing. Debasis Golui: manuscript—review and editing. All authors have reviewed and approved of the final manuscript.

Corresponding author

Correspondence to Md Basit Raza.

Ethics declarations

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 433 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, A., Ram, S., Raza, M.B. et al. Potentially toxic metals contamination, health risk, and source apportionment in the agricultural soils around industrial areas, Firozabad, Uttar Pradesh, India: a multivariate statistical approach. Environ Monit Assess 195, 863 (2023). https://doi.org/10.1007/s10661-023-11476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11476-3

Keywords

Navigation