Skip to main content

Advertisement

Log in

Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater is a crucial natural resource for providing reliable and long-lasting water supplies across the globe. The integrated approach used in the current study involved the use of multiple techniques to assess groundwater potential zones (GWPZs) and identify suitable areas for artificial recharge sites. The methods used in the study were a combination of geographic information system (GIS), analytic hierarchy process (AHP), and fuzzy analytic hierarchy process (Fuzzy-AHP) to accomplish this goal. The study considered multiple thematic maps, such as drainage density, elevation, geomorphology, slope, curvature, topographic wetness index (TWI), geology, distance from the river, land use and land cover (LULC), and rainfall, to determine the GWPZs. AHP and Fuzzy-AHP were used to weight thematic maps based on their relative importance in controlling groundwater availability and recharge, and then a weighted overly analysis in a GIS environment was utilized to derive the final GWPZs map. After completing the weighting of thematic maps, both AHP and Fuzzy-AHP models categorized GWPZs into low, moderate, and high categories in the study area. In this study area, GWPZs were classified as poor, moderate, and high using both the AHP and Fuzzy-AHP models. According to the AHP model, 5.41% of the area’s GWPZs were categorized as poor, 70.68% as moderate, and 23.91% as high. The Fuzzy-AHP model, on the other hand, categorized 4.92% as poor, 69.75% as moderate, and 25.33% as high. To validate these results, the receiver operating characteristic curve (ROC) and area under the curve (AUC) were used to explore the prediction accuracy, resulting in an accuracy rate of 70.1% for AHP and 71% for Fuzzy-AHP. These findings suggest that the Fuzzy-AHP model is effective in accurately identifying GWPZs in this area. Additionally, using remote sensing (RS) and GIS, the current study created a map by overlaying the lineament and drainage maps to determine suitable locations for artificial recharge. One-hundred-forty suitable locations for artificial recharge sites were identified based on Fuzzy-AHP. The study’s reliable findings assist decision-makers and water users in the research area to use groundwater resources sustainably. This information aids in sustainable planning and management of groundwater resources, ensuring their availability and sustainability for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

The corresponding author will provide the datasets created during and/or analysed during the current investigation upon reasonable request.

References

  • Adimalla, N. (2020). Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environmental Geochemistry and Health, 42, 725–1752. https://doi.org/10.1007/s10653-019-00374-8

    Article  CAS  Google Scholar 

  • Adimalla, N., & Taloor, A. K. (2020). Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using Geographic Information System (GIS) and groundwater quality index (GWQI) techniques. Groundwater for Sustainable Development, 10, 100288.

  • Agarwal, R., & Garg, P. K. (2015). Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision-making technique. Water Resources Management, 29, 1377–1393. https://doi.org/10.1007/s11269-015-1159-8

    Article  Google Scholar 

  • Allafta, H., Opp, C., & Patra, S. (2021). Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab Basin. Remote Sensing, 13, 112. https://doi.org/10.3390/rs13010112

    Article  Google Scholar 

  • Anand, B., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Raneesh, K. Y. (2017). Prioritization of subwatersheds based on quantitative morphometric analysis in Lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arabian Journal of Geosciences, 10, 295. https://doi.org/10.1007/s12517-017-3312-6

    Article  Google Scholar 

  • Andualem, T. G., & Demeke, G. G. (2019). Groundwater potential assessment using GIS and remote sensing: A case study of Gunatana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 24, Article 100610.

  • Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L., & Rodrigo-Comino, J. (2019). GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of the Total Environment, 658, 160–177. https://doi.org/10.1016/j.scitotenv.2018.12.115

    Article  CAS  Google Scholar 

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques-based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Scientific Reports, 9, 1–17. https://doi.org/10.1038/s41598-019-38567-x

    Article  CAS  Google Scholar 

  • Asadabadi, M. R., Chang, E., & Saberi, M. (2019). Are MCDM methods useful? A critical review of analytic hierarchy process (AHP) and analytic network process (ANP). Cogent Engineering, 6. https://doi.org/10.1080/23311916.2019.1623153

  • Basvarajappa, H. T., Manjunadha, M. C., & Hutti, B. (2015). Spatial data integration and mapping of groundwater potential zones on Precambrian terrain of Hassan district, Karnataka, India using geomatics application. International Journal of Civil Engineering and Technology, 6(5), 123–134.

    Google Scholar 

  • Bhatt, N., Pancholi, V., Chopra, S., Rout, M. M., Shah, R. D., & Kothyari, G. C. (2019). Rapid seismic hazard assessment of the Sabarmati River basin in Gujarat State, Western India using GIS techniques. Bulletin of Engineering Geology and the Environment, 78, 3927–3942. https://doi.org/10.1007/s10064-018-1373-8

    Article  Google Scholar 

  • Bhattacharya, P., Srinivasan, R., & Anand, A. (2019). Integrated approach for groundwater modeling using field-based data, remote sensing, and GIS: A case study in a coastal aquifer of India. Journal of Hydrology and Hydromechanics, 67(1), 1–12. https://doi.org/10.2478/johh-2019-0001

    Article  Google Scholar 

  • Bhushan, N., & Rai, K. (2004). Strategic decision making: Applying the analytic hierarchy process (p. 172). Springer-Verlag.

    Book  Google Scholar 

  • Biswas, T., Pal, S. C., Chowdhuri, I., Ruidas, D., Saha, A., Islam, A. R. M. T., & Shit, M. (2023). Effects of elevated arsenic and nitrate concentrations on groundwater resources in deltaic region of Sundarban Ramsar site. Indo-Bangladesh Region. Marine Pollution Bulletin, 188, 114618.

    Article  CAS  Google Scholar 

  • Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17, 233–247. https://doi.org/10.1016/0165-0114(85)90090-9

    Article  Google Scholar 

  • Chalermchai, P., Tripathi, K., & Kumar, N. (2008). Analytical hierarchical process (AHP)-based flood water retention planning in Thailand. Giscience & Remote Sensing, 45(3), 343–355.

    Article  Google Scholar 

  • Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139–153.

    Article  Google Scholar 

  • Changnon, S. A., Huf, F. A., & Hsu, C. F. (1988). Relations between precipitation and shallow groundwater in Illinois. Journal of ClimaTe, 1, 1239–1250.

    Article  Google Scholar 

  • Cheng, C. H. (1997). Evaluating naval tactical missile systems by Fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343–350.

    Article  Google Scholar 

  • Chitsazan, M., & Akhtari, Y. (2009). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran plain, Khuzestan. Iran. Water Resources Management, 23, 1137–1155.

    Article  Google Scholar 

  • Das, B., & Pal, S. C. (2019). Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India. Environment, Development and Sustainability, 1–19. https://doi.org/10.1007/s10668-019-00457-7

  • Das, S., & Pardeshi, S. D. (2018). Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: Using geospatial techniques. Applied Water Science, 8(6), 158. https://doi.org/10.1007/s13201-018-0801-z

    Article  Google Scholar 

  • Febi, B., Achu, A. L., Jiminisha, K., Aiysha, V. A., & Raghunath, R. (2020). Landslide susceptibility modeling using integrated evidential belief function based logistic regression method: A study from southern Western Ghat, India. Remote Sensing Applications Society and Environment, 20, 100411.

    Article  Google Scholar 

  • Gupta, N., Mathew, A., & Khandelwal, S. (2020). Spatio-temporal impact assessment of land use / land cover (LU-LC) change on land surface temperatures over Jaipur city in India, International Journal of Urban Sustainable Development, 283–299.

  • Harry, T., Asuaiko, E., Akata, N., & Akpan, N. (2020). Mapping ground water potential recharge zones in parts of Akwa Ibom state using geographic information system (G. I. S). Current Journal of Applied Science and Technology, 12(2), 60–71. https://doi.org/10.7176/CER/12-2-0

  • Ho, W. (2008). Integrated analytic hierarchy process and its applications—A literature review. European Journal of Operational Research, 186(1), 211–228.

    Article  Google Scholar 

  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egyptian Journal of Remote Sensing and Space Science, 19(2), 223–234. https://doi.org/10.1016/j.ejrs.2016.06.002

    Article  Google Scholar 

  • Jaydhar, A.K., Pal, S.C., Saha, A., Islam, A.R.M.T., & Ruidas, D. (2022). Hydrogeochemical evaluation and corresponding health risk from elevated arsenic and fluoride contamination in recurrent coastal multi-aquifers of eastern India. Journal of Cleaner Production, 369, 133150. https://doi.org/10.1016/j.jclepro.2022.133150.

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713–1728. https://doi.org/10.1007/s10040-010-0631-z

    Article  Google Scholar 

  • Jha, M. K., Chowdhury, A., Chowdary, V. M., & Peiffer, S. (2007). Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resources Management, 21(2), 427–467. https://doi.org/10.1007/s11269-006-9024-4

    Article  Google Scholar 

  • Jothimani, M., Abebe, A., & Duraisamy, R. (2021). Groundwater potential zones identification in Arba Minch town, Rift Valley, Ethiopia, using geospatial and AHP tools. IOP Conference Series: Earth and Environmental Science, 822. https://doi.org/10.1088/1755-1315/822/1/012048

  • Khoshtinat, S., Aminnejad, B., Hassanzadeh, Y., & Ahmadi, H. (2019). Groundwater potential assessment of the Sero plain using bivariate models of the frequency ratio, Shannon entropy and evidential belief function. Journal of Earth System Science, 128(6), 152.

    Article  Google Scholar 

  • Kumar, A., & Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(1), 105–129. https://doi.org/10.1080/10106049.2016.1232314

    Article  Google Scholar 

  • Lee, S. K., Mogi, G., & Hui, K. S. (2013). A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices. Renewable and Sustainable Energy Reviews, 21, 347–355.

    Article  Google Scholar 

  • Luker, E., & Harris, L. M. (2019). Developing new urban water supplies: Investigating motivations and barriers to groundwater use in Cape Town. International Journal of Water Resources Development, 35(6), 917–937.

    Article  Google Scholar 

  • Lyu, H. M., Sun, W. J., Shen, S. L., & Zhou, A. N. (2020). Risk assessment using a new consulting process in Fuzzy AHP. Journal of Construction Engineering and Management, 146, 04019112.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing. GIS and MIF Techniques. Geoscience Frontiers, 3(2), 189–196.

    Article  Google Scholar 

  • Maity, D. K., & Mandal, S. (2019). Identification of groundwater potential zones of the Kumari river basin, India: An RS & GIS based semi-quantitative approach. Environment, Development and Sustainability, 21, 1013–1034. https://doi.org/10.1007/s10668-017-0072-0

    Article  Google Scholar 

  • Malik, M. I., Bhat, M. S., & Najar, S. A. (2016). Remote sensing and GIS based groundwater potential mapping for sustainable water resource management of Lidder catchment in Kashmir Valley, India. Journal of the Geological Society of India, 87(6), 716–726. https://doi.org/10.1007/s12594-016-0444-3

    Article  CAS  Google Scholar 

  • Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2013). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 6, 1621–1637.

    Article  Google Scholar 

  • Margat, J., & Gun, J. V. D. (2013). Groundwater around the world: A geographic synopsis. CRC Press Taylor & Francis Group.

  • Mathew, A., & Shekar, P. R. (2023). Flood prioritization of basins based on geomorphometric properties using morphometric analysis and principal component analysis: A case study of the Maner River basin. In River Dynamics and Flood Hazards (pp. 273–288). Springer, Singapore. https://doi.org/10.1007/978-981-19-7100-6_18

  • Mathew, A., Sarwesh, P., & Khandelwal, S. (2022). Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India, Energy Nexus, Volume 5, 100044, https://doi.org/10.1016/j.nexus.2022.100044.

  • Meijerink, A. M. J., Schultz, G. A., & Engman, E. T. (2000). Remote sensing in hydrology and water management (pp. 305–325). Springer.

    Book  Google Scholar 

  • Melese, T., & Belay, T. (2022). Groundwater potential zone mapping using analytical hierarchy process and G.I.S. in Muga Watershed, Abay Basin, Ethiopia. Global Challenges 6(1), 2100068.

  • Mengistu, T. D., Chang, S. W., Kim, I., Kim, M., & Chung, I. (2022). Determination of potential aquifer recharge zones using geospatial techniques for proxy data of Gilgel Gibe. Water, 14, 1–19.

    Article  Google Scholar 

  • Mundalik, V., Fernandes, C., Kadam, A., & Umrikar, B. (2018). Integrated geomorphological, geospatial and AHP technique for groundwater prospects mapping in basaltic terrain. Hydrospatial Analysis, 2, 16–27. https://doi.org/10.21523/gcj3.18020102

  • Naghibi, S. A., Moghaddam, D. D., Kalantar, B., Pradhan, B., & Kisi, O. (2017). A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology, 548, 471–483. https://doi.org/10.1016/j.jhydrol.2017.03.020

    Article  Google Scholar 

  • Oh, H. J., Kim, Y. S., Choi, J. K., Park, E., & Lee, S. (2011). GIS mapping of regional probabilistic groundwater potential in the area of Pohang City. Korea. Journal of Hydrology, 399(1–2), 158–172.

    Article  Google Scholar 

  • Pal, S. C., Ruidas, D., Saha, A., Islam, A. R. M. T., & Chowdhuri, I. (2022). Application of novel data-mining technique based nitrate concentration susceptibility prediction approach for coastal aquifers in India. Journal of Cleaner Production, 346, 131205. https://doi.org/10.1016/j.jclepro.2022.131205

  • Pande, C. B., Moharir, K. N., Singh, S. K., & Varade, A. M. (2019). An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, CentralIndia. Environment, Development and Sustainability, 22(6), 4867–4887. https://doi.org/10.1007/s10668-019-00409-1

    Article  Google Scholar 

  • Pawattana, C., & Tripathi, N. K. (2008). Analytical hierarchical process (AHP)-based flood water retention planning in Thailand. GIScience & Remote Sensing, 45(3), 343–355.

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475.

    Article  Google Scholar 

  • Rao, N. S., Sakram, G., & Rashmirekha, D. (2022). Deciphering artificial groundwater recharge suitability zones in the agricultural area of a river basin in Andhra Pradesh, India using geospatial techniques and analytical hierarchical process method. Catena, 212, 106085. https://doi.org/10.1016/j.catena.2022.106085

  • Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akgun, A. (2013). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-012-0807-z

    Article  Google Scholar 

  • Ruidas, D., Pal, S. C., Islam, A. R. T., & Saha, A. (2021). Characterization of groundwater potential zones in water-scarce hardrock regions using data driven model. Environmental Earth Sciences, 80, 809. https://doi.org/10.1007/s12665-021-10116-8

    Article  Google Scholar 

  • Ruidas, D., Chakrabortty, R., Islam, A. R. M. T., Saha, A., & Pal, S. C. (2022a). A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, eastern India. Environmental Earth Sciences, 81, 145. https://doi.org/10.1007/s12665-022-10269-0

    Article  Google Scholar 

  • Ruidas, D., Pal, S. C., Saha, A., Chowdhuri, I., & Shit, M. (2022b). Hydrogeochemical characterization-based water resources vulnerability assessment in India’s first Ramsar site of Chilka Lake. Marine Pollution Bulletin, 184, 114107. https://doi.org/10.1016/j.marpolbul.2022.114107

  • Ruidas, D., Pal, S. C., Chowdhuri, I., Saha, A., Biswas, T., Islam, A. R. M. T., & Shit, M. (2023a). Hydrogeochemical evaluation for human health risk assessment from contamination of coastal groundwater aquifers of Indo-Bangladesh Ramsar site. Journal of Cleaner Production, 399, 136647. https://doi.org/10.1016/j.jclepro.2023.136647

  • Ruidas, D., Pal, S. C., Islam, A. R. T., & Saha, A. (2023b). Hydrogeochemical evaluation of groundwater aquifers and associated health hazard risk mapping using ensemble data driven model in a water scares plateau region of eastern India. Exposure and Health, 15, 113–131. https://doi.org/10.1007/s12403-022-00480-6

    Article  CAS  Google Scholar 

  • Saaty, T. L. (1980a). Group decision making and the AHP. In B. L. Golden, E. A. Wasil, & P. T. Harker (Eds.), The analytic hierarchy process. Berlin/Heidelberg, Germany: Springer.

  • Saaty, T. L. (1980b). The analytic hierarchy process: Planning, priority setting, resource allocation. New York; London: McGraw-Hill International Book Co.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process? European Journal of Operational Research, 48, 9–26. https://doi.org/10.1016/0377-2217(90)90057-i

    Article  Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSCI.2008.017590

    Article  Google Scholar 

  • Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontier, 7(1), 115–124. https://doi.org/10.1016/j.gsf.2015.03.002

    Article  Google Scholar 

  • Sener, E., Sehnaz, S., & Aysen, D. (2018). Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Beysehir Lake basin. Turkey. Arabian Journal of Geosciences, 11, 187. https://doi.org/10.1007/s12517-018-3510-x

    Article  Google Scholar 

  • Shekar, P. R., & Mathew, A. (2022a). Evaluation of morphometric and hypsometric analysis of the Bagh River basin using remote sensing and geographic information system techniques. Energy Nexus, 7, 100104. https://doi.org/10.1016/j.nexus.2022.100104

  • Shekar, P. R., & Mathew, A. (2022b). Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana state, India, using a geographical information system. Journal of Engineering and Applied Sciences, 69(1), 44. https://doi.org/10.1186/s44147-022-00094-4

    Article  Google Scholar 

  • Shekar, P. R., & Mathew, A. (2022c). Prioritising sub-watersheds using morphometric analysis, principal component analysis, and land use/land cover analysis in the Kinnerasani River basin, India. H2Open Journal, 5(3), 490–514. https://doi.org/10.2166/h2oj.2022.017

  • Shekar, P. R., & Mathew, A. (2023a). Detection of land use/land cover changes in a watershed: A case study of the Murredu watershed in Telangana state, India. Watershed Ecology and the Environment, 5, 46–55. https://doi.org/10.1016/j.wsee.2022.12.003

    Article  Google Scholar 

  • Shekar, P. R., & Mathew, A. (2023b). Erosion susceptibility mapping based on hypsometric analysis using remote sensing and geographical information system techniques. In River Dynamics and Flood Hazards (pp. 365–382). Springer, Singapore. https://doi.org/10.1007/978-981-19-7100-6_26Singh

  • Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system. Environmental Earth Science, 62(4), 871–881. https://doi.org/10.1007/s12665-010-0574-7

  • Singh, S. K., Zeddies, M., Shankar, U., & Griffiths, G. A. (2019). Potential groundwater recharge zones within New Zealand. Geoscience Frontiers, 10, 1065–1072. https://doi.org/10.1016/j.gsf.2018.05.018

    Article  CAS  Google Scholar 

  • Sorensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10, 101–112. https://doi.org/10.5194/hess-10-101-2006

    Article  Google Scholar 

  • Srivastava, A. (2002). Aquifer geometry, basement–topography and ground water quality around Ken Graben. India. Journal of Spatial Hydrology, 2(2), 1–18.

    Google Scholar 

  • Tesfaye, T. (2010). Ground water potential evaluation based on integrated GIS and RS techniques in Bilate River catchment, South Rift Valley of Ethiopia. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), ISSN (Print) 2313–4410, ISSN (Online) 2313–4402 Global Society of Scientific Research and Researchers. http://asrjetsjournal.org.

  • Torabi-Kaveh, M., Babazadeh, R., Mohammadi, S., & Zaresefat, M. (2016). Landfill site selection using combination of GIS and Fuzzy AHP, a case study: Iranshahr. Iran. Waste Management & Research., 34(5), 438–448. https://doi.org/10.1177/0734242X16633777

    Article  Google Scholar 

  • Van-Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11, 229–241.

    Article  Google Scholar 

  • Waikar, M. L., & Nilawar, A. P. (2014). Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3, 14666–14671. ISSN: 2319–8753

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26, 33–43. https://doi.org/10.1016/j.serj.2015.09.005

    Article  CAS  Google Scholar 

  • Yeh, H. F., Lee, C. H., Hsu, K. C., & Chang, P. H. (2009). GIS for the assessment of the groundwater recharge potential zone. Environmental Geology, 58, 185–195.

    Article  Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79, 251–266. https://doi.org/10.1016/j.enggeo.2005.02.002

    Article  Google Scholar 

  • Yifru, B. A., Chung, I. M., Kim, M. G., & Chang, S. W. (2021). Assessing the effect of land use/land cover and climate change on water yield and groundwater recharge in East African Rift Valley using integrated model. Journal of Hydrology: Regional Studies, 37, 100926. https://doi.org/10.1016/j.ejrh.2021.100926

  • Yildirim, U. (2021). Identification of groundwater potential zones using GIS and multi-criteria decision-making techniques: A case study of the Upper Coruh River Basin (NE Turkey). ISPRS International Journal of Geo-Information, 10, 396. https://doi.org/10.3390/ijgi10060396

    Article  Google Scholar 

  • Zaresefat, M., Ahrari, M., Reza Shoaei, G., Etemadifar, M., Aghamolaie, I., & Derakhshani, R. (2022). Identification of suitable site-specific recharge areas using fuzzy analytic hierarchy process (FAHP) technique: A case study of Iranshahr Basin (Iran). Air, Soil and Water Research, 15. https://doi.org/10.1177/11786221211063849

  • Zaresefat, M., Derakhshani, R., Nikpeyman, V., GhasemiNejad, A., & Raoof, A. (2023). Using artificial intelligence to identify suitable artificial groundwater recharge areas for the Iranshahr Basin. Water, 15, 1182. https://doi.org/10.3390/w15061182

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to the India Meteorological Department (IMD) for providing rainfall data (https://mausam.imd.gov.in/). The authors would like to thank Telangana Groundwater Department water level data for making public available (https://data.telangana.gov.in) as well as the US Geological Survey (USGS) for making the satellite data available (https://earthexplorer.usgs.gov/). Extra gratitude, we would especially like to thank the Geological Survey of India for providing the data on their website at https://bhukosh.gsi.gov.in/Bhukosh/Public.

Author information

Authors and Affiliations

Authors

Contributions

Padala Raja Shekar: Conceptualization, Methodology, Software, Data curation, Writing - Original draft preparation; Aneesh Mathew: Supervision, Visualization, Investigation Writing - Reviewing and Editing. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Aneesh Mathew.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Authors allow publication if the research is accepted.

Conflict of interest

The authors declare no competing interests.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekar, P.R., Mathew, A. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Environ Monit Assess 195, 906 (2023). https://doi.org/10.1007/s10661-023-11474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11474-5

Keywords

Navigation