Skip to main content

Advertisement

Log in

Geochemical soil dynamics on a bimodal post-collisional intrusive complex

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The importance of environmental quality for global social and ecological development, including soil degradation, cannot be overstated. Trace elements dispersed in the environment due to anthropogenic or geogenic activities can result in ecotoxicological impacts, negatively influencing environmental quality. The reference values for soil quality concerning trace elements are primarily based on geological, geomorphological, and pedological patterns. However, intrinsic geological factors may diverge some concentration levels from established norms. Therefore, conducting comprehensive surveys of environmental quality reference values becomes imperative, incorporating geological, geomorphological, and pedological patterns. A deeper understanding of the distribution of these elements is also required. Multivariate analysis proves crucial in compartmentalizing the most relevant factors, particularly in regions marked by bimodal magmatism arising from post-collisional distensional processes, such as the Santa Angélica intrusive suite in southeast Brazil. This study collected soil samples from pastures and natural grasslands with minimal anthropogenic intervention at two depths. These samples underwent various chemical and physical analyses. Statistical techniques such as correlation analysis, principal component analysis, hierarchical clustering, and geostatistics were utilized to interpret the data. The analysis revealed a correlation between the clay fraction and trace elements, demonstrating that clustering is an effective methodology for ascertaining landscape distribution patterns of these components. When compared to quality reference values, it was observed that most soil content levels exceeded both global and local standards. This study suggests that the presence of barium (Ba) in the soil might be due to the isomorphic replacement of feldspathic minerals in acidic and intermediate rocks, whereas molybdenum (Mo) seems to be associated with soils in the domain of porphyritic allanite granite. However, additional research is warranted to determine the concentration factor of Mo in this scenario accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data used in this research are not publicly available now, as they are still being analyzed for another ongoing project. We will make the data available upon request after the completion of the other project or after a reasonable period. We apologize for any inconvenience this may cause to the readers and reviewers of this paper.

Code availability

This is not applicable.

References

  • Abdel-Fattah, M. K. (2020). A GIS-based approach to identify the spatial variability of salt-affected soil properties and delineation of site-specific management zones: A case study from Egypt. Soil Science Annual, 71(1), 76–85. https://doi.org/10.37501/soilsa/121495

  • Abdel-Karim, A. A. M., Azer, M. K., & Mogahed, M. M. (2021). The Neoproterozoic concentric intrusive complex of gabbro-diorite-tonalite-granodiorite association, Rahaba area, southern Eastern Desert of Egypt: Implications for magma mixing of intrusive arc rocks. Lithos, 404–405, 106423. https://doi.org/10.1016/J.LITHOS.2021.106423

  • Aitchison, J. (1986). The statistical analysis of compositional data (1st ed.). Chapman and Hall.

  • Alfaro, M. R., Montero, A., Ugarte, O. M., do Nascimento, C. W. A., de Aguiar Accioly, A. M., Biondi, C. M., & da Silva, Y. J. A. B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187(1). https://doi.org/10.1007/S10661-014-4198-3

  • Alina Kabata-Pendias, & Mukherjee, A. B. (2007). Trace elements from soil to human (1st ed.). Springer Berlin. https://doi.org/10.1007/978-3-540-32714-1

  • Alkmim, F. F., Marshak, S., Pedrosa-Soares, A. C., Peres, G. G., Cruz, S. C. P., & Whittington, A. (2006). Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Research, 149(1–2), 43–64. https://doi.org/10.1016/J.PRECAMRES.2006.06.007

    Article  CAS  Google Scholar 

  • Almeida Pacheco, A., Carlos Ker, J., Ernesto Gonçalves Reynaud Schaefer, C., Paulo Ferreira Fontes, M., Vaz Andrade, F., de Souza Martins, E., & Soares de Oliveira, F. (2018). Mineralogy, micromorphology, and genesis of soils with varying drainage along a hillslope on granitic rocks of the Atlantic Forest Biome, Brazil. Article Rev Bras Cienc Solo, 42, 170291. https://doi.org/10.1590/18069657rbcs20170291

  • Amundson, R. (2013). Soil Formation. Treatise on Geochemistry: Second Edition, 7, 1–26. https://doi.org/10.1016/B978-0-08-095975-7.00501-5

    Article  Google Scholar 

  • Araújo, W. S., Amaral Sobrinho, N. M. B., Mazur, N., & Gomes, P. C. (2002). Relação entre adsorção de metais pesados e atributos químicos e físicos de classes de solo do Brasil. Revista Brasileira De Ciência Do Solo, 26(1), 17–27. https://doi.org/10.1590/S0100-06832002000100003

    Article  Google Scholar 

  • Arcoverde, S. N. S., Cortez, J. W., Olszevski, N., Salviano, A. M., & Giongo, V. (2019). Multivariate analysis of chemical and physical attributes of quartzipsamments under different agricultural uses. Engenharia Agricola, 39(4), 457–465. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n4p457-465/2019

    Article  Google Scholar 

  • Baronnet, A. J. (1998). Mineral genesis. In Geochemistry (pp. 404–409). Springer Netherlands. https://doi.org/10.1007/1-4020-4496-8_199

  • Barros, M. A. D. S. A., Júnior, F. C., Nardi, L. V. S., & Lima, E. F. (2009). Paleoproterozoic bimodal post-collisional magmatism in the southwestern Amazonian Craton, Mato Grosso, Brazil: Geochemistry and isotopic evidence. Journal of South American Earth Sciences, 27(1), 11–23. https://doi.org/10.1016/J.JSAMES.2008.11.003

    Article  Google Scholar 

  • Bartels, A., Nielsen, T. F. D., Lee, S. R., & Upton, B. G. J. (2015). Petrological and geochemical characteristics of Mesoproterozoic dyke swarms in the Gardar Province, South Greenland: Evidence for a major sub-continental lithospheric mantle component in the generation of the magmas. Mineralogical Magazine, 79(4), 909–939. https://doi.org/10.1180/minmag.2015.079.4.04

  • Bayer, P., Schmidt-Thomé, R., Weber-Diefenbach, K., & Horn, H. A. (1987). Complex concentric granitoid intrusions in the coastal mobile belt, Espírito Santo, Brazil: The Santa Angélica Pluton — an example. Geologische Rundschau, 76(2), 357–371. https://doi.org/10.1007/BF01821080

    Article  CAS  Google Scholar 

  • Biondi, J. C. (2003). Biondi 2015, 2aed, Processos Metalogenéticos e os Depósitos Minerais Brasileiros.pdf.

  • Biswas, A., & Zhang, Y. (2018). Sampling designs for validating digital soil maps: A review. Pedosphere, 28(1), 1–15. https://doi.org/10.1016/S1002-0160(18)60001-3

    Article  Google Scholar 

  • Bocardi, J. M. B., Pletsch, A. L., Melo, V. F., & Quinaia, S. P. (2020). Quality reference values for heavy metals in soils developed from basic rocks under tropical conditions. Journal of Geochemical Exploration, 217. https://doi.org/10.1016/j.gexplo.2020.106591

  • Boechat, C. L., Duarte, L. de S. L., de Sena, A. F. S., do Nascimento, C. W. A., da Silva, Y. J. A. B., da Silva, Y. J. A. B., Brito, A. C. C., & Saraiva, P. C. (2020). Background concentrations and quality reference values for potentially toxic elements in soils of Piauí state, Brazil. Environmental Monitoring and Assessment, 192(11). https://doi.org/10.1007/S10661-020-08656-W

  • Boente, C., Baragaño, D., García-González, N., Forján, R., Colina, A., & Gallego, J. R. (2022). A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil. Catena, 208. https://doi.org/10.1016/j.catena.2021.105730

  • Brasil, M. das M. e E. (1983). Folhas SF. 23/24, Rio de Janeiro/Vitoria : Geologia, geomorfologia, pedologia, vegetação, uso potencial da terra / Projeto RADAMBRASIL [v. 32] (1st ed.). IBGE.

  • Brungard C. W. & Boettinger, J. L. (2010). Conditioned Latin hypercube sampling: Optimal sample size for digital soil mapping of arid rangelands in Utah, USA. In D. W. and M. A. C. and H. A. E. and K.-B. S. Boettinger Janis L. and Howell (Ed.). Digital soil mapping: Bridging research, environmental application, and operation (pp. 67–75). Springer Netherlands. https://doi.org/10.1007/978-90-481-8863-5_6

  • Bryan, S. E., Ewart, A., Stephens, C. J., Parianos, J., & Downes, P. J. (2000). The Whitsunday Volcanic Province, Central Queensland, Australia: Lithological and stratigraphic investigations of a silicic-dominated large igneous province. Journal of Volcanology and Geothermal Research, 99(1–4), 55–78. https://doi.org/10.1016/S0377-0273(00)00157-8

    Article  CAS  Google Scholar 

  • Buccianti, A., Mateu-Figueras, G., & Pawlowsky-Glahn, V. (2006). Compositional data analysis in the geosciences. Geological Society, London, Special Publications, 264(1), 1–214. https://doi.org/10.1144/GSL.SP.2006.264.01.16

    Article  Google Scholar 

  • Burak, D. L., Fontes, M. P. F., Santos, N. T., Monteiro, L. V. S., de Martins, E., & S., & Becquer, T. (2010). Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma, 160(2), 131–142. https://doi.org/10.1016/J.GEODERMA.2010.08.007

    Article  CAS  Google Scholar 

  • Bussy, F., Hernandez, J., & Raumer, J. V. (2000). Bimodal magmatism as a consequence of the post-collisional readjustment of the thickened Variscan continental lithosphere (Aiguilles Rouges-Mont Blanc Massifs, Western Alps). Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1–2), 221–233. https://doi.org/10.1017/s0263593300007392

    Article  Google Scholar 

  • Calegari, S. S., Neves, M. A., Guadagnin, F., Sand França, G., Gabriela, M., & Vincentelli, C. (2016). The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil. Journal of South American Earth Sciences, 69, 226–242. https://doi.org/10.1016/j.jsames.2016.04.005

    Article  Google Scholar 

  • Calegari, S. S., Peifer, D., Neves, M. A., & Caxito, F. de A. (2021). Post-Miocene topographic rejuvenation in an elevated passive continental margin not characterized by a sharp escarpment (northern end of the Mantiqueira Range, Brazil). Geomorphology, 393, 107946. https://doi.org/10.1016/J.GEOMORPH.2021.107946

  • Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x

    Article  Google Scholar 

  • Clarke, F. W., & Washington, H. S. (1920). The Chemistry of the Earth’s Crust. https://doi.org/10.1016/S0016-0032(20)90061-3

    Article  Google Scholar 

  • CETESB. (2005). Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo (Issue 195).

  • CETESB. (2014). Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo (Issue 001).

  • Coelho, A. L. N., Goulart, A. C. de O., Bergamaschi, R. B., & Junior, F. J. T. (2012). Geomorphological mapping of the State of Espírito Santo (Issue 28).

  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

  • Coringa, E. D. A. O., Couto, E. G., & Torrado, P. V. (2014). Geoquímica de solos do pantanal norte, Mato Grosso. Revista Brasileira De Ciência Do Solo, 38(6), 1784–1793. https://doi.org/10.1590/s0100-06832014000600013

    Article  Google Scholar 

  • Dare, S. A. S., Barnes, S. J., & Beaudoin, G. (2012). Variation in the trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochimica Et Cosmochimica Acta, 88, 27–50. https://doi.org/10.1016/J.GCA.2012.04.032

    Article  CAS  Google Scholar 

  • De Almeida, C. N., Guimarães, I. D. P., & Da Silva Filho, A. F. (2002). A-type post-collisional granites in the Borborema Province - NE Brazil: The Queimadas Pluton. Gondwana Research, 5(3), 667–681. https://doi.org/10.1016/S1342-937X(05)70637-7

    Article  Google Scholar 

  • de Almeida, F. F. M. (1977). O Craton Do Säo Francisco. Revista Brasileira De Geociências, 7(1), 349–364.

    Google Scholar 

  • de Almeida Júnior, A. B., do Nascimento, C. W. A., Biondi, C. M., de Souza, A. P., & Barros, F. M. do R. (2016). Background and reference values of metals in soils from Paraíba state, Brazil. Revista Brasileira de Ciencia Do Solo, 40. https://doi.org/10.1590/18069657RBCS20150122

  • de Brito Neves, B. B., & Cordani, U. G. (1991). Tectonic evolution of South America during the Late Proterozoic. Precambrian Research, 53(1–2), 23–40. https://doi.org/10.1016/0301-9268(91)90004-T

    Article  Google Scholar 

  • De Campos, C. P. (2015). Chaotic flow patterns from a deep plutonic environment: A case study on natural magma mixing. Pure and Applied Geophysics, 172(7), 1815–1833. https://doi.org/10.1007/s00024-014-0940-6

    Article  Google Scholar 

  • De Campos, C. P., Cezar Mendes, J., Ludka, I. P., de Medeiros, S. R., de Moura, J. C., & Wallfass, C. (2004). A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17. https://doi.org/10.3809/jvirtex.2004.00106

  • Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433.

    Google Scholar 

  • Dominech, S., Yang, S., Aruta, A., Gramazio, A., & Albanese, S. (2022). Multivariate analysis of dilution-corrected residuals to improve the interpretation of geochemical anomalies and determine their potential sources: The Mingardo River case study (Southern Italy). Journal of Geochemical Exploration, 232, 106890. https://doi.org/10.1016/J.GEXPLO.2021.106890

  • dos Anjos, V. E., Rohwedder, J. R., Cadore, S., Abate, G., & Grassi, M. T. (2014). Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Applied Clay Science, 99, 289–296. https://doi.org/10.1016/j.clay.2014.07.013

    Article  CAS  Google Scholar 

  • Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.

    Google Scholar 

  • Eze, P. N., Molwalefhe, L. N., & Kebonye, N. M. (2021). Geochemistry of soils of a deep pedon in the Okavango Delta, NW Botswana: Implications for pedogenesis in semi-arid regions. Geoderma Regional, 24. https://doi.org/10.1016/j.geodrs.2020.e00352

  • Fontes, M. P. F., & Weed, S. B. (1991). Iron oxides in selected Brazilian Oxisols: I. Mineralogy. Soil Science Society of America Journal, 55(4), 1143–1149. https://doi.org/10.2136/sssaj1991.03615995005500040040x

  • Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(12). https://doi.org/10.1029/2002WR001426

  • Gazley, M., Hood, S. B., & Cracknell, M. J. (2021). Soil-sample geochemistry normalized by class membership from machine-learned clusters of satellite and geophysics data. Ore Geology Reviews, 139, 104442. https://doi.org/10.1016/J.OREGEOREV.2021.104442

  • Gazley, M. F., Martin, A. P., Turnbull, R. E., Frontin-Rollet, G., & Strong, D. T. (2020). Regional patterns in standardized and transformed pathfinder elements in soil related to orogenic-style mineralization in southern New Zealand. Journal of Geochemical Exploration, 217, 106593.

    Article  CAS  Google Scholar 

  • Goovaerts, P., & Goovaerts, D. C. E. E. P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press. https://books.google.com.br/books?id=CW-7tHAaVR0C

  • Goncalves, M. A., Vairinho, M., & Oliveira, V. (1998). Study of geochemical anomalies in the Mombeja area using a multifractal methodology and geostatistics. IV IAMG, 98, 590–595.

    Google Scholar 

  • Gonçalves, M., Vairinho, M., & Oliveira, V. (1998). Study of geochemical anomalies in the Mombeja area using a multifractal methodology and geostatistics.

  • Gonçalves, M. L., Netto, M. L. A., Costa, J. A. F., & Zullo Junior, J. (2008). An unsupervised method of classifying remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods. International Journal of Remote Sensing, 29(11), 3171–3207. https://doi.org/10.1080/01431160701442146

    Article  Google Scholar 

  • Gong, Y., Zeng, Z., Zhou, C., Nan, X., Yu, H., Lu, Y., Li, W., Gou, W., Cheng, W., & Huang, F. (2019). Barium isotopic fractionation in latosol developed from strongly weathered basalt. Science of The Total Environment, 687, 1295–1304. https://doi.org/10.1016/j.scitotenv.2019.05.427

  • Greaney, A. T., Rudnick, R. L., Gaschnig, R. M., Whalen, J. B., Luais, B., & Clemens, J. D. (2018). Geochemistry of molybdenum in the continental crust. Geochimica Et Cosmochimica Acta, 238, 36–54. https://doi.org/10.1016/J.GCA.2018.06.039

    Article  CAS  Google Scholar 

  • Grondahl, C., & Zajacz, Z. (2017). Magmatic controls on the genesis of porphyry Cu–Mo–Au deposits: The Bingham Canyon example. Earth and Planetary Science Letters, 480, 53–65. https://doi.org/10.1016/J.EPSL.2017.09.036

    Article  CAS  Google Scholar 

  • Grunsky, E. C. (2010). The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis, 10(1), 27–74. https://doi.org/10.1144/1467-7873/09-210

  • Grunsky, E. C., & Caritat, de P. (2020). State-of-the-art analysis of geochemical data for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 20(2), 217–232. https://doi.org/10.1144/geochem2019-031

  • Hair, J. F., Anderson, R. E., & Tatham, R. L. (1986). Multivariate data analysis with readings (2nd ed.). Macmillan Publishing Co., Inc.

    Google Scholar 

  • Hans Wedepohl, K. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55(3), 319–322.

    Article  CAS  Google Scholar 

  • Hartwig, M. E., de MELO, M. G., Peterle, D. T., & Feuchard, L. D. (2020). Geology of the Santa Angélica intrusive complex, Araçuaí Orogen, Espírito Santo state: Perspectives for the dimension stone sector. Pesquisas Em Geociencias, 47(2), 1–19. https://doi.org/10.22456/1807-9806.108581

  • Heilbron, M., & Pedrosa-soares, A. C. (2004). Província Mantiqueira. September.

  • Horn, A. H., & Soares, A. C. P. (2007). Geologia da folha Espera Feliz SF. 24-V-A-IV.

  • Johnson, T. A., Vervoort, J. D., Ramsey, M. J., Southworth, S., & Mulcahy, S. R. (2020). Tectonic evolution of the Grenville Orogen in the central Appalachians. Precambrian Research, 346, 105740. https://doi.org/10.1016/J.PRECAMRES.2020.105740

  • Jollife, I. T. (2002). Principal component analysis for special types of data. Springer.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement. Educational and Psychological Measurement, 20(1), 141–151.

  • Kashin, V. K. (2015). Barium in landscape components of the western Transbaikal region. Eurasian Soil Science, 48(10), 1120–1130. https://doi.org/10.1134/S106422931510004X

    Article  CAS  Google Scholar 

  • Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A. P., Lundstrom, C., Bindeman, I., & Munizaga, R. (2015). Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology, 43(7), 591–594. https://doi.org/10.1130/G36650.1

    Article  Google Scholar 

  • Landenberger, A., & undersökning, S. geologiska. (2012). Markgeokemiska kartan: morängeokemi i norra Norrbotten : till geochemistry in northern Norrbotten. Sveriges geologiska undersökning (SGU). https://books.google.com.br/books?id=_OX2DAEACAAJ

  • Lima, E. A. R., & Lima,; Siqueira,; & Siqueira, N. V. M. (2005). Influência Da Mineralogia Na Composição Química De Metais Pesados Nos Sedimentos Pelíticos Superficiais Da Plataforma Continental Do Amazonas. Geochimica Brasiliensis, 19(2), 103–117.

    Google Scholar 

  • Linhares, L. A., Filho, F. B. E., de Oliveira, C. V., & de Bellis, V. M. (2009). Adsorção de cádmio e chumbo em solos tropicais altamente intemperizados. Pesquisa Agropecuaria Brasileira, 44(3), 291–299. https://doi.org/10.1590/S0100-204X2009000300011

    Article  Google Scholar 

  • Litvinovsky, B. A., Jahn, B. M., & Eyal, M. (2015). Mantle-derived sources of syenites from the A-type igneous suites — New approach to the provenance of alkaline silicic magmas. Lithos, 232, 242–265. https://doi.org/10.1016/J.LITHOS.2015.06.008

    Article  CAS  Google Scholar 

  • Liu, H., Xiong, Z., Jiang, X., Liu, G., & Liu, W. (2016). Heavy metal concentrations in riparian soils along the Han River, China: The importance of soil properties, topography, and upland land use. Ecological Engineering, 97, 545–552. https://doi.org/10.1016/J.ECOLENG.2016.10.060

    Article  Google Scholar 

  • Loriato Potratz, G., Geraldes, M. C., Júnior, E. B. de M., Temporim, F. A., & Martins, M. V. A. (2022). A juvenile component in the pre-and post-collisional magmatism in the transition zone between the Araçuaí and Ribeira Orogens (SE Brazil). https://doi.org/10.3390/min12111378

  • Maier, W. D. (2005). Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. Journal of African Earth Sciences, 41(3), 165–191. https://doi.org/10.1016/J.JAFREARSCI.2005.03.004

    Article  CAS  Google Scholar 

  • Maier, W. D., Barnes, S.-J., & Groves, D. I. (2013). The Bushveld Complex, South Africa: Formation of platinum–palladium, chrome- and vanadium-rich layers via hydrodynamic sorting of a mobilized cumulate slurry in a large, relatively slowly cooling, subsiding magma chamber. Mineralium Deposita, 48(1), 1–56. https://doi.org/10.1007/s00126-012-0436-1

    Article  CAS  Google Scholar 

  • Martin, A. P., Turnbull, R. E., Rattenbury, M. S., Cohen, D. R., Hoogewerff, J., Rogers, K. M., Baisden, W. T., & Christie, A. B. (2016). The regional geochemical baseline soil survey of southern New Zealand: Design and initial interpretation. Journal of Geochemical Exploration, 167, 70–82.

    Article  CAS  Google Scholar 

  • Martins, V. T. D. S., Teixeira, W., Noce, C. M., & Pedrosa-Soares, A. C. (2004). Sr and Nd characteristics of Brasiliano/Pan-African Granitoid Plutons of the Araçuaí Orogen. Southeastern Brazil: Tectonic Implications. Gondwana Research, 7(1), 75–89. https://doi.org/10.1016/S1342-937X(05)70307-5

    Article  CAS  Google Scholar 

  • Mateus, A. C. C., Varajão, A. F. D. C., de Oliveira, F. S., Petit, S., & Schaefer, C. E. G. R. (2020). Geochemical evolution of soils developed from pyroclastic rocks of Trindade Island, South Atlantic. Brazilian Journal of Geology, 51(1). https://doi.org/10.1590/2317-4889202120200073

  • Mateus, A. C. C., Varajão, A. F. D. C., Oliveira, F. S., & Schaefer, C. E. (2018). Alteration of olivine in volcanic rocks from Trindade Island, South Atlantic. Applied Clay Science, 160, 40–48. https://doi.org/10.1016/J.CLAY.2018.01.033

    Article  CAS  Google Scholar 

  • Mcgrath, D., Zhang, C., & Carton, O. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution (Barking, Essex : 1987), 127, 239–248. https://doi.org/10.1016/j.envpol.2003.07.002

  • Melo, V. F., Batista, A. H., Gilkes, R. J., & Rate, A. W. (2016). Relationship between heavy metals and minerals extracted from soil clay by standard and novel acid extraction procedures. Environmental Monitoring and Assessment, 188(12), 1–18. https://doi.org/10.1007/S10661-016-5690-8/FIGURES/5

    Article  CAS  Google Scholar 

  • Mielke, J. E. (1979). Review of research on modern problems in geochemistry (F. R. Siegel, Ed.; Vol. 7, Issue 1). UNESCO.

  • Mikkonen, H. G., van de Graaff, R., Clarke, B. O., Dasika, R., Wallis, C. J., & Reichman, S. M. (2018). Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel, and zinc in soil. Chemosphere, 210, 193–203. https://doi.org/10.1016/j.chemosphere.2018.06.138

    Article  CAS  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32(9), 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009

  • Morand, V. J. (1990). High chromium and vanadium in andalusite, phengite, and retrogressive margarite in contact metamorphosed Ba-rich black slate from the Abercrombie Beds, New South Wales, Australia. Mineralogical Magazine, 54(376), 381–391. https://doi.org/10.1180/minmag.1990.054.376.03

  • Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1), 86–97. https://doi.org/10.1002/widm.53

    Article  Google Scholar 

  • Nadoll, P., Mauk, J. L., Hayes, T. S., Koenig, A. E., & Box, S. E. (2012). Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup. United States. Economic Geology, 107(6), 1275–1292. https://doi.org/10.2113/econgeo.107.6.1275

    Article  CAS  Google Scholar 

  • Nanzyo, M., & Kanno, H. (2018). Inorganic Constituents in Soil: Basics and Visuals. https://doi.org/10.1007/978-981-13-1214-4

    Article  Google Scholar 

  • Nedyalkova, M., & Simeonov, V. (2019). Chemometric risk assessment of soil pollution. Open Chemistry, 17(1), 711–721. https://doi.org/10.1515/chem-2019-0082

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  CAS  Google Scholar 

  • Nockolds, S. R. (1964). Average chemical compositions of some igneous rocks. Geological Society of America Bulletin, 65, 1007–1032. https://doi.org/10.1130/0016-7606(1954)65

    Article  Google Scholar 

  • Odeh, I. O. A., Crawford, M., & McBratney, A. B. (2006). Chapter 32 Digital mapping of soil attributes for regional and catchment modelling, using ancillary covariates, statistical, and geostatistical techniques. Developments in Soil Science, 31(C), 437–454. https://doi.org/10.1016/S0166-2481(06)31032-X

  • Pan, Y., & Fleet, M. E. (1991). Barian feldspar and barian-chromian muscovite from the Hemlo area, Ontario. Canadian Mineralogist, 29, 481–498.

    CAS  Google Scholar 

  • Paye, H. D. S., Mello, J. W. V. D., Abrahão, W. A. P., Fernandes Filho, E. I., Dias, L. C. P., Castro, M. L. O., ... & França, M. M. (2010). Reference quality values for heavy metals in soils from Espírito Santo state, Brazil. Revista Brasileira De Ciencia Do Solo, 34(6), 2041–2051. https://doi.org/10.1590/s0100-06832010000600028

    Article  Google Scholar 

  • Pedrosa-Soares, A. C., Castañeda, C., Queiroga, G., Gradim, C., Belém, J., Roncato, J., Novo, T., Dias, P., Gradim, D., Medeiros, S., Jacobsohn, T., Babinski, M., & Vieira, V. (2006). Magmatismo E Tectônica Do Orógeno Araçuaí No Extremo Leste De Minas E Norte Do Espirito Santo (18°-19°S, 41°-40°30’W)1. Geonomos, 14, 97–111. https://doi.org/10.18285/geonomos.v14i2.114

  • Pedrosa-Soares, A. C., Noce, C. M., Alkmim, F. F., da Silva, L. C., Babinski, M., Cordani, U., & Castañeda, C. (2007). Orógeno Araçuaí : Síntese Do Conhecimento 30 Anos Após Almeida 1977. Geonomos, 15(1), 1–16. https://doi.org/10.18285/geonomos.v15i1.103

  • Pedrosa-Soares, A. C., Noce, C. M., Wiedemann, C. M., & Pinto, C. P. (2001). The Araçuaı-West-Congo Orogen in Brazil: An overview of a confined orogen formed during Gondwanaland assembly. Precambrian Research, 110(1–4), 307–323. https://doi.org/10.1016/S0301-9268(01)00174-7

    Article  CAS  Google Scholar 

  • Pereira, G. W., Valente, D. S. M., Queiroz, D. M. de, Coelho, A. L. de F., Costa, M. M., & Grift, T. (2022). Smart-Map: An open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging. Agronomy, 12(6). https://doi.org/10.3390/agronomy12061350

  • Pires, A. C. D., de Melo, V., & F., Motta, A. C. V., & Lima, V. C. (2007). Majors soil classes of the metropolitan region of Curitiba (PR), Brazil: II – The interaction of Pb with mineral and organic constituents. Brazilian Archives of Biology and Technology, 50(2), 183–192. https://doi.org/10.1590/S1516-89132007000200002

    Article  CAS  Google Scholar 

  • Richards, J. P. (2011). Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1), 1–26. https://doi.org/10.1016/J.OREGEOREV.2011.05.006

    Article  Google Scholar 

  • Sahoo, P. K., Dall’Agnol, R., Salomão, G. N., Junior, J. da S. F., Silva, M. S., e Souza Filho, P. W. M., da Costa, M. L., Angélica, R. S., Filho, C. A. M., da Costa, M. F., Guilherme, L. R. G., & Siqueira, J. O. (2020). Regional-scale mapping for determining geochemical background values in soils of the Itacaiúnas River Basin, Brazil: The use of compositional data analysis (CoDA). Geoderma, 376(January), 114504. https://doi.org/10.1016/j.geoderma.2020.114504

  • Salgado, A. A. R., Bueno, G. T., Diniz, A. D., & Marent, B. R. (2015). Long-term geomorphological evolution of the Brazilian territory. In B. C. Vieira, A. A. R. Salgado, & L. J. C. Santos (Eds.), Landscapes and Landforms of Brazil (pp. 19–31). Springer Netherlands. https://doi.org/10.1007/978-94-017-8023-0_3

  • Santos, A. do C., da Silva, R., da Silva Neto, E., dos Anjos, L. H., & Pereira, M. G. (2021). Weathering and pedogenesis of mafic rock in the Brazilian Atlantic Forest. Journal of South American Earth Sciences, 111. https://doi.org/10.1016/j.jsames.2021.103452

  • Schmidth-Thomé, R., & Weber-Diefenbach, K. (1987). Evidence for “frozen-in” magma mixing in Brasiliano Calc-Alkallne intrusions: The Santa Angélica Pluton, Southern Espírito Santo, Brazil. Revista Brasileira De Geociências, 17, 498–506.

    Google Scholar 

  • Shipkova, V. G., Minkina, T. M., Fedorov, Y. A., Goncharova, L. Y., Sherstnev, A. K., & Mandzhieva, S. S. (2018). Accumulation and distribution features of micro- and macroelements in luvisols of plain and mountainous regions. Journal of Geochemical Exploration, 184, 394–399.

    Article  CAS  Google Scholar 

  • Silva, D. L. C., McNaughton, N. J., Armstrong, R., Hartmann, L. A., & Fletcher, I. R. (2005). The Neoproterozoic Mantiqueira Province and its African connections: A zircon-based U-Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens. Precambrian Research, 136(3–4), 203–240. https://doi.org/10.1016/J.PRECAMRES.2004.10.004

    Article  Google Scholar 

  • Silva, Y. J. A. B. D., Oliveira, E. B. D., Silva, Y. J. A. B. D., Nascimento, C. W. A. D., Silva, T. D. S., Boechat, C. L., & Sena, A. F. S. D. (2021). Quality reference values for rare earth elements in soils from one of the last agricultural frontiers in Brazil. Scientia Agricola, 78. https://doi.org/10.1590/1678-992x-2020-0069

  • Stoops, G., & Schaefer, C. E. G. R. (2018). Pedoplasmation: Formation of soil material. Interpretation of Micromorphological Features of Soils and Regoliths, 59–71. https://doi.org/10.1016/B978-0-444-63522-8.00004-8

  • Sun, T., Shut, C., Li, F., Yu, H., Ma, L., & Fang, Y. (2009). An efficient hierarchical clustering method for large datasets with map-reduce. Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, 494–499. https://doi.org/10.1109/PDCAT.2009.46

  • Suppi, I. M., Campos, M. L., Miquelluti, D. J., & Machado, M. R. (2021). Vanadium, molybdenum, and antimony contents in soils of different lithologies in Santa Catarina. Quimica Nova, 44(8), 947–953. https://doi.org/10.21577/0100-4042.20170768

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de Métodos de Análise de Solo (3rd ed.). Embrapa.

  • Temporim, F. A. (2021). The magnetism of Cambrian plutons of the Araçuaí belt, orogenic collapse, and paleogeography of West Gondwana. https://doi.org/10.13140/RG.2.2.33062.19525

  • USEPA, U. S. E. P. A. (1996). Soil screening guidance: Technical background document soil screening guidance : Technical background document (Issue 2).

  • USGS. (2017). Barite (Barium) Chapter D of Critical Mineral Resources of the United States — Economic and environmental geology and prospects for future supply professional paper 1802 – V U . S . Department of the Interior. U.S. Geological Survey Professional Paper 1802, Prepared by By Craig A. Johnson, Nadine M. Piatak, and M. Michael Miller Chapter, V1–V26, Reston, Virginia.

  • Vanderhaeghe, O., & Teyssier, C. (2001). Crustal-scale rheological transitions during the late-orogenic collapse. Tectonophysics, 335(1–2), 211–228. https://doi.org/10.1016/S0040-1951(01)00053-1

    Article  Google Scholar 

  • Vinogradov, A. P. (1962). Average contents of chemical elements in the principal types of igneous rocks of the Earth’s crust. Geochemistry, 7, 641–664.

    Google Scholar 

  • Volkert, R. A. (2016). Geochemistry and stratigraphic relations of. January 1999.

  • Wang, P., Zhao, G., Han, Y., Liu, Q., Zhou, N., Yao, J., Li, J., & Li, Y. (2020). Post-collisional potassic rocks in Western Kunlun, NW Tibet Plateau: Insights into lateral variations in the crust-mantle structure beneath the India-Asia collision zone. Lithos, 370–371, 105645. https://doi.org/10.1016/J.LITHOS.2020.105645

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists, 2nd Edition - Richard Webster, Margaret A. Oliver. 330.

  • Wiedemann-Leonardos, C. M., Ludka, I. P., De Medeiros, S. R., Mendes, J. C., & Costa-De-Moura, J. (2000). Arquitetura de plútons zonados da Faixa Araçuaí-Ribeira. Geonomos, 8(1), 25–38.

    Google Scholar 

  • Wilding, L. P., & Drees, L. R. (1983). Spatial variability and pedology. Developments in Soil Science, 11(PART A), 83–116. https://doi.org/10.1016/S0166-2481(08)70599-3

  • Wilson, J., Cuadros, J., & Cressey, G. (2004). An in situ time-resolved XRD-PSD investigation into Na-montmorillonite interlayer and particle rearrangement during dehydration. Clays and Clay Minerals, 52(2), 180–191. https://doi.org/10.1346/CCMN.2004.0520204

    Article  CAS  Google Scholar 

  • Wolff, J. A., Forni, F., Ellis, B. S., & Szymanowski, D. (2020). Europium and barium enrichments in compositionally zoned felsic tuffs: A smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth and Planetary Science Letters, 540, 116251. https://doi.org/10.1016/j.epsl.2020.116251

  • WRB, I. W. G. (2014). World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps (Issue 106). Food and Agriculture Organization of the United Nations.

  • Xu, J., Wang, X., Wang, J., Xu, L., Zheng, X., Zhang, Y., & Hu, C. (2021). Dominant environmental factors influencing soil metal concentrations of Poyang Lake wetland, China: Soil property, topography, plant species, and wetland type. CATENA, 207, 105601. https://doi.org/10.1016/J.CATENA.2021.105601

  • Yang, J., Grunsky, E., & Cheng, Q. (2019). A novel hierarchical clustering analysis method based on Kullback-Leibler divergence and application on Dalaimiao geochemical exploration data. Computers and Geosciences, 123, 10–19. https://doi.org/10.1016/j.cageo.2018.11.003

    Article  CAS  Google Scholar 

  • Yavuz, F., Gültekin, A., RGÜN, Y., ELIK, N., Çelik Karakaya, M., & Sasmaz, A. (2002). Mineral chemistry of barium- and titanium-bearing biotites in calc-alkaline volcanic rocks from the Mezitler area (Balikesir-Dursunbey), western Turkey. Geomical Journal, 563–580.

  • Yu, X., Xiao, F., Zhou, Y., Wang, Y., & Wang, K. (2019). Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district. Journal of Geochemical Exploration, 203, 87–95. https://doi.org/10.1016/j.gexplo.2019.04.007

    Article  CAS  Google Scholar 

  • Zaitsev, A. N., Terry Williams, C., Jeffries, T. E., Strekopytov, S., Moutte, J., Ivashchenkova, O. V., Spratt, J., Petrov, S. V., Wall, F., Seltmann, R., & Borozdin, A. P. (2014). Rare earth elements in phosphorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi, and Turiy Mys complexes. Ore Geology Reviews, 61, 204–225. https://doi.org/10.1016/J.OREGEOREV.2014.02.002

    Article  Google Scholar 

  • Zakharikhina, V. L., Malyukova, L. S., & Ryndin, V. A. (2022). Genesis and geochemistry of the soils of urban landscapes of the Black Sea coast of Russia. CATENA, 210, 105881. https://doi.org/10.1016/J.CATENA.2021.105881

  • Zanon, M. L., De OliveiraChaves, A., Rangel, C. V. G. T., Gaburo, L., Pires, C. R., de Chaves, A., & O., Rangel, C. V. G. T., Gaburo, L., & Pires, C. R. (2015). Os aspectos geológicos do Maciço Santa Angélica (ES): Uma nova abordagem. Brazilian Journal of Geology, 45(4), 609–633. https://doi.org/10.1590/2317-4889201520150005

    Article  Google Scholar 

  • Zauyah, S., Schaefer, C. E. G. R., & Simas, F. N. B. (2010). 4 - Saprolites. In G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths, 49–68. Elsevier. https://doi.org/10.1016/B978-0-444-53156-8.00004-0

  • Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47–56. https://doi.org/10.1002/esp.3290120107

    Article  Google Scholar 

  • Zhou, L., & Xiong, L.-Y. (2018). Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Applied Geography, 90, 282–292. https://doi.org/10.1016/j.apgeog.2017.10.006

  • Zhu, X., & Guo, D. (2014). Mapping large spatial flow data with hierarchical clustering. Transactions in GIS, 18(3), 421–435. https://doi.org/10.1111/tgis.12100

    Article  Google Scholar 

  • Zou, F. H., Wu, C. L., Deng, L. H., Gao, D., & Gao, Y. H. (2023). Subduction-related mafic to felsic magmatism in the Xiangpishan concentric calc-alkaline complex. Northeast Tibetan Plateau. Geological Journal, 58(1), 438–464. https://doi.org/10.1002/GJ.4606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the coordination of postgraduate studies in agronomy at the Center for Agricultural Sciences and Engineering (CASE) at the Federal University of Espírito Santo for providing the facilities for the conduction of the experiments and data analysis and to the Environmental Sciences Laboratory at the State University of North Fluminense (ESL) for the chemical measures. This work is financially supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq), award number 423460/2016-1. We thank the anonymous reviewers and the associate editor for their great help in improving our manuscript.

Funding

This work is financially supported by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq), award number 423460/2016-1.

Author information

Authors and Affiliations

Authors

Contributions

Kargean Vianna Barbosa led the theoretical conception of the research question and design, performed the statistical analysis and software manipulation, and wrote the main sections of the manuscript. Diego Lang Burak provided theoretical support and guidance throughout the study, reviewed and revised the manuscript critically, and offered valuable advice. Carlos Eduardo Veiga de Carvalho contributed to the laboratory work, data collection, and writing advice. Filipe Altoé Temporim supported the theoretical conception with relevant literature and expertise, reviewed and edited the manuscript for clarity and coherence, and checked the quality of the figures and tables. Danilo de Lima Camêlo coordinated and organized the research team, assisted with writing and formatting the manuscript, and advised on theoretical aspects. Finally, Alexandre Rosa dos Santos helped with GIS data processing and visualization, reviewed the manuscript for accuracy and consistency, and suggested improvements. All authors read and approved the final version of the manuscript. All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Corresponding author

Correspondence to Kargean Vianna Barbosa.

Ethics declarations

Ethics approval

This is not applicable.

Consent to participate

This is not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, K.V., Burak, D.L., de Carvalho, C.E.V. et al. Geochemical soil dynamics on a bimodal post-collisional intrusive complex. Environ Monit Assess 195, 911 (2023). https://doi.org/10.1007/s10661-023-11469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11469-2

Keywords

Navigation