Skip to main content

Advertisement

Log in

Detection of spatiotemporal patterns of rainfall trends, using non-parametric statistical techniques, in Karnataka state, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The unpredictability of the climate has drawn a lot of interest worldwide, especially that of the annual mean temperatures and rainfall. In this study, non-parametric tests such as the LOWESS curve method, Mann–Kendall (MK), SNHT test, Pettitt’s test (PT), and Buishand range test (BRT) were used to evaluate long-term (2000–2020) rainfall data series to examine rainfall variability. The Dakshina Kannada district has the highest average rainfall is 3495.6 mm with a magnitude change% of about 26.2, while the Koppala district has the lowest average rainfall roughly about 530.4 mm, with a magnitude change % of about 11.49 mm in a year. The statistics from the fitted prediction line were utilized to determine the maximum coefficient determination (R2 = 0.8808) in the Uttara Kannada region. Because of the commencement of the present rising era, 2015 is the shift year in rainfall with the highest potential of being a change point in the state’s Western Ghats region. It was also revealed that the majority of the districts exhibit positive trends before the change point and vice versa. The current research can be used to plan for and minimize the agricultural and water resource challenges in the state of Karnataka. To link observable patterns to climate variability, the next inquiry must identify the source of these changes. Overall, the study’s findings will help organize and improve drought, flood, and water resource management techniques in the state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Ahmad, H. Q., Kamaruddin, S. A., Harun, S. B., Al-Ansari, N., Shahid, S., & Jasim, R. M. (2021). Assessment of spatiotemporal variability of meteorological droughts in northern iraq using satellite rainfall data. KSCE Journal of Civil Engineering, 25(11), 4481–4493. https://doi.org/10.1007/s12205-021-2046-x

    Article  Google Scholar 

  • Ahmad, I., Tang, D., Wang, T., Wang, M., & Wagan, B. (2015). Precipitation trends over time using Mann-Kendall and spearman’s Rho tests in swat river basin, Pakistan. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/431860.

  • Ahmed, S. A. Harishnaika, N., & Arpitha, M. (2022). Analysis of drought severity and vegetation condition prediction using satellite remote sensing indices in Kolar and Chikkaballapura Districts , Karnataka State. https://doi.org/10.33140/EESRR.06.02.01.

  • Alashan, S. (2020). Combination of modified Mann-Kendall method and Şen innovative trend analysis. Engineering Reports, 2(3), 1–13. https://doi.org/10.1002/eng2.12131

    Article  Google Scholar 

  • Ascencio-Vásquez, J., Brecl, K., & Topič, M. (2019). Methodology of Köppen-Geiger-photovoltaic climate classification and implications to worldwide mapping of PV system performance. Solar Energy, 191, 672–685. https://doi.org/10.1016/j.solener.2019.08.072

    Article  Google Scholar 

  • Atilgan, A., Tanriverdi, C., Yucel, A., Hasan, O., & Degirmenci, H. (2017). Analysis of long-term temperature data using Mann-Kendall trend test and linear regression methods: The case of the Southeastern Anatolia Region. Scientific Papers-Series a-Agronomy, 60(2005), 455–462.

    Google Scholar 

  • Cancelliere, A., Mauro, G. D., Bonaccorso, B., & Rossi, G. (2007). Drought forecasting using the standardized precipitation index. Water Resources Management, 21(5), 801–819. https://doi.org/10.1007/s11269-006-9062-y

    Article  Google Scholar 

  • Chattopadhyay, S., & Edwards, D. R. (2016). Long-term trend analysis of precipitation and air temperature for Kentucky, United States. Climate, 4(1). https://doi.org/10.3390/cli4010010

  • Da Silva, R. M., Santos, C. A. G., Moreira, M., Corte-Real, J., Silva, V. C. L., & Medeiros, I. C. (2015). Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, 77(2), 1205–1221. https://doi.org/10.1007/s11069-015-1644-7

    Article  Google Scholar 

  • Diaz, H., Bradley, R., & Eischeid, J. (1989). Precipitation fluctuations over global land areas since the late 1800’s. Journal of Geophysical Research, 94, 1195–1210. https://doi.org/10.1029/JD094iD01p01195

    Article  Google Scholar 

  • Gajbhiye, S., Meshram, C., Singh, S. K., Srivastava, P. K., & Islam, T. (2016). Precipitation trend analysis of Sindh River basin, India, from 102-year record (1901–2002). Atmospheric Science Letters, 17(1), 71–77. https://doi.org/10.1002/asl.602

    Article  Google Scholar 

  • Ghosh, K. G. (2018). Analysis of rainfall trends and its spatial patterns during the last century over the Gangetic West Bengal, Eastern India. Journal of Geovisualization and Spatial Analysis, 2(2). https://doi.org/10.1007/s41651-018-0022-x

  • Harishnaika, N., Ahmed, S. A., Kumar, S., & Arpitha, M. (2022). Remote sensing applications : Society and environment computation of the spatio-temporal extent of rainfall and long-term meteorological drought assessment using standardized precipitation index over Kolar and Chikkaballapura districts, Karnataka during. Remote Sensing Applications: Society and Environment, 27(January), 100768. https://doi.org/10.1016/j.rsase.2022.100768

    Article  Google Scholar 

  • Harishnaika, N., Ahmed, S. A., Kumar, S., & Arpitha, M. (2022b). Spatio-temporal rainfall trend assessment over a semi-arid region of Karnataka state, using non-parametric techniques. Arabian Journal of Geosciences, 15(16). https://doi.org/10.1007/s12517-022-10665-7

  • Jenifer, M. A., & Jha, M. K. (2021). Assessment of precipitation trends and its implications in the semi-arid region of Southern India. Environmental Challenges, 5(June), 100269. https://doi.org/10.1016/j.envc.2021.100269

    Article  Google Scholar 

  • Kalumba, A. M., Olwoch, J., Van Aardt, I., Botai, O., Tsela, P., Nsubuga, F., & Adeola, A. (2013). Trend analysis of climate variability over the West Bank-East London Area, South Africa (1975–2011). Journal of Geography & Geology, 5, 131. https://doi.org/10.5539/jgg.v5n4p131

    Article  Google Scholar 

  • Khan, N., Pour, S. H., Shahid, S., Ismail, T., Ahmed, K., Chung, E. S., et al. (2019). Spatial distribution of secular trends in rainfall indices of Peninsular Malaysia in the presence of long-term persistence. Meteorological Applications, 26(4), 655–670. https://doi.org/10.1002/met.1792

    Article  Google Scholar 

  • Kumar, M., Denis, D. M., & Suryavanshi, S. (2016). Long-term climatic trend analysis of Giridih district, Jharkhand (India) using statistical approach. Modeling Earth Systems and Environment, 2(3), 1–10. https://doi.org/10.1007/s40808-016-0162-2

    Article  CAS  Google Scholar 

  • Machiwal, D., Gupta, A., Jha, M. K., & Kamble, T. (2019). Analysis of trend in temperature and rainfall time series of an Indian arid region: Comparative evaluation of salient techniques. Theoretical and Applied Climatology, 136(1–2), 301–320. https://doi.org/10.1007/s00704-018-2487-4

    Article  Google Scholar 

  • Mallenahalli, N. K. (2020). Comparison of parametric and nonparametric standardized precipitation index for detecting meteorological drought over the Indian region. Theoretical and Applied Climatology, 142(1–2), 219–236. https://doi.org/10.1007/s00704-020-03296-z

    Article  Google Scholar 

  • Mondal, A., Lakshmi, V., & Hashemi, H. (2018). Intercomparison of trend analysis of multisatellite monthly precipitation products and Gauge measurements for river basins of India. Journal of Hydrology, 565(September), 779–790. https://doi.org/10.1016/j.jhydrol.2018.08.083

    Article  Google Scholar 

  • Mu, Q., Zhao, M., Kimball, J. S., McDowell, N. G., & Running, S. W. (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1), 83–98. https://doi.org/10.1175/BAMS-D-11-00213.1

    Article  Google Scholar 

  • Naranjo, L., Glantz, M. H., Temirbekov, S., & Ramírez, I. J. (2018). El Niño and the Köppen-Geiger classification: A prototype concept and methodology for mapping impacts in Central America and the Circum-Caribbean. International Journal of Disaster Risk Science, 9(2), 224–236. https://doi.org/10.1007/s13753-018-0176-7

    Article  Google Scholar 

  • Pal, I., & Al-Tabbaa, A. (2011). Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques. Theoretical and Applied Climatology, 103(1), 1–11. https://doi.org/10.1007/s00704-010-0277-8

    Article  Google Scholar 

  • Panda, A. (2019). Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha , India, (May), 1–10. https://doi.org/10.1002/asl.932.

  • Prabhakar, A. K., Singh, K. K., Lohani, A. K., & Chandniha, S. K. (2019). Assessment of regional-level long-term gridded rainfall variability over the Odisha State of India. Applied Water Science, 9(4), 1–15. https://doi.org/10.1007/s13201-019-0975-z

    Article  Google Scholar 

  • Praveen, B., Talukdar, S., Mahato, S., Mondal, J., Sharma, P., et al. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 1–21. https://doi.org/10.1038/s41598-020-67228-7

    Article  CAS  Google Scholar 

  • Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., & Sharma, P., et al. (2020b). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67228-7.

  • Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P. P., & Partyka, G. S. (2017). Land surface precipitation in MERRA-2. Journal of Climate, 30(5), 1643–1664. https://doi.org/10.1175/JCLI-D-16-0570.1

    Article  Google Scholar 

  • Sabzevari, A., Zarenistanak, M., Tabari, H., & Moghimi, S. (2015). Evaluation of precipitation and river discharge variations over southwestern Iran during recent decades. Journal of Earth System Science, 124. https://doi.org/10.1007/s12040-015-0549-x.

  • Sai, K. V., & Joseph, A. (2018).Trend analysis of rainfall of Pattambi region, Kerala, India, 7(09), 3274–3281.

  • Salehi, S., Dehghani, M., Mortazavi, S. M., & Singh, V. P. (2020). Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, 40(1), 308–323. https://doi.org/10.1002/joc.6211

    Article  Google Scholar 

  • Saravanan, N. M. R. S. (2022). Evaluation of the accuracy of seven gridded satellite precipitation products over the Godavari River basin , India. International Journal of Environmental Science and Technology, (0123456789). https://doi.org/10.1007/s13762-022-04524-x.

  • Seyhun, R., & Akintug, B. (2013). Trend analysis of rainfall in North Cyprus trend analysis of rainfall in North Cyprus, (September 2015), 0–14. https://doi.org/10.1007/978-1-4614-7588-0.

  • Yadav, R., Tripathi, S. K., Pranuthi, G., & Dubey, S. K. (2014). Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. Journal of Agrometeorology, 16(2), 164–171.

    Article  Google Scholar 

  • Yanming, Z., Jun, W., & Xinhua, W. (2011). Study on the change trend of precipitation and temperature in kunming city based on Mann-Kendall analysis. Advances in Intelligent and Soft Computing, 119, 505–513. https://doi.org/10.1007/978-3-642-25538-0_71

    Article  Google Scholar 

  • Zhang, S., & Lu, X. X. (2009). Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena, 77(2), 130–142. https://doi.org/10.1016/j.catena.2008.09.001

    Article  Google Scholar 

  • Zhang, L., & Zhou, T. (2011). An assessment of monsoon precipitation changes during 1901–2001. Climate Dynamics, 37(1), 279–296. https://doi.org/10.1007/s00382-011-0993-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Applied Geology, Kuvempu University, for technical and moral support during this research.

Author information

Authors and Affiliations

Authors

Contributions

1. Harishnaika N. — Conceptualization, formal analysis, investigation, software handling, and writing the original draft.

2. Shilpa N. — Data interpretation, figure and table preparation, software handling, writing the original draft, formal analysis, conceptualization.

3. S.A. Ahmed — Investigation; writing, review; validation; and editing.

Corresponding author

Correspondence to Harishnaika N.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N, H., N, S. & Ahmed, S. . Detection of spatiotemporal patterns of rainfall trends, using non-parametric statistical techniques, in Karnataka state, India. Environ Monit Assess 195, 909 (2023). https://doi.org/10.1007/s10661-023-11466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11466-5

Keywords

Navigation