Skip to main content

Advertisement

Log in

Environmental and human facets of the waterweed proliferation in a Vast Tropical Ramsar Wetland-Vembanad Lake System

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Vembanad Lake and its associated low-lying areas and network of canals (hereafter VBL) form the major part of India’s second-largest Ramsar wetland (1512 km2) located in Kerala State along India’s southwest coast. The extensive VBL has a large fishery, inland waterways, and popular tourist attractions that support the livelihoods of thousands of people. Over the last several decades, the proliferation of water weeds in the VBL has alarmingly increased, causing many adverse ecological and socioeconomic effects. This study based on a review and synthesis of long-term data introduced the environmental and human dimensions of water weed proliferation in the VBL. Eichhornia (= Pontederia) crassipes, Monochoria vaginalis, Salvinia molesta, Limnocharis flava, Pistia stratiotes, and Hydrilla verticillata are the most troublesome water weeds in the VBL, with the first three being the most widespread. They were mostly imported to India long ago before becoming a part of the VBL. These weeds harmed water quality, waterways, agriculture, fisheries, disease vector management, as well as the vertical and horizontal shrinkage of the VBL through increased siltation and faster ecological succession. The inherently fragile VBL was harmed by extensive and long-term reclamation, the construction of saltwater barrages, and many landfill roads that crisscross water bodies serving as coastal dams, creating water stagnation by blocking natural flushing/ventilation by periodic tides from the adjacent southeastern Arabian Sea. These ecological imbalances were exacerbated by excessive fertiliser use in agricultural areas, as well as the addition of nutrient-rich domestic and municipal sewage, which provided an adequate supply of nutrients and a favourable habitat for the expansion of water weeds. Furthermore, because of recurrent floods and a changing ecology in the VBL, the water weed proliferation has become a more significant problem, with the potential to disrupt their current distribution pattern and spread in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data sets used and/or analysed during the current study are available from the corresponding author on reasonable request through the Director, CSIR-National Institute of Oceanography, India.

References

  • Abbasi, S. A., & Nipaney, P. C. (1986). Infestation by aquatic weeds of the fern genus Salvinia: It’s status and control. Environmental Conservation, 13(3), 235–241.

    Article  Google Scholar 

  • Abhilash, P. C., Singh, N., Sylas, V. P., Kumar, B. A., Mathew, J. C., Satheesh, R., & Thomas, A. P. (2008). Eco-distribution mapping of invasive weed Limnocharis flava (L.) Buchenau using geographical information system: Implications for containment and integrated weed management for ecosystem conservation. Taiwania, 53(1), 30–41.

    Google Scholar 

  • Akinbile, C. O., & Yusoff, M. S. (2012). Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. International Journal of Phytoremediation, 14(3), 201–211.

    Article  CAS  Google Scholar 

  • Al-Baldawi, I. A., Abdullah, S. R. S., Almansoory, A. F., Ismail, N. I., Hasan, H. A., & Anuar, N. (2020). Role of Salvinia molesta in biodecolorization of methyl orange dye from water. Scientific Reports, 10(1), 1–9.

    Article  Google Scholar 

  • Aloo, P., Ojwang, W., Omondi, R., Njiru, J. M., & Oyugi, D. (2013). A review of the impacts of invasive aquatic weeds on the biodiversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodiversity Journal, 4(4), 471–482.

    Google Scholar 

  • Anderson, L. W. J (2011). Freshwater plants and seaweeds. Encyclopedia of biological invasions, In Daniel Simberloff and Marcel Rejmanek (Eds.), Berkeley: University of California Press, pp. 248–258. https://doi.org/10.1525/9780520948433-062

  • Araki, H., Inoue, M., & Katoh, T. (2003). Total synthesis and absolute configuration of otteliones A and B, novel and potent antitumor agents from a freshwater plant. Organic Letters, 5(21), 3903–3906.

    Article  CAS  Google Scholar 

  • Arana-Cuenca, A., Tovar-Jiménez, X., Favela-Torres, E., Perraud-Gaime, I., González-Becerra, A. E., Martínez, A., Moss-Acosta, C. L., Mercado-Flores, Y., & Téllez-Jurado, A. (2019). Use of water hyacinth as a substrate for the production of filamentous fungal hydrolytic enzymes in solid-state fermentation. 3 Biotech, 9, 1–9.

    Article  Google Scholar 

  • Aravindakshan, P. N., Balasubramanian, T., Devi, C. B. L., Nair, K. K. C., Gopalakrishnan, T. C., Jayalakshmy, K. V., & Kutty, M. K. (1992). Benthos and substratum characteristics of prawn culture fields in and around the Cochin backwater. Journal of Marine Biological Association of India, 34, 203–217.

    Google Scholar 

  • Arunachalam, M., Divakaran, O., & Nair, N. B. (1980). Studies on the ecology of Salvinia molesta Mitchell: B. Faunal associates of lentic and lotic habitats. Proceedings: Plant Sciences, 89, 505–518.

  • Arunpandi, N., Jyothibabu, R., Jagadeesan, L., Parthasarathi, S., Anjusha, A., & Albin, K. J. (2021a). Impact of human-altered hydrographical setting on the Copepod community structure in an extensive tropical estuary along the southwest coast of India. Oceanologia, 63(1), 115–132.

    Article  Google Scholar 

  • Arunpandi, N., Jyothibabu, R., Jagadeesan, L., Parthasarathi, S., Savitha, M. K. M., Albin, K. J., & Pandiyarajan, R. S. (2021b). Implications of an extensive saltwater barrage on the distribution of black clam in a tropical estuarine system, Southwest coast of India. Oceanologia., 63(3), 343–355.

    Article  Google Scholar 

  • Arunpandi, N., Jyothibabu, R., Savitha, M. K. M., Parthasarathi, S., Rashid, C. P., Josna, M. P., Santhikrishnan, S., Sarath, S., & Balachandran, K. K. (2021c). Trace metals concentration in water hyacinth implicates the saltwater barrage altered hydrography of Kochi backwaters, southwest Coast of India. Marine Pollution Bulletin, 168, 112447.

    Article  CAS  Google Scholar 

  • Arunpandi, N., Jyothibabu, R., Dhanya, P., Jagadeesan, L., Rashid, C. P., & Sarath, S. (2022). Alarming waterweed proliferation in the Vembanad Lake System might significantly increase water loss through transpiration. Environmental Monitoring and Assessment, 194(4), 303.

    Article  CAS  Google Scholar 

  • Athira, G. R., Menon, M. V., Sindhu, P. V., & Prameela, P. (2019). Seed germination and emergence ecology of Monochoria vaginalis (Bur. f.) Kunth. Journal of Tropical Agriculture, 57(2), 186–190.

    Google Scholar 

  • Bajwa, A. A., Chauhan, B. S., Farooq, M., Shabbir, A., & Adkins, S. W. (2016). What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta, 244, 39–57.

    Article  CAS  Google Scholar 

  • Balachandran, K., Raj, C. L., Nair, M., Joseph, T., Sheeba, P., & Venugopal, P. (2005). Heavy metal accumulation in a flow-restricted, tropical estuary. Estuarine, Coastal and Shelf Science, 65(1–2), 361–370.

    Article  CAS  Google Scholar 

  • Balachandran, K. K. (2001). Chemical oceanographic studies of the coastal waters of Cochin. (Doctoral Dissertation), Kochi, India: Cochin University of Science and Technology.

  • Balchand, A. N. (1983). Kuttanad: A case study on environmental consequences of water resources mismanagement. Water International, 8(1), 35–41.

    Article  Google Scholar 

  • Blackman, G. E. (1961). Responses to environmental factors by plants in the vegetative phase. In M. X. Zarrow (Ed), Growth in Living Systems (pp 525–556). New York: Basic Books Inc.

  • Bownes, A., Hill, M. P., & Byrne, M. J. (2010). Evaluating the impact of herbivory by a grasshopper, Cornops aquaticum (Orthoptera: Acrididae), on the competitive performance and biomass accumulation of water hyacinth, Eichhornia crassipes (Pontederiaceae). Biological Control, 53(3), 297–303.

    Article  Google Scholar 

  • Bronzato, G. R. F., Ziegler, S. M., Silva, R. D. C. D., Cesarino, I., & Leão, A. L. (2019). Water hyacinth second-generation ethanol production: A mitigation alternative for an environmental problem. Journal of Natural Fibers, 16(8), 1201–1208.

    Article  CAS  Google Scholar 

  • Brown, L., & Virginia, M. (2013). Examining the relationship between infectious diseases and flooding in Europe: A systematic literature review and summary of possible public health interventions. Disaster Health, 1(2), 117–127.

    Article  Google Scholar 

  • Bryant, C. B. (1970). Aquatic weed harvesting: Effects and costs. Hyacinth Control J, 8, 37–39.

    Google Scholar 

  • Burton, G. J. (1959). Studies on the bionomics of mosquito vectors which transmit filariasis in India. I. Attachment of Mansonia annulifera and Mansonia uniformis larvae to host plants occurring in Pistia tanks in Kerala, South India. Indian Journal of Malariology, 13(2–3), 75–115.

    Google Scholar 

  • Canazart, D. A., & Nunes, A. R. (2017). da, C.; Sanches, M.; Conte, H. Phytoremediation agro-industrial wastewater of using macrophyte Eichhornia crassipes. Brazilian Journal of Surgery and Clinical Research, 17, 87–91.

    Google Scholar 

  • Chandra, G., Ghosh, A., Biswas, D., & Chatterjee, S. N. (2006). Host plant preference of Mansonia mosquitoes. Journal of Aquatic Plant Management, 44, 142–144.

    Google Scholar 

  • Chandran, R., & Parimelazhagan, T. (2012). Nutritional assessment of Monochoria vaginalis, a wild edible vegetable supplement to the human diet. International Journal of Vegetable Science, 18(2), 199–207.

    Article  Google Scholar 

  • Chandran, S. S., & Ramasamy, E. V. (2015). Utilization of Limnocharis flava, an invasive aquatic weed from Kuttanad wetland ecosystem, Kerala, India as a potential feedstock for livestock. Online Journal of Animal and Feed Research, 5(1), 22–27.

    CAS  Google Scholar 

  • Chandran, R., Thangaraj, P., Shanmugam, S., Thankarajan, S., & Karuppusamy, A. (2012). Antioxidant and anti-inflammatory potential of Monochoria vaginalis (Burm. f.) C. Presl.: A wild edible plant. Journal of Food biochemistry, 36(4), 421–431.

    Article  CAS  Google Scholar 

  • Christiansen, I., & Hunt, R. (2000). Research, extension and industry–Working together can achieve results. Marine Pollution Bulletin, 41(7–12), 310–318.

    Article  CAS  Google Scholar 

  • Clements, D. R., & Jones, V. L. (2021). Rapid evolution of invasive weeds under climate change: Present evidence and future research needs. Frontiers in Agronomy, 3, 664034.

    Article  Google Scholar 

  • Coetzee, J. A., Byrne, M. J., & Hill, M. P. (2007). Impact of nutrients and herbivory by Eccritotarsus catarinensis on the biological control of water hyacinth, Eichhornia Crassipes. Aquatic Botany, 86(2), 179–186.

    Article  CAS  Google Scholar 

  • Cohen, J., Mirotchnick, N., & Leung, B. (2007). Thousands introduced annually: The aquarium pathway for non-indigenous plants to the St Lawrence Seaway. Frontiers in Ecology and the Environment, 5(10), 528–532.

    Article  Google Scholar 

  • Colautti, R. I., Ricciardi, A., Grigorovich, I. A., & MacIsaac, H. J. (2004). Is invasion success explained by the enemy release hypothesis? Ecology Letters, 7(8), 721–733.

    Article  Google Scholar 

  • Connelly, R. (2019). Highlights of medical entomology 2018: The importance of sustainable surveillance of vectors and vector-borne pathogens. Journal of Medical Entomology, 56(5), 1183–1187.

    Article  Google Scholar 

  • Cook, C. D., & Gut, B. J. (1971). Salvinia in the state of Kerala, India. PANS Pest Articles & News Summaries, 17(4), 438–447.

    Article  Google Scholar 

  • Cooper, C., & Wanhill, S. (1997). Tourism development: Environmental and community issues. John Wiley and Sons Ltd., 1, 48–51.

    Google Scholar 

  • CWC, (2018). Kerala floods of August 2018. Central Water Commission, New Delhi. https://reliefweb.int/sites/reliefweb.int/files/resources/Rev-0.pdf. Accessed 15 Jul 2021.

  • Daehler, C. C. (2003). Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 34(1), 183–211.

    Article  Google Scholar 

  • Datta, A., Maharaj, S., Prabhu, G. N., Bhowmik, D., Marino, A., Akbari, V., Rupavatharam, S., Sujeetha, J. A. R., Anantrao, G. G., Poduvattil, V. K., & Kleczkowski, A. (2021). Monitoring the spread of water hyacinth (Pontederia crassipes): Challenges and future developments. Frontiers in Ecology and Evolution, 9, 631338.

    Article  Google Scholar 

  • DeLoach, C. J. (1976). Neochetina bruchi, a biological control agent of water hyacinth: Host specificity in Argentina. Annals of the Entomological Society of America, 69(4), 635–642.

    Article  Google Scholar 

  • Deshpande, M., Singh, V. K., Ganadhi, M. K., Roxy, M. K., Emmanuel, R., & Kumar, U. (2021). Changing status of tropical cyclones over the north Indian Ocean. Climate Dynamics, 57, 3545–3567.

    Article  Google Scholar 

  • Di Nino, F., Thiébaut, G., & Muller, S. (2007). Phenology and phenotypic variation of genetically uniform populations of Elodea nuttallii (Planch.) H. St John at sites of different trophic states. Fundamental and applied limnology, 168(4), 335.

    Article  Google Scholar 

  • Dinesh Kumar, P. K. (1997). Cochin backwaters: A sad story of manipulation. Ambio, 24, 249–250.

    Google Scholar 

  • Ding, G., Xiaomei L., Xuewen, L., Baofang, Z., Baofa, J., Dong, L., Weijia, X., Qiyong, L., Xuena, L., & Haifeng, H. (2019). A time-trend ecological study for identifying flood-sensitive infectious diseases in Guangxi, China from 2005 to 2012. Environmental Research 176, 108577.

  • Donaldson, S. G. (1997). Flood-borne noxious weeds: Impacts on riparian areas and wetlands. In 1997 Symposium Proceedings, California Exotic Pest Plant Council, Sacramento, CA, USA. https://www.cal-ipc.org/wp-content/uploads/2017/12/1997_symposium_proceedings1945.pdf. Accessed 16 Sept 2021

  • Van Donk, E., Gulati, R. D., Iedema, A., & Meulemans, J. T. (1993). Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. In: Hillbricht-Ilkowska, A., Pieczyńska, E. (eds) Nutrient Dynamics and Retention in Land/Water Ecotones of Lowland, Temperate Lakes and Rivers. Developments in Hydrobiology, vol 82. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1602-2_3

  • Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14(4), 135–139.

    Article  CAS  Google Scholar 

  • Elton, C. S. (1958). The ecology of invasions by animals and plants (pp. 196). New York: John Wiley and Sons, Inc. https://link.altmetric.com/details/36084073. Accessed 20 Jul 2021.

  • Fleming, J. P., & Dibble, E. D. (2015). Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia, 746, 23–37.

    Article  Google Scholar 

  • Forno, I. W., & Bourne, A. S. (1985). Feeding by adult Cyrtobagous salviniae on Salvinia molesta under different regimes of temperature and nitrogen content and the effects on plant growth. Entomophaga, 30, 279–286.

    Article  Google Scholar 

  • Forrest Meekins, J., & McCarthy, B. C. (2001). Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecological Applications, 11(5), 1336–1348.

    Article  Google Scholar 

  • Fox, L. J., Struik, P. C., Appleton, B. L., & Rule, J. H. (2008). Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms). Water, Air, and Soil Pollution, 194, 199–207.

    Article  CAS  Google Scholar 

  • Friedman, J. M., Osterkamp, W. R., & Lewis, W. M., Jr. (1996). Channel narrowing and vegetation development following a Great Plains flood. Ecology, 77(7), 2167–2181.

    Article  Google Scholar 

  • Gao, L., Zhang, Y., Ding, G., Liu, Q., & Jiang, B. (2016). Identifying flood-related infectious diseases in Anhui Province, China: A spatial and temporal analysis. The American Journal of Tropical Medicine and Hygiene, 94(4), 741.

    Article  Google Scholar 

  • Ghani, A. (2003). Medicinal plants of Bangladesh (2nd ed., pp. 1–16). The Asiatic Society of Bangladesh. Dhaka.

    Google Scholar 

  • Ghosh, D. (2010). Water hyacinth defriending the noxious weed (pp.46–48). Science Reporter. https://nopr.niscpr.res.in/bitstream/123456789/10702/1/SR%2047(12)%2046-48.pdf. Accessed 27 Jul 2021.

  • Gopakumar, R., & Takara, K. (2009). Analysis of bathymetry and spatial changes of Vembanad Lake and terrain characteristics of Vembanad Wetlands using GIS. IAHS Publication, 331, 402.

    Google Scholar 

  • Gopalan, U. K., Vengayil, D. T., Udayavarma, V. P., & Krishnankutty, M. (1983). The shrinking backwaters of Kerala. Journal of the Marine Biological Association of India. Cochin, 25(1), 131–141.

    Google Scholar 

  • Gopalan, U. K., & Nair, S. R. S. (1975). Ecological studies on the floating weed Salvinia auriculatia in Cochin backwaters and adjacent areas. I. Associated fauna. Bulletin of the Department of Marine Science, University of Cochin 7, 367–375.

  • Gopika, G., Anoop Kumar, V., & Nagendra Prabhu, G. (2018). Extraction of natural dye from the flowers of Eichhornia crassipes. Indian Journal of Scientific Research, 20(I), 63–67.

    CAS  Google Scholar 

  • Gopinathan, C. P., Nair, P. V., & Nair, A. K. (1984). Quantitative ecology of phytoplankton in the Cochin backwater. Indian Journal of Fisheries, 31(3), 325–336.

    Google Scholar 

  • Gossett, D. R., & Norris, W. E. (1971). Relationship between nutrient availability and content of nitrogen and phosphorus in tissues of the aquatic macrophyte, Eichornia crassipes (Mart.) Solms. Hydrobiologia, 38, 15–28.

    Article  CAS  Google Scholar 

  • Govindaraj, G., Sridevi, R., Nandakumar, S. N., Vineet, R., Rajeev, P., Binu, M. K., Balamurugan, V., & Rahman, H. (2018). Economic impacts of avian influenza outbreaks in Kerala, India. Transboundary and Emerging Diseases, 65(2), e361–e372.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Erhardt, M., & Kremiling, K. (1983). Methods of seawater analysis. Weinheim/Deerfield Beach. Florida: Verlag Chemie, 419, 61–72.

    Google Scholar 

  • Greenfield, B. K., Siemering, G. S., Andrews, J. C., Rajan, M., Andrews, S. P., & Spencer, D. F. (2007). Mechanical shredding of water hyacinth (Eichhornia crassipes): Effects on water quality in the Sacramento-San Joaquin River Delta, California. Estuaries and Coasts, 30, 627–640.

    Article  CAS  Google Scholar 

  • Haldar, R., Khosa, R., & Gosain, A. K. (2019). Impact of anthropogenic interventions on the Vembanad lake system. In Water Resources and Environmental Engineering I: Surface and Groundwater, pp. 9–29, Springer Singapore. https://doi.org/10.1007/978-981-13-2044-6_2

  • Haridas, P., Madhupratap, M., & Rao, T. S. S. (1973). Salinity, temperature, oxygen and zooplankton biomass of the backwaters from Cochin to Alleppey. Indian Journal of Marine Sciences, 2, 94–102.

    Google Scholar 

  • Harley, K. L. S., Kassulke, R. C., Sands, D. P. A., & Day, M. D. (1990). Biological control of water lettuce, Pistia stratiotes (Araceae) by Neohydronomus affinis (Coleoptera: Curculionidae). Entomophaga, 35, 363–374.

    Article  Google Scholar 

  • Harley, K. L. S., & Mitchell, D. S. (1981). Biology of Australian weeds. 6. Salvinia molesta. Journal of the Australian Institute of Agricultural Science, 47(2), 67–76. http://hdl.handle.net/102.100.100/292136?index=1. Accessed 10 Aug 2021.

  • Haynes, R. R., & Les D. H., (2005). Alismatales (water plantains). Nature Encyclopedia of Life Sciences. In eLS; Wiley: Hoboken, NJ, USA, 2005. https://doi.org/10.1038/npg.els.0003702

  • Hellmann, J. J., Byers, J. E., Bierwagen, B. G., & Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22(3), 534–543.

    Article  Google Scholar 

  • Holm, L. G., Weldon, L. W., & Blackburn, R. D. (1969). Aquatic weeds: The rampant quality of aquatic weeds has become one of the symptoms of our failure to manage our resources. Science, 166(3906), 699–709.

    Article  CAS  Google Scholar 

  • Ilo, O. P., Simatele, M. D., Nkomo, S. P. L., Mkhize, N. M., & Prabhu, N. G. (2020). The benefits of water hyacinth (Eichhornia crassipes) for Southern Africa: A review. Sustainability, 12(21), 9222.

    Article  CAS  Google Scholar 

  • Imchen, T., Sawant, S. S., & Ezaz, W. (2018). Post-decomposition effect of water hyacinth on a marine phytoplankton-A laboratory study. Indian Journal of Geo-Marine Sciences, 47(5), 1018–1022.

    Google Scholar 

  • Imchen, Temjensangba, S. S. Sawant & Wasim Ezaz. (2017). Exposure of Eichhornia crassipes (Mart.) Solms to salt water and its implications. Current Science, 113, 439–443.

  • Indira Devi, P. (2007). Pesticide use in the rice bowl of Kerala: Health costs and policy options. SANDEE working paper/South Asian Network for Development and Environmental Economics; id:1147, eSocialSciences, https://ideas.repec.org/p/ess/wpaper/id1147.html. Accessed 21 Aug 2021.

  • Indulekha, V. P., & George, T. C. (2018). Utilization of water hyacinth as mulch in turmeric. Journal of Tropical Agriculture, 56(1), 27–33.

    CAS  Google Scholar 

  • Indulekha, V. P., Thomas, C. G., & Anil, K. S. (2019). Utilization of water hyacinth as livestock feed by ensiling with additives. Indian Journal of Weed Science, 51(1), 67–71.

    Article  Google Scholar 

  • Ingole, N. W., & Bhole, A. G. (2003). Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). Journal of Water Supply: Research and Technology—AQUA, 52(2), 119–128.

  • Jadhav, A., Hill, M., & Byrne, M. (2008). Identification of a retardant dose of glyphosate with potential for integrated control of water hyacinth, Eichhornia crassipes (Mart.) Solms-Laubach. Biological Control, 47(2), 154–158.

    Article  CAS  Google Scholar 

  • Jain, S. C. (1975). Aquatic weeds and their management in India. Hyacinth Control J, 13, 6–8.

    Google Scholar 

  • Jakobs, G., Weber, E., & Edwards, P. J. (2004). Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Diversity and Distributions, 10(1), 11–19.

    Article  Google Scholar 

  • Jayan, P. R., & Sathyanathan, N. (2012). Aquatic weed classification, environmental effects and the management technologies for its effective control in Kerala, India. International Journal of Agricultural and Biological Engineering, 5(1), 76–91.

    Google Scholar 

  • Jayanth, K. P., & Visalakshy, P. G. (1989). Establishment of the exotic mite Orthogalumna terebrantis Wallwork on water hyacinth in Bangalore, India. Journal of Biological Control, 3(1), 75–76.

    Google Scholar 

  • Jayaweera, M. W., Dilhani, J. A., Kularatne, R. K., & Wijeyekoon, S. L. (2007). Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations. Journal of Environmental Science and Health, Part A, 42(7), 925–932.

    Article  CAS  Google Scholar 

  • Jobin, S. R., & Prakash, J. W. (2020). Outbreak of Leptospirosis in Kerala, India after floods: A survey. Plant Archives, 20(1), 2560–2562.

    Google Scholar 

  • John, C. M., Sylas, V. P., Paul, J., & Unni, K. S. (2009). Floating islands in a tropical wetland of peninsular India. Wetlands Ecology and Management, 17, 641–653.

    Article  Google Scholar 

  • John, S., Muraleedharan, K. R., Revichandran, C., Azeez, S. A., Seena, G., & Cazenave, P. W. (2020). What controls the flushing efficiency and particle transport pathways in a tropical estuary? Cochin Estuary. Southwest Coast of India. Water, 12(3), 908.

    Google Scholar 

  • Jose, J., & Aithal, P. S. (2020). A study on significance of backwater tourism and safe houseboat operation in Kerala. International Journal of Management, Technology, and Social Sciences (IJMTS), 5(2), 133–140.

  • Joseph, K. J., & Pillai, V. K. (1975). Seasonal and spatial distribution of phytoplankters in Cochin backwater. Bulletin of the Department of Marine Sciences, Cochin University, 7(1), 171–180.

  • Joy, P. J. (1978). Ecology and control of Salvinia (African Payal) the molesting weed of Kerala. Technical Bulletin, 2, 40.

    Google Scholar 

  • Joy, C. M., Balakrishnan, K. P., & Joseph, A. (1990). Effect of industrial discharges on the ecology of phytoplankton production in the river Periyar (India). Water Research, 24(6), 787–796.

    Article  CAS  Google Scholar 

  • Julias, R. T., Rathi, J. J., & Pillai, P. M. (2012). Phytoaccumulation of chromium and copper by Pistia stratiotes (L.) and Salvinia natans (L.) All. Journal of Natural Product and Plant Resources, 2(6), 725–730.

    Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Jayalakshmi, K. V., Balachandran, K. K., Shiyas, C. A., Martin, G. D., & Nair, K. K. C. (2006). Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters–India). Estuarine, Coastal and Shelf Science, 69(3–4), 505–518.

    Article  Google Scholar 

  • Jyothibabu, R., Madhu, N. V., Martin, G. D., Aneesh, C., Sooria, P. M., & Vineetha, G. (2015). Waning of the plankton food web in the upstream region of the Cochin backwaters during the southwest monsoon. Indian Journal of Geo-Marine Sciences, 44(8), 1145–1154.

    Google Scholar 

  • Kaladharan, P., Saji Kumar, K. K., & Venkatesan, V. (2017). Occurrence of marine shells and fossilized fish vertebra from two inland sites in Vaikom, Kerala. Marine Fisheries Information Service; Technical and Extension Series, 234, 21–23.

  • Kalaiyarasu, S., Mishra, N., Khetan, R. K., & Singh, V. P. (2016). Serological evidence of widespread West Nile virus and Japanese encephalitis virus infection in native domestic ducks (Anas platyrhynchos var domesticus) in Kuttanad region, Kerala, India. Comparative Immunology, Microbiology and Infectious Diseases, 48, 61–68.

    Article  Google Scholar 

  • Kannan, K. P. (1979). Ecological and socio-economic consequences of water-control projects in the Kuttanad region of Kerala. Proceedings of the Indian Academy of Sciences Section c: Engineering Sciences, 2, 417–433.

    Article  Google Scholar 

  • Kannan, K. P. (1999). Rural labour relations and development dilemmas in Kerala: Reflections on the dilemmas of a socially transforming labour force in a slowly growing economy. The Journal of Peasant Studies, 26(2–3), 140–181.

    Article  Google Scholar 

  • Karlaganis, C., & Narayanan, N. C. (2014). Governance challenges in linking environmental sustainability to Tourism: Where is the Houseboat Industry in Kerala, India Headed? NCCR Trade Regulation Swiss National Center of Competence in Research, 1, 1–29.

    Google Scholar 

  • Karthigeyan, K., Sumathi, R., Jayanthi, J., Diwakar, P. G., & Lakra, G. S. (2004). Limnocharis flava (L.) Buchenau (Alismataceae) – A little known and troublesome weed in Andaman Islands. Current Science, 87, 25.

    Google Scholar 

  • Khanna, S., Santos, M. J., Hestir, E. L., & Ustin, S. L. (2012). Plant community dynamics relative to the changing distribution of a highly invasive species, Eichhornia crassipes: A remote sensing perspective. Biological Invasions, 14, 717–733.

    Article  Google Scholar 

  • Kivaisi, A. K., & Mtila, M. (1997). Production of biogas from water hyacinth (Eichhornia crassipes)(Mart)(Solms) in a two-stage bioreactor. World Journal of Microbiology and Biotechnology, 14, 125–131.

    Article  Google Scholar 

  • Kolathayar, S., Amala Krishnan, U. S., & Sitharam, T. G. (2021). Appraisal of Thanneermukkom bund as a coastal reservoir in Kuttanad, Kerala. Journal of Applied Water Engineering and Research, 9(4), 324–335.

    Article  Google Scholar 

  • Kulshreshtha, M., & Gopal, B. (1983). Allelopathic influence of Hydrilla verticillata (LF) Royle on the distribution of Ceratophyllum species. Aquatic Botany, 16(2), 207–209.

    Article  Google Scholar 

  • Kumar, S. (2011). Aquatic weeds problems and management in India. Indian Journal of Weed Science, 43(3&4), 118–138.

    Google Scholar 

  • Kumar, S. (2015). History, progress and prospects of classical biological control in India. Indian Journal of Weed Science, 47(3), 306–320.

    Article  Google Scholar 

  • Lalitha, P., Sripathi, S. K., & Jayanthi, P. (2012). Secondary metabolites of Eichhornia crassipes (waterhyacinth): A review (1949 to 2011). Natural product communications, 7 (9), 1934578X1200700939.

  • Lancar, L., & Krake, K. (2002). Aquatic weeds and their management. International Commission on Irrigation and Drainage, 1, 22–57.

    Google Scholar 

  • Laxmilatha, P., & Appukuttan, K. K. (2002). A review of the black clam (Villorita cyprinoides) fishery of the Vembanad Lake. Indian Journal of Fisheries, 49(1), 85–92.

    Google Scholar 

  • Li, W. (2014). Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquatic Botany, 118, 62–70.

    Article  Google Scholar 

  • Li, Z. Z., Gichira, A. W., Muchuku, J. K., Li, W., Wang, G. X., & Chen, J. M. (2021). Plastid phylogenomics and biogeography of the genus Monochoria (Pontederiaceae). Journal of Systematics and Evolution, 59(5), 1027–1039.

    Article  Google Scholar 

  • Liu, X., Zu, X., Liu, Y., Sun, L., Yi, G., Lin, W., & Wu, J. (2018). Conversion of wastewater hyacinth into high-value chemicals by iron (III) chloride under mild conditions. BioResources, 13(2), 2293–2303.

    Article  CAS  Google Scholar 

  • Lounibos, L. P., & Escher, R. L. (1985). Mosquitoes associated with water lettuce (Pistia stratiotes) in southeastern Florida. Florida Entomologist, 61, 169–178.

  • Madhu, N. V., Balachandran, K. K., Martin, G. D., Jyothibabu, R., Thottathil, S. D., Nair, M., & Kusum, K. K. (2010). Short-term variability of water quality and its implications on phytoplankton production in a tropical estuary (Cochin backwaters—India). Environmental Monitoring and Assessment, 170(1–4), 287–300.

    Article  CAS  Google Scholar 

  • Madhupratap, M. (1987). Status and strategy of zooplankton of tropical Indian estuaries: A review. Bulletin of Plankton Society of Japan, 34(1), 65–81.

    Google Scholar 

  • Madsen, J. D., Bloomfield, J. A., Eichler, L. W., Boylen, C. W., & Sutherland, J. W. (1991). The decline of native vegetation under dense Eurasian watermilfoil canopies. Journal of Aquatic Plant Management, 29, 94–99.

    Google Scholar 

  • Mahmood, S., Khan, N., Iqbal, K. J., Ashraf, M., & Khalique, A. (2018). Evaluation of water hyacinth (Eichhornia crassipes) supplemented diets on the growth, digestibility and histology of grass carp (Ctenopharyngodon idella) fingerlings. Journal of Applied Animal Research, 46(1), 24–28.

    Article  CAS  Google Scholar 

  • Mallik, T. K., & Suchindan, G. K. (1984). Some sedimentological aspects of Vembanad Lake, Kerala, west coast of India. Indian Journal of Marine Sciences, 13(4), 159–163.

    CAS  Google Scholar 

  • Mangas-Ramírez, E., & Elías-Gutiérrez, M. (2004). Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. Aquatic Ecosystem Health & Management, 7(1), 161–168.

    Article  Google Scholar 

  • Martin, G. D., Vijay, J. G., Laluraj, C. M., Madhu, N. V., Joseph, T., Nair, M., Gupta, G. V. M., & Balachandran, K. K. (2008). Freshwater influence on nutrient stoichiometry in a tropical estuary, southwest coast of India. Applied Ecology and Environmental Research, 6(1), 57–64.

    Article  Google Scholar 

  • Martin, G. D., Muraleedharan, K. R., Vijay, J. G., Rejomon, G., Madhu, N. V., Shivaprasad, A., Haridevi, C. K., Nair, M., Balachandran, K. K., Revichandran, C., & Chandramohanakumar, N. (2010). Formation of anoxia and denitrification in the bottom waters of a tropical estuary, southwest coast of India. Biogeosciences Discussions, 7(2), 1751–1782.

    Google Scholar 

  • Martin, G. D., Nisha, P. A., Balachandran, K. K., Madhu, N. V., Nair, M., Shaiju, P., Joseph, T., Srinivas, K., & Gupta, G. V. M. (2011). Eutrophication induced changes in benthic community structure of a flow-restricted tropical estuary (Cochin backwaters), India. Environmental Monitoring and Assessment, 176, 427–438.

    Article  CAS  Google Scholar 

  • Martin, G. D., George, R., Shaiju, P., Muraleedharan, K. R., Nair, S. M., & Chandramohanakumar, N. (2012). Toxic metals enrichment in the surficial sediments of a eutrophic tropical estuary (Cochin Backwaters, Southwest Coast of India). The Scientific World Journal, 2012, https://doi.org/10.1100/2012/972839

  • Masifwa, W. F., Twongo, T., & Denny, P. (2001). The impact of water hyacinth, Eichhornia crassipes (Mart) Solms on the abundance and diversity of aquatic macroinvertebrates along the shores of northern Lake Victoria, Uganda. Hydrobiologia, 452, 79–88.

    Article  Google Scholar 

  • Mathew, A. K., Bhui, I., Banerjee, S. N., Goswami, R., Chakraborty, A. K., Shome, A., Balachandran, S., & Chaudhury, S. (2015). Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technologies and Environmental Policy, 17, 1681–1688.

    Article  CAS  Google Scholar 

  • McCutcheon, S. C., & Schnoor, J. L. (2004). Phytoremediation: Transformation and control of contaminants. Environmental Science and Pollution Research, 11(1), 40–40.

    Article  Google Scholar 

  • Mehra, A., Farago, M. E., Banerjee, D. K., & Cordes, K. B. (1999). The water hyacinth: An environmental friend or pest? A Review. Resource and Environmental Biotechnology, 2(4), 255–281.

    CAS  Google Scholar 

  • Menon, N. N., Balchand, A. N., & Menon, N. R. (2000). Hydrobiology of the Cochin backwater system–A review. Hydrobiologia, 430, 149–183.

    Article  CAS  Google Scholar 

  • Michel, A., Arias, R. S., Scheffler, B. E., Duke, S. O., Netherland, M., & Dayan, F. E. (2004). Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant Hydrilla (Hydrilla verticillata). Molecular Ecology, 13(10), 3229–3237.

    Article  CAS  Google Scholar 

  • Minakawa, N., Sonye, G., Dida, G. O., Futami, K., & Kaneko, S. (2008). Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus. Malaria Journal, 7(1), 1–6.

    Article  Google Scholar 

  • Mishra, V., & Shah, H. L. (2018). Hydroclimatological perspective of the Kerala flood of 2018. Journal of the Geological Society of India, 92, 645–650.

    Article  Google Scholar 

  • Moodley, P. (2021). Sustainable biofuels: Opportunities and challenges. In Ramesh Ray, C. (Ed), Applied Biotechnology Reviews (pp. 1–20). Cambridge, MA, USA: Academic Press.

  • Mormul, R. P., Ahlgren, J., Ekvall, M. K., Hansson, L. A., & Brönmark, C. (2012). Water brownification may increase the invasibility of a submerged non-native macrophyte. Biological Invasions, 14, 2091–2099.

    Article  Google Scholar 

  • MSSRF. (2007). Measures to mitigate agrarian distress in Alappuzha and Kuttanad Wetland Ecosystem (p. 219). M.S Swaminathan Research Foundation Study Report. https://www.mssrf.org/content/measures-mitigate-agrarian-distress-alappuzha-and-kuttanad-wetland-ecosystem. Accessed on 25 Jul 2022.

  • Nagendra Prabhu, G. (2016). Economic impact of aquatic weeds - A third world approach. Journal of Aquatic Biology and Fisheries, 4, 8–14.

    Google Scholar 

  • Nagendra Prabhu, G., & Suresh C. K. R., (2012). Bacterial cellulase production under solid state fermentation (1st ed.). LAP LAMBERT Academic Publishing. https://www.perlego.com/book/3363640/bacterial-cellulase-production-under-solid-state-fermentation-eichhornia-crassipes-water-hyacinth-as-substrate-pdf. Accessed 8 Sept 2021.

  • Nahar, K. (2012). Biogas production from water hyacinth (Eichhornia Crassipes). Asian Journal of Applied Science and Engineering, 1(1), 9–13.

    Google Scholar 

  • Naidu, V. S. G. R., Deriya, A., Naik, S., Paroha, S., & Khankhane, P. J. (2014). Additive properties of mint weed in polyfilms water use efficiency and phytoremediation potential of water hyacinth under elevated CO2. Indian Journal of Weed Science, 46(3), 274–277.

    Google Scholar 

  • Nair, S. M., Balchand, A. N., & Nambisan, P. N. K. (1990). Metal concentrations in recently deposited sediments of Cochin backwaters, India. Science of the Total Environment, 97, 507–524.

    Article  Google Scholar 

  • Narayana, A. C., Priju, C. P., & Rajagopalan, G. (2002). Late Quaternary peat deposits from Vembanad Lake (lagoon), Kerala. SW Coast of India. Current Science, 83(3), 318–321.

    Google Scholar 

  • National Research Council. (1995). Wetlands: Characteristics and boundaries. Washington, DC: The National Academies Press. https://doi.org/10.17226/4766

  • Newsome, A. E., & Noble, I. R. (1986). Ecological and physiological characters of invading species. In R. H. Groves & J. J. Burdon (Eds.), Biological invasions: An Australian perspective (pp. 1–20). Cambridge University Press.

    Google Scholar 

  • Nishan, M. A., & Sansamma, G. (2018a). Limnocharis flava (L.) Buchenau: An emerging wetland invader-A review. Agricultural Reviews, 39(3), 246–250.

    Google Scholar 

  • Nishan, M. A., & Sansamma, G. (2018b). Management of water cabbage [Limnocharis flava (L.) Buchenau] using new generation herbicides. Agricultural Science Digest-A Research Journal, 38(3), 228–230.

    Google Scholar 

  • Nivya, T. K., & Minimol, P. T. (2016). Comparison of photo electrofenton process (PEF) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate. Procedia Technology, 24, 224–231.

    Article  Google Scholar 

  • Odum, H. T. (1983). Systems Ecology: An introduction. New York: Wiley-Interscience. 

  • Okaka, F. O., & Odhiambo, B. (2018). Relationship between flooding and outbreak of infectious diseasesin Kenya: A review of the literature. Journal of Environmental and Public Health2018, https://doi.org/10.1155/2018/5452938

  • Owens, C. S., Smart, R. M., & Dick, G. O. (2008). Resistance of Vallisneria to invasion from Hydrilla fragments. Journal of Aquatic Plant Management, 46, 113–116.

    Google Scholar 

  • Padmakumar, K. G., Mayadevi, K., Tessy, A., Remya, P. R., Anitha, V., Haritha M., Praseetha, T., & Sreeja, M. S. (2019). Impact of flood and deluge on hydrobiology and biodiversity endowments of Kuttanad wetland ecosystem, Kerala (p. 60). International Research and Training Centre for Below Sea Level farming: Kuttanad. https://www.keralabiodiversity.org/images/2019/November/Flood_Report/Report_IRTCBSF.pdf. Accessed 27 Aug 2021.

  • Padmalal, D., Kumaran, K. P. N., Nair, K. M., Limaye, R. B., Mohan, S. V., Baijulal, B., & Anooja, S. (2014). Consequences of sea level and climate changes on the morphodynamics of a tropical coastal lagoon during Holocene: An evolutionary model. Quaternary International, 333, 156–172.

    Article  Google Scholar 

  • Pal, D. K., & Nimse, S. B. (2006b). Little known uses of common aquatic plant, Hydrilla verticillata (Linn. f.) Royle. Indian Journal of Natural Products and Resources, 5(2), 108–111, http://nopr.niscpr.res.in/handle/123456789/7948. Accessed 5 Jul 2021.

  • Pal, D. K., & Nimse, S. B. (2006a). Little known use of common aquatic plant, Hydrilla verticillata (Linn. f.) Royle. Indian Journal of Natural Products and Resources, 5(2), 108–111.

    Google Scholar 

  • Patel, S. (2012). Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: An overview. Reviews in Environmental Science and Bio/technology, 11(3), 249–259.

    Article  Google Scholar 

  • Penfound, W. T., & Earle, T. T. (1948). The biology of the water hyacinth. Ecological Monographs, 1948(18), 447–472.

    Article  Google Scholar 

  • Perkins, B. D. (1974). Arthropods that stress waterhyacinth. PANS Pest Articles & News Summaries, 20(3), 304–314.

    Article  Google Scholar 

  • Poomsawat, W., Tsalidis, G., Tsekos, C., & de Jong, W. (2019). Experimental studies of furfural production from water hyacinth (Eichhornia Crassipes). Energy Science & Engineering, 7(5), 2155–2164.

    Article  CAS  Google Scholar 

  • Prabha, M. R., & Nivethitha, G. K. (2019). Evaluation of in-vitro antioxidant and anticancer activity of Monochoria vaginalis leaves on HEP2 and HeLa cell lines. International Journal of Pharmaceutical Sciences and Research, 10(7), 3340–3348.

    CAS  Google Scholar 

  • Prakash Pillai, R. (2015). Labour movements in agriculture sector: A case study of Kuttanad Region (pp. 1–124). https://kile.kerala.gov.in/wp-content/uploads/2018/09/Prakashpillai.pdf. Accessed on 10 October 2021.

  • Priju, C. P., & Narayana A. C. (2007). Heavy and trace metals in Vembanad Lake sediments. International Journal of Environmental Research, 1(4), 280–289

  • Priya, E. S., & Selvan, P. S. (2017). Water hyacinth (Eichhornia crassipes) - An efficient and economic adsorbent for textile effluent treatment–A review. Arabian Journal of Chemistry, 10, S3548–S3558.

    Article  Google Scholar 

  • Priyanka, R. (2021). A study on natural dyes extracted from Eichhornia crassipes and Thespesia populnea flowers on the functional and physical properties. Journal of Natural Fibers, 19(14), 9167–9176. https://doi.org/10.1080/15440478.2021.1982810

    Article  CAS  Google Scholar 

  • Pysek, P., &. Prach. K. (1994). How important are rivers for supporting plant invasions. In L. C. de Waal, L. E. Child, P. M. Wade, and J. H. Brock (Eds.), Ecology and management of invasive riverside plants (pp.19–26). New York: Wiley.

  • Qasim, S. Z. (2003). Indian estuaries (p. 259). Allied publication Pvt.

    Google Scholar 

  • Qasim, S. Z., Wellershaus, S., Bhattathiri, P. M. A., & Abidi, S. A. H. (1969). Organic production in a tropical estuary. Proceedings of the Indian Academy of Sciences, 69(2), 51–94.

    Article  CAS  Google Scholar 

  • Qasim, S. Z., Joseph, J., & Balachandran, K. (1974). Contribution of microplankton and nannoplankton in the waters of a tropical estuary. Indian Journal of Marine Sciences, 3, 146–149.

    CAS  Google Scholar 

  • Rahman, A. K. M. L., Rahman, L., & Ahmed, N. (2019). Removal of toxic Congo red dye using water hyacinth petiole, an efficient and selective adsorbent. Journal of the Chemical Society of Pakistan, 41(5), 825–833.

    Article  CAS  Google Scholar 

  • Rajan, B., Varghese, V. M., & Pradeepkumar, A. P. (2011). Recreational boat carrying capacity of Vembanad Lake Ecosystem, Kerala, South India. Environmental Research, Engineering and Management, 56(2), 11–19.

    Article  Google Scholar 

  • Rajendran, R., Karmakar, S. R., Garg, V., Viswanathan, R., Zaman, K., Anusree, S. B., Regu, K., & Sharma, S. N. (2021). Post flood study on the incidence of leptospirosis in Alappuzha District of Kerala, India. Journal of Communicable Diseases, 53(3), 127–134.

    Article  Google Scholar 

  • Raju, B. J., & Manasi, S. (2019). Monsoon diseases in lower Kuttanad (Kerala): An environmental perspective. Working Papers 435, Institute for Social and Economic Change, Bangalore, India. https://ideas.repec.org/p/sch/wpaper/435.html. Accessed 25 Sept 2021.

  • Ramachandran, S. (1961). Limnocharis HBK: A new record to India. Journal of Bombay Natural History Society, 64, 389–390.

    Google Scholar 

  • Ramasamy, S. M., Gunasekaran, S., Rajagopal, N., Saravanavel, J., & Kumanan, C. J. (2019). Flood 2018 and the status of reservoir-induced seismicity in Kerala, India. Natural Hazards, 99, 307–319.

    Article  Google Scholar 

  • Randall, R. P., (2007). The introduced flora of Australia and its weed status. Glen Osmond, S. Aust: CRC for Australian Weed Management, https://www.aabr.org.au/images/stories/resources/weeds/intro_flora_australia.pdf. Accessed 15 Sept 2021.

  • Reddy, K. R. (1984). Water hyacinth (Eichhornia crassipes) biomass production in Florida. Biomass, 6(1–2), 167–181.

    Article  Google Scholar 

  • Reddy, C. V. G., & Sankaranarayanan, V. N. (1972). Phosphate regenerative activity in the muds of a tropical estuary. Indian Journal of Marine Sciences, 1, 57–60.

    CAS  Google Scholar 

  • Remani, K. N., Venugopal, P., Devi, K. S., & Unnithan, R. V. (1980). Sediments of the Cochin Backwaters in relation to pollution. Indian Journal of Marine SciEnces, 9(2), 111–114.

    Google Scholar 

  • Remani, K. N., Jayakumar, P., & Jalaja, T. K. (2010). Environmental problems and management aspects of Vembanad kol wetlands in South West coast of India. Nature, Environment and Pollution Technology, 9(2), 247–254.

    Google Scholar 

  • Revichandran, C., Srinivas, K., Muraleedharan, K. R., Rafeeq, M., Amaravayal, S., Vijayakumar, K., & Jayalakshmy, K. V. (2012). Environmental set-up and tidal propagation in a tropical estuary with dual connection to the sea (SW Coast of India). Environmental Earth Sciences, 66, 1031–1042.

    Article  Google Scholar 

  • Rezania, S., Din, M. F. M., Kamaruddin, S. F., Taib, S. M., Singh, L., Yong, E. L., & Dahalan, F. A. (2016). Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773.

    Article  CAS  Google Scholar 

  • Richards, C. L., Bossdorf, O., Muth, N. Z., Gurevitch, J., & Pigliucci, M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 9(8), 981–993.

    Article  Google Scholar 

  • Rommens, W., Maes, J., Dekeza, N., Inghelbrecht, P., Nhiwatiwa, T., Holsters, E., Ollevier, F., Marshall, B., & Brendonck, L. (2003). The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water Quality. Archiv Für Hydrobiologie, 158(3), 373–388.

    Article  Google Scholar 

  • Room, P. M., Harley, K. L. S., Forno, I. W., & Sands, D. P. A. (1981). Successful biological control of the floating weed Salvinia. Nature, 294(5836), 78–80.

    Article  Google Scholar 

  • Room, P. M., & Thomas, P. A. (1985). Nitrogen and establishment of a beetle for biological control of the floating weed Salvinia in Papua New Guinea. Journal of Applied Ecology, 22,139–156.

  • Roopa, V., & Vijayan, N. (2017). Detection of land use, land cover changes in the wetlands of Kuttanad, Kerala. International Journal of Innovative Research in Science, Engineering and Technology, 6(6), 10487–10491.

    Google Scholar 

  • Rotherham, I. D. (1990). Factors facilitating invasion by Rhododendron ponticum. Biology and Control of Invasive Plants. In Biology and Control of Invasive Plants (pp.86–95). Richards, Moorhead & Laing Ltd. https://www.cabdirect.org/cabdirect/abstract/19912313498. Accessed 22 Aug 2021.

  • Sachs, J., & Pia, M. (2002). The economic and social burden of malaria. Nature, 415(6872), 680–685.

    Article  CAS  Google Scholar 

  • Sands, D. P. A., Schotz, M., & Bourne, A. S. (1983). The feeding characteristics and development of larvae of a salvinia weevil Cyrtobagous sp. Entomologia Experimentalis Et Applicata, 34(3), 291–296.

    Article  Google Scholar 

  • Saraladevi, K. (1986). Effect of industrial pollution on the benthic communities of the estuary. (Doctoral Dissertation), Cochin University of Science and Technology, Kochi, India.

  • Sarath, C., & Subrata, P. (2018). History of reclaimed kayals in Kuttanad wetland and associated social divide in Alappuzha district, Kerala. International Journal of Research and Analytical Reviews, 5(3), 573–581.

    Google Scholar 

  • Schultz, R., & Eric, D. (2012). Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: The role of invasive plant traits. Hydrobiologia, 684(1), 1–14.

    Article  Google Scholar 

  • Selvaraj, G. S. D., Thomas, V. J., & Khambadkar, L. R. (2003). Seasonal variation of phytoplankton and productivity in the surf zone and backwater at Cochin. Journal of the Marine Biological Association of India, 45(1), 9–19.

    Google Scholar 

  • Shanab, S. M., Shalaby, E. A., Lightfoot, D. A., & El-Shemy, H. A. (2010). Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE, 5(10), e13200.

    Article  Google Scholar 

  • Shankar, A., Jagajeedas, D., Radhakrishnan, M. P., Paul, M., Narendrakumar, L., Suryaletha, K., Akhila, V. S., Nair, S. B., & Thomas, S. (2021). Elucidation of health risks using metataxonomic and antibiotic resistance profiles of microbes in flood affected waterbodies, Kerala 2018. Journal of Flood Risk Management, 14(1), e12673.

    Article  Google Scholar 

  • Sheeba, P. (2000). Distribution of benthic infauna in the Cochin backwaters in the relation to environmental parameters. (Doctoral Dissertation), Cochin University of Science and Technology, Kochi, India.

  • Sinha, S., Saxena, R., & Singh, S. (2005). Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: Role of antioxidants and antioxidant enzymes. Chemosphere, 58(5), 595–604.

    Article  CAS  Google Scholar 

  • Sreejith, K. A. (2013). Human impact on Kuttanad wetland ecosystem-An overview. International Journal of Science, Environment and Technology, 2(4), 679–690.

    Google Scholar 

  • Sridevi, M., Kondala Rao, B., & Sathiraju, D. (2010). Sensitivity of bacteria isolated from Champavathi Estuary to some medicinal plants of Vizianagaram district, East coast of India. Drug Invention Today, 2(7), 366–368.

    Google Scholar 

  • Stone, C. M., Witt, A. B., Walsh, G. C., Foster, W. A., & Murphy, S. T. (2018). Would the control of invasive alien plants reduce malaria transmission? A Review. Parasites & Vectors, 11(1), 1–18.

    Google Scholar 

  • Sudheer, K. P., Bhallamudi, S. M., Narasimhan, B., Thomas, J., Bindhu, V. M., Vema, V., & Kurian, C. (2019). Role of dams on the floods of August 2018 in Periyar River Basin, Kerala. Current Science, 116(5), 780–794.

    Article  Google Scholar 

  • Sumithra, V., Joseph, K. J., & Balachandran, V. K. (1974). Preliminary study on nanoplankton productivity. Mahasagar - Bulletin of National Institute of Oceanography, 7(1&2), 125–129.

    Google Scholar 

  • Suresh, C. K., Snishamol, R. C., & Nagendra Prabhu, G. (2005). Cellulase production by native bacteria using water hyacinth as substrate under solid state fermentation. Malaysian Journal of Microbiology, 1(2), 25–29.

    Google Scholar 

  • Téllez, T. R., López, E. M. D. R., Granado, G. L., Pérez, E. A., López, R. M., & Guzmán, J. M. S. (2008). The water hyacinth, Eichhornia crassipes: An invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions, 3(1), 42–53.

    Article  Google Scholar 

  • Thomas, K. J. (1962). A survey on the vegetation of Veli (Trivandrum) with special reference to ecological factors. The Journal of Indian Botanical Society., 41, 104–131.

    Google Scholar 

  • Thomas, K. J. (1979). The extent of Salvinia infestation in Kerala (S. India): Its impact and suggested methods of control. Environmental Conservation, 6(1), 63–69.

    Article  Google Scholar 

  • Thomas, K. J. (1981). The role of aquatic weeds in changing the pattern of ecosystems in Kerala. Environmental Conservation, 8(1), 63–66.

    Article  Google Scholar 

  • Thomas, P. A., & Room, A. P. (1986). Taxonomy and control of Salvinia molesta. Nature, 320, 581–584.

    Article  Google Scholar 

  • Thomas, K. J. (1984). Studies on the ecology of aquatic weeds of Kerala: Observations on three ecotypes of Eichhornia crassipes Solms. Proceedings of the International Conference on Water Hyacinth: Hyderabad, India, February 7–11, 161–164.

  • Thomas, P. M. (2002). Problems and prospects of paddy cultivation in Kuttanad region. Kerala Research Programme on Local Level Development, Draft report. Centre for Development Studies, Thiruvananthapuram, 92. http://www.cds.ac.in/krpcds/report/thomascombi_doc.pdf. Accessed 12 Oct 2021.

  • Vale, M. A., Ferreira, A., Pires, J. C., & Gonçalves, A. L. (2020). CO2 capture using microalgae. In Advances in Carbon Capture, Woodhead Publishing, 381–405. https://doi.org/10.1016/B978-0-12-819657-1.00017-7

  • Van Donk, E., & van de Bund, W. J. (2002). Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: Allelopathy versus other mechanisms. Aquatic Botany, 72(3–4), 261–274.

    Article  Google Scholar 

  • Van Driesche, R. G., & Thomas, S. B. (1996). Biology of arthropod parasitoids and predators (pp. 309–336). Springer.

    Google Scholar 

  • Vandecasteele, B., Quataert, P., & Tack, F. M. (2005). The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Environmental Pollution, 135(2), 303–312.

    Article  CAS  Google Scholar 

  • Varshney, J. G., & Babu, M. B. B. P. (2008). Future scenario of weed management in India. Indian Journal of Weed Science, 40(1), 1–9.

    Google Scholar 

  • Varughese, A., & Purushothaman, C. (2021). Climate change and public health in India: The 2018 Kerala floods. World Medical & Health Policy, 13(1), 16–35.

    Article  Google Scholar 

  • Vijaykumar, P., Abhilash, S., Sreenath, A. V., Athira, U. N., Mohanakumar, K., Mapes, B. E., Chakrapani, B., Sahai, A. K., Niyas, T. N., & Sreejith, O. P. (2021). Kerala floods in consecutive years-Its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India. Weather and Climate Extremes, 100339.

  • Villamagna, A. M., & Murphy, B. R. (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshwater Biology, 55(2), 282–298.

    Article  Google Scholar 

  • Waterhouse, B. M. (2003). Know your enemy: Recent records of potentially serious weeds in northern Australia, Papua New Guinea and Papua (Indonesia). Telopea, 10(1), 477–485.

    Article  Google Scholar 

  • Weisner, S. E., Eriksson, P. G., Granéli, W., & Leonardson, L. (1994). Influence of macrophytes on nitrate. Ambio, 23(6), 363–366.

    Google Scholar 

  • Westlake, D. F. (1963). Comparisons of plant productivity. Biological Reviews, 38(3), 385–425.

    Article  Google Scholar 

  • WHO (2014). Global brief on vector-borne diseases. Geneva, Switzerland: World Health Organization. Contract no: WHO/DCO/WHD/2014.1. https://apps.who.int/iris/handle/10665/111008. Accessed 25 Jan 2019.

  • WISA. (2013). Vemabanad - Kol Wetlands - An integrated management planning framework for conservation and wise use. New Delhi, India: Wetlands International-South Asia. https://www.mangrovesforthefuture.org/assets/Repository/Documents/Wetlands-International-SGP-Final-report.pdf. Accessed 23 Jan 2020.

  • Yi, Y. L., Lei, Y., Yin, Y. B., Zhang, H. Y., & Wang, G. X. (2012). The antialgal activity of 40 medicinal plants against Microcystis aeruginosa. Journal of Applied Phycology, 24, 847–856.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wei, Y., Han, H., & Weng, C. (2018). Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresource Technology, 251, 358–363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities and support provided by the Director of the CSIR-National Institute of Oceanography (NIO). This research was initiated under the Ocean Finder program of CSIR-NIO and completed while working with the SWQM program funded by the National Centre for Coastal Research (MoES), Chennai. The lead author thankfully remembers the warm and enriching interactions with Prof. Nagendra Prabhu of S.D. College, Alappuzha, Kerala, during the initial stages of this work. This is a contribution from CSIR-NIO (7070) and NCCR (392).

Funding

This study was financially supported by the Ministry of Earth Sciences, New Delhi through the National Centre for Coastal Research, Chennai.

Author information

Authors and Affiliations

Authors

Contributions

Jyothibabu, R. and Balachandran, K.K.—conceptualisation, literature collection, and drafting; Sarath, S. and Santhikrishnan, S.—literature and data collection and drafting; Karnan, C., Arunpandi, N., Alok, K.T., Ramanamurty, M.V.—literature survey, scientific discussions, and drafting.

Corresponding author

Correspondence to Jyothibabu Retnamma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retnamma, J., Sarath, S., Balachandran, K.K. et al. Environmental and human facets of the waterweed proliferation in a Vast Tropical Ramsar Wetland-Vembanad Lake System. Environ Monit Assess 195, 900 (2023). https://doi.org/10.1007/s10661-023-11417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11417-0

Keywords

Navigation