Skip to main content
Log in

Spatiotemporal changes in largemouth bass mercury concentrations from Connecticut waterbodies, 1995–2021

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We evaluated spatiotemporal changes in the mean and variation in largemouth bass (Micropterus salmoides) mercury concentrations over three discrete time periods (1995, 2005–2006, and 2019–2021) across 56 Connecticut waterbodies. We detected largemouth bass raw mercury concentrations that exceeded the US Environmental Protection Agency (USEPA) Fish Tissue Residue Criterion (≥ 0.30 µg g−1 ww) in 75.1%, 63.3%, and 47.7% of all fish sampled during 1995, 2005–2006, and 2019–2021, respectively. Total length (TL)-adjusted largemouth bass mercury concentrations declined across all ecoregions in Connecticut between subsequent sampling periods but increased between 2005–2006 and 2019–2021 in the Northwest Hills/Uplands ecoregion. The coefficient of variation (CV) of largemouth bass TL-adjusted mercury concentrations increased through time, increasing from 25.78% during 1995 to 36.47% during 2019–2021. The probability of a largemouth bass having a raw mercury concentration > 0.30 µg g−1 ww increased with total length (TL), but the TL with a 50% probability varied across ecoregions and periods. The variation in largemouth bass mercury concentrations highlights the roles that changes to individual behaviors, food web structure, lake properties, and legacy mercury may play in shaping broad patterns and trends in mercury consumption risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data may be available upon reasonable request.

Code availability

Not applicable.

References

  • Anderson, W. L., & Smith, K. E. (1977). Dynamics of mercury at coal-fired power plants and adjacent cooling lakes. Environmental Science and Technology, 11, 75–80. https://doi.org/10.1021/es60124a008

    Article  CAS  Google Scholar 

  • Barbo, N., Stoiber, T., Naidenko, O. V., & Andrews, D. Q. (2022). Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds. Environmental Research, 220, 115165. https://doi.org/10.1016/j.envres.2022.115165

    Article  CAS  Google Scholar 

  • Bhavsar, S. P., Gewurtz, S. B., McGoldrick, D. J., Keir, M. J., & Backus, S. M. (2010). Changing in mercury levels in Great Lakes fish between 1970s and 2007. Environmental Science and Management, 44, 3273–3279. https://doi.org/10.1021/es903874x

    Article  CAS  Google Scholar 

  • Blukacz-Richards, E. A., Visha, A., Graham, M. L., McGoldrick, D. L., de Solla, S. R., Moore, D. J., & Arhonditsis, G. B. (2017). Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes. Chemosphere, 172, 476–487. https://doi.org/10.1016/j.chemosphere.2016.12.148

    Article  CAS  Google Scholar 

  • Butler, T., Likens, G., Cohen, M., & Vermeylen, F. (2007). Mercury in the environmental and patterns of mercury deposition from the NADP/MDN mercury deposition network. NOAA Institute of Ecosystem Studies, Final Report. Available at: https://www.arl.noaa.gov/documents/reports/MDN_report.pdf. Accessed 20 Dec 2022

  • Carpenter, S. R., Cole, J. J., Hodgson, J. R., Kitchell, J. F., Pace, M. L., Bade, D., Cottingham, K. L., Essington, T. E., Houser, J. N., & Schindler, D. E. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71(2), 163–186. https://doi.org/10.1890/0012-9615(2001)071[0163:TCNALP]2.0.CO;2

    Article  Google Scholar 

  • Chalmers, A. T., Argue, D. M., Gay, D. A., Brigham, M. E., Schmitt, C. J., & Lorenz, D. L. (2011). Mercury trends in fish from rivers and lakes in the United States, 1969–2005. Environmental Monitoring and Assessment, 175, 175–191. https://doi.org/10.1007/s10661-010-1504-6

    Article  CAS  Google Scholar 

  • Chen, R. W., Belzile, N., & Gunn, J. M. (2001). Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters? Limnology and Oceanography, 46, 1814–1818. https://doi.org/10.4319/lo.2001.46.7.1814

    Article  CAS  Google Scholar 

  • Creed, I. F., Berström, A., Trick, C. G., Grimm, N. B., Hessen, D. O., Karlsson, J., Kidd, K. A., Kritzberg, E., McKnight, D. M., Freeman, E. C., Senar, O. E., Andersson, A., Ask, J., Berggren, M., Cherif, M., Giesler, R., Hitchkiss, E. R., Kortelainen, P., Palta, M. M., … Weyhenmeyer, G. A. (2018). Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Global Change Biology, 24(8), 3692–3714. https://doi.org/10.1111/gcb.14129

    Article  Google Scholar 

  • [CT DEEP] Connecticut Department of Energy and Environmental Protection. (2018). Statewide lake and large river electrofishing survey. Bureau of Natural Resources, Inland Fisheries Division. Available at: https://portal.ct.gov/DEEP/Fishing/Fisheries-Management/Lake-and-Large-River-Electrofishing-Survey. Accessed 17 July 2022

  • Dowhan, J. J., & Craig, R. J. (1976). Rare and endangered species of Connecticut and their habitats. Department of Environmental Protections, Connecticut Geological and Natural History Survey, Report of Investigations 6. Hartford., CT.

  • Driscoll, C. T., Han, Y., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C., & Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57, 17. https://doi.org/10.1641/B570106

    Article  Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environmental Science and Technology, 47, 4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  • Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E., Anderson, N. L., & Moyle, P. B. (2008). Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish. Ecological Applications, 18(8), A213–A226. https://doi.org/10.1890/06-1415.1

    Article  Google Scholar 

  • Eagles-Smith, C. A., Ackerman, J. T., Willacker, J. J., Tate, M. T., Lutz, M. A., Fleck, J. A., Stewart, A. R., Wiener, J. G., Evers, D. C., Lepak, J. M., Davis, J. A., & Pritz, C. F. (2016). Spatial and temporal patterns of mercury concentrations in freshwater fish across the western United States and Canada. Science of the Total Environment, 568, 1171–1184. https://doi.org/10.1016/j.scitotenv.2016.03.229

    Article  CAS  Google Scholar 

  • Eagles-Smith, C. A., Silbergeld, E. K., Basu, N., Bustamante, P., Diaz-Barriga, F., Hopkins, W. A., Kidd, K. A., & Nyland, J. F. (2018). Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio, 47, 170–197. https://doi.org/10.1007/s13280-017-1011-x

    Article  CAS  Google Scholar 

  • Essington, T. E., & Houser, J. N. (2003). The effect of whole-lake nutrient enrichment on mercury concentration in age-1 yellow perch. Transactions of the American Fisheries Society, 132, 57–68. https://doi.org/10.1577/1548-8659(2003)132%3c0057:TEOWLN%3e2.0.CO;2

    Article  CAS  Google Scholar 

  • Evers, D. C., Han, Y. J., Driscoll, C. T., Kamman, N. C., Goodale, M. W., Lambert, K. F., Holsen, T. M., Chen, C. Y., Clair, T. A., & Butler, T. (2007). Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience, 57(1), 29–43. https://doi.org/10.1641/B570107

    Article  Google Scholar 

  • Farmer, T. M., Wright, R. A., & DeVries, D. R. (2010). Mercury concentration in two estuarine fish populations across a seasonal salinity gradient. Transactions of the American Fisheries Society, 139, 1896–1912. https://doi.org/10.1577/T09-194.1

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., & Clarkson, T. W. (1991). Mercury and monomethylmercury: Present and future concerns. Environmental Health Perspectives, 96, 159–166. https://doi.org/10.1289/ehp.9196159

    Article  CAS  Google Scholar 

  • Gandhi, N., Tang, R. W. K., Bhavsar, S. P., & Arhonditsis, G. B. (2014). Fish mercury levels appear to be increasing lately: A report from 40 years of monitoring in the Province of Ontario, Canada. Environmental Science and Technology, 48, 5404–5414. https://doi.org/10.1021/es403651x

    Article  CAS  Google Scholar 

  • Ginsberg, G. L., & Rao, K. (1996). Memorandum regarding mercury in fish consumption limits. Connecticut Department of Public Health. Hartford, CT.

  • Global Mercury Assessment. United Nations Environment Programme Report, (2002). Available at: www.chem.unep.ch/MERCURY/. Accessed 17 July 2022

  • Graham, J., Miller, P., Savelli, E., & Woo, J. (2007). Modeling mercury in the northeast United States. Northeast States for Coordinated Air Use Management (NESCAUM), Final Report. Available at: https://www.nescaum.org/documents/mercury-modeling-report_2007-1005b_final.pdf. Accessed 17 July 2022

  • Gworek, C., Dmuchowski, W., Gozdowski, D., Koda, E., Osiecka, R., & Borzyszkowski, J. (2015). Influence of municipal waste landfill on the spatial distribution of mercury in the environment. PLoS One, 10(7), e0133130. https://doi.org/10.1371/journal.pone.0133130

    Article  CAS  Google Scholar 

  • Hansen, J. F., Sass, G. G., Gaeta, J. W., Hansen, G. A., Isermann, D. A., Lyons, J., & Vander Zanden, M. J. (2015). Largemouth bass management in Wisconsin: Intraspecific and interspecific implications of abundance increases. American Fisheries Society Symposium, 82, 193–206.

    Google Scholar 

  • Hanten, R. P., Neumann, R. M., Ward, S. M., Carley, R. J., Perkins, C. R., & Pirrie, R. (1998). Relationships between concentrations of mercury in largemouth bass and physical and chemical characteristics of Connecticut lakes. Transactions of the American Fisheries Society, 127, 807–818. https://doi.org/10.1577/1548-8659(1998)127%3c0807:RBCOMI%3e2.0.CO;2

    Article  CAS  Google Scholar 

  • Hessenauer, J., Vokoun, J., Davis, J., Jacobs, R., & O’Donnell, E. (2017). Size structure suppression and obsolete length regulations in recreational fisheries dominated by catch-and-release. Fisheries Research, 200, 33–42. https://doi.org/10.1016/j.fishres.2017.12.007

    Article  Google Scholar 

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425

    Article  Google Scholar 

  • Hutcheson, M. S., Smith, C. M., Wallace, G. T., Rose, J., Eddy, B., Sullivan, J., Pancorbo, O., & West, C. R. (2008). Freshwater fish mercury concentrations in a regionally high mercury deposition area. Water, Air, and Soil Pollution, 191, 15–31. https://doi.org/10.1007/s11270-007-9604-9

    Article  CAS  Google Scholar 

  • Hutcheson, M. S., Smith, C. M., Rose, J., Batdorf, C., Pancorbo, O., West, C. R., Strube, J., & Francis, C. (2014). Temporal and spatial trends in freshwater fish tissue mercury concentrations associated with mercury emission reductions. Environmental Science & Technology, 48, 2193–2202. https://doi.org/10.1021/es404302m

    Article  CAS  Google Scholar 

  • [IPCC] Intergovernmental Panel on Climate Change. (2014). Climate change 2014: Synthesis Report. Contributions of working groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland.

  • Kaemingk, M. A., Bender, C. N., Chizinksi, C. J., Bunch, A. J., & Pope, K. L. (2021). Temporal invariance of social-ecological catchments. Ecological Applications, 31(2), e02272. https://doi.org/10.1002/eap2272

    Article  Google Scholar 

  • Kamman, N. C., Burgess, N. M., Driscoll, C. T., Simonin, H. A., Goodale, W., Linehan, J., Estabrook, R., Hutcheson, M., Major, A., Scheuhammer, A. M., & Scruton, D. A. (2005). Mercury in freshwater fish of the Northeast North America – A geographic perspective based on fish tissue monitoring databases. Ecotoxicology, 14, 163–180. https://doi.org/10.1007/s10646-004-6267-9

    Article  CAS  Google Scholar 

  • Kamman, N. C., Lorey, P. M., Driscoll, C. T., Estabrook, R., Major, A., Pientka, B., & Glassford, E. (2009). Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont lakes, USA, sampled using a geographically randomized design. Environmental Toxicology and Chemistry, 23(5), 1172–1186. https://doi.org/10.1897/03-170

    Article  Google Scholar 

  • Kannan, K., Smith, R. G., Jr., Lee, R. F., Windom, H. L., Heitmuller, P. T., Macauley, J. M., & Summers, J. K. (1998). Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Archives of Environmental Contamination and Toxicology, 34, 109–118. https://doi.org/10.1007/s002449900294

    Article  CAS  Google Scholar 

  • Karimi, R., Chen, C. Y., Pickhardt, P. C., Fisher, N. S., & Folt, C. L. (2007). Stoichiometric controls of mercury dilution by growth. Proceedings of the National Academy of Sciences, 104(18), 7477–7482. https://doi.org/10.1073/pnas.0611261104

    Article  CAS  Google Scholar 

  • Keplinger, B. J., Phelps, Q. E., & Hedrick, J. D. (2023). Long-term response of a largemouth bass population to a protected slot limit regulation in a West Virginia small impoundment. Journal of the Southeastern Association of Fish and Wildlife Agencies, 10, 76–84.

    Google Scholar 

  • Knight, A., Bhavsar, S. P., Branfireun, B. A., Drouin, P., Prashad, R., Petro, S., & Oke, M. (2019). A comparison of fish tissue mercury concentrations from homogenized fillet and nonlethal biopsy plugs. Journal of Environmental Sciences, 80, 137–145. https://doi.org/10.1016/j.jes.2018.12.004

    Article  CAS  Google Scholar 

  • Kolka, R. K., Riggs, C. E., Nater, E. A., Wickman, T. R., Witt, E. L., & Butcher, J. T. (2019). Temporal fluctuations in young-of-the-year yellow perch mercury bioaccumulation in lakes of northeastern Minnesota. Science of the Total Environment, 656, 475–481. https://doi.org/10.1016/j.scitoenv.2018.11.280

    Article  CAS  Google Scholar 

  • Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106(21), 2747–2757. https://doi.org/10.1161/01.CIR.0000038493.65177.94

    Article  Google Scholar 

  • Lepak, J. M., Robinson, J. M., Kraft, C. E., & Josephson, D. C. (2009a). Changes in mercury bioaccumulation in an apex predator in response to removal of an introduced competitor. Ecotoxicology, 18, 488–498. https://doi.org/10.1007/s10646-009-0306-5

    Article  CAS  Google Scholar 

  • Lepak, J. M., Shayler, H. A., Kraft, C. E., & Knuth, B. A. (2009b). Mercury contamination in sport fish in the northeastern United States: Considerations for future data collection. BioScience, 59(2), 174–181. https://doi.org/10.1525/bio.2009.59.2.10

    Article  Google Scholar 

  • Lepak, R. F., Hoffman, J. C., Janssen, S. E., Krabbenhoft, D. P., Ogorek, J. M., DeWild, J. F., Take, M. T., Babiarz, C. L., Yin, R., Murphy, E. W., Engstrom, D. R., & Hurley, J. P. (2019). Mercury source changes and food web shifts alter contamination signatures of predatory fish from Lake Michigan. Proceedings of the National Academy of Sciences, 116(47), 23600–23608. https://doi.org/10.1073/pnas.1907484116

    Article  CAS  Google Scholar 

  • Lockhart, W. L., Stern, G. A., Low, G., Hendzel, M., Boila, G., Roach, P., Evans, M. S., Billeck, B. N., DeLaronde, J., Friesen, S., Kidd, K., Atkins, S., Muir, D. C. G., Stoddart, M., Stephens, G., Stephenson, S., Harbicht, S., Snowshoe, N., Grey, B., … DeGraff, N. (2005). A history of total mercury in edible muscle of fish from lakes in northern Canada. Science of the Total Environment, 351–352, 427–463. https://doi.org/10.1016/j.scitoenv.2004.11.027

    Article  Google Scholar 

  • Martin, R. B. (1988). Bioinorganic chemistry of aluminum. In: Sigel, H (ed), Metal ions in biological systems pp 1–57. Marcel Dekker. New York, NY.

  • McClain, W. C., Chumchal, M. M., Drenner, R. W., & Newland, L. W. (2006). Mercury concentrations in fish from Lake Meredith, Texas: Implications for the issuance of fish consumption advisories. Environmental Monitoring and Assessment, 123, 249–258. https://doi.org/10.1007/s10661-006-9194-9

    Article  CAS  Google Scholar 

  • Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. Ambio, 36, 3–11. https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2

    Article  CAS  Google Scholar 

  • Meyer, K. A., Elle, F. S., Lamansky, J. A., Jr., Mamer, E. R. J. M., & Butts, A. E. (2012). A reward-recovery study to estimate tagged-fish reporting rates by Idaho anglers. North American Journal of Fisheries Management, 32, 696–703. https://doi.org/10.1080/02755947.2012.685142

    Article  Google Scholar 

  • Millard, G., Driscoll, C., Montesdeoca, M., Yang, Y., Taylor, M., Boucher, S., Shaw, A., Richter, W., Paul, E., Parker, C., & Yokota, K. (2020). Patterns and trends of fish mercury in New York state. Ecotoxicology, 29, 1709–1720. https://doi.org/10.1007/s10646-020-02163-x

    Article  CAS  Google Scholar 

  • Mills, N., Weber, M. J., Pierce, C. L., & Cashatt, D. (2019). Factors influencing fish mercury concentrations in Iowa rivers. Ecotoxicology, 28, 229–241. https://doi.org/10.1007/s10646-019-02017-1

    Article  CAS  Google Scholar 

  • Mills, N., Weber, M. J., Cashatt, D., Pierce, C. L., & Dixon, P. (2022). Factors related to fish mercury concentrations in Iowa lakes. Environmental Monitoring and Assessment, 194, 721. https://doi.org/10.1007/s10661-022-10427-8

    Article  CAS  Google Scholar 

  • Monson, B. A. (2009). Trend reversal of mercury concentrations in piscivorous fish from Minnesota lakes: 1982–2006. Environmental Science and Technology, 43(6), 1750–1755. https://doi.org/10.1021/es8027378

    Article  CAS  Google Scholar 

  • Muir, D., Wang, X., Bright, D., Lockhart, L., & Köck, G. (2005). Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Artic archipelago. Science of the Total Environment, 351–352, 464–478. https://doi.org/10.1016/j.scitoenv.2004.07.036

    Article  Google Scholar 

  • Neumann, R. M., Carley, R. J., Perkins, C. R., & Pirrie, R. (1996). Preliminary assessment of total mercury concentrations in fishes from Connecticut water bodies. University of Connecticut, Completion Report. Storrs, CT.

    Google Scholar 

  • [NRC] National Research Council. (2001). Toxicological effects of methylmercury. National Academy Press.

    Google Scholar 

  • Ogle, D. H. (2016). Introductory fishery analysis with R: Chapman & Hall/CRC. Boca Raton, FL. https://doi.org/10.1201/9781315371986

  • Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S., & Heimbürger-Boavida, L. E. (2018). Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018. Environmental Science and Technology, 52, 11466–11477. https://doi.org/10.1021/acs.est.8b01246

    Article  CAS  Google Scholar 

  • Post, D. M. (2003). Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology, 84(5), 1298–1310. https://doi.org/10.1890/0012-9658(2003)084[1298:IVITTO]2.0.CO;2

    Article  Google Scholar 

  • Program R: A language and environment for statistical computing. (2023). Version 3.5.2. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org. Accessed 12 Jan 2023

  • Rasmussen, P. W., Schrank, C. S., & Campfield, P. A. (2007). Temporal trends of mercury concentrations in Wisconsin walleye (Sander vitreus), 1982–2005. Ecotoxicology, 16, 541–550. https://doi.org/10.1007/s10646-007-0160-2

    Article  CAS  Google Scholar 

  • Richter, W., & Skinner, L. C. (2020). Mercury in the fish of New York’s great lakes: A quarter century of near stability. Ecotoxicology, 29, 1721–1738. https://doi.org/10.1007/s10646-019-02130-1

    Article  CAS  Google Scholar 

  • Riva-Murray, K., Richter, W., Razavi, N. R., Burns, D. A., Cleckner, L. B., Murton, M., George, S. D., & Freehafer, D. (2020). Mercury in fish from streams and rivers in New York State: Spatial patterns, temporal drivers, and environmental drivers. Ecotoxicology, 29, 1686–1708. https://doi.org/10.1007/s10646-020-02225-0

    Article  CAS  Google Scholar 

  • Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2004). The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. Journal of Human Nutrition and Dietetics, 17(5), 449–459. https://doi.org/10.1111/j.1365-277X.2004.00552.x

    Article  CAS  Google Scholar 

  • Rypel, A. L. (2010). Mercury concentrations in lentic fish populations related to ecosystem and watershed characteristics. Ambio, 39, 14–19. https://doi.org/10.1007/s13280-009-0001-z

    Article  CAS  Google Scholar 

  • Sackett, D. K., Aday, D. D., Rice, J. A., Cope, W. G., & Buchwalter, D. (2010). Does proximity to coal-fired power plants influence fish tissue mercury? Ecotoxicology, 19, 1601–1611. https://doi.org/10.1007/s10646-010-0545-5

    Article  CAS  Google Scholar 

  • Sadraddini, S., Azim, M. E., Shimoda, Y., Mahmood, M., Bhavsar, S. P., Backus, S. M., & Arhonditsis, G. B. (2011). Temporal PCB and mercury trends in Lake Erie fish communities: A dynamic linear modeling analysis. Ecotoxicology and Environmental Safety, 74(8), 2203–2214. https://doi.org/10.1016/j.ecoenv.2011.07.031

    Article  CAS  Google Scholar 

  • Slemr, F., Brunke, E. G., Ebinghaus, R., & Kuss, J. (2011). Worldwide trend of atmospheric mercury since 1995. Atmospheric Chemistry and Physics, 11, 4779–4787. https://doi.org/10.5194/acp-11-4779-2011

    Article  CAS  Google Scholar 

  • Streets, D. G., Horowitz, H. M., Jacob, D. J., Lu, Z., Levin, L., ter Schure, A. F. H., & Sunderland, E. M. (2017). Total mercury released to the environment by human activities. Science of the Total Environment, 51, 5969–5977. https://doi.org/10.1021/aces.est.7b00451

    Article  CAS  Google Scholar 

  • Thomas, S. M., Kiljunen, M., Malinen, T., Eloranta, A. P., Amundsen, P., Lodenius, M., & Kahilainen, K. K. (2016). Food-web structure and mercury dynamics in a large subarctic lake following multiple species introductions. Freshwater Biology, 61(4), 500–517. https://doi.org/10.1111/fwb.12723

    Article  CAS  Google Scholar 

  • [UNEP] United Nations Environment Programme (2002). Global mercury Assessment. Technical report. UNEP, Geneva, Switzerland. Available online at https://www.chem.unep.ch/MERCURY/

  • [USEPA] United States Environmental Protection Agency. (1991). Determination of mercury in tissues by cold vapor atomic absorption spectrometry: method 245.6 (revision 2.3). Environmental Monitoring Systems Laboratory, USEPA. Cincinnati, OH.

  • [USEPA] United States Environmental Protection Agency. (1997). Mercury study report to Congress. Office of Air Quality Planning and Standards and Office of Research and Development, Report EPA-452/R-97–005. USEPA. Washington, D.C.

  • [USEPA] United States Environmental Protection Agency. (2000). Guidance for assessing chemical contaminant data for use in fish advisories. Volume 1: Fish sampling and analysis, Third Edition. Office of Science and Technology and Office of Water. Washington, D.C.

  • [USEPA] United States Environmental Protection Agency. (2001). Water quality criterion for the protection of human health: Methylmercury. Office of Water, Report EPA-823-R-01–001. USEPA. Washington, D.C.

  • [USEPA] United States Environmental Protection Agency. (2003). America’s children and the environment: measures of contaminants, body burdens, and illnesses. Report EPA-240R03001. USEPA. Washington, D.C.

  • Vokoun, J. C., & Perkins, C. R. (2008). Second statewide assessment of mercury contamination in fish tissue from Connecticut lakes (2005–2006). University of Connecticut, Storrs.

    Google Scholar 

  • Wang, F., Outridge, P. M., Feng, X., Meng, B., Heimbürger-Boavida, L. E., & Mason, R. P. (2019). How closely do mercury trends in fish and other aquatic wildlife track those in the atmosphere? – Implications for evaluating the effectiveness of the Minamata Convention. Science of the Total Environment, 674, 58–70. https://doi.org/10.1016/j.scitoenv.2019.04.101

    Article  CAS  Google Scholar 

  • Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. The Science of the Total Environment, 219, 183–208. https://doi.org/10.1016/S0048-9697(98)00228-9

    Article  CAS  Google Scholar 

  • Wiener, J. G., Knights, B. C., Sandheinrich, M. B., Jeremiason, J. D., Brigham, M. E., Engstrom, D. R., Woodruff, L. G., Cannon, W. F., & Balogh, S. J. (2006). Mercury in soils, lakes, and fish in Voyageurs National Park (Minnesota): Importance of atmospheric deposition and ecosystem factors. Environmental Science & Technology, 40, 6261–6268. https://doi.org/10.1021/es060822h

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2006). Sources and trends of environmental mercury emissions in Asia. Science of the Total Environment, 368, 649–662. https://doi.org/10.1016/j.scitoenv.2005.11.024

    Article  CAS  Google Scholar 

  • Xun, L., Campbell, N. E. R., & Rudd, J. W. M. (1987). Measurements of specific rates of net methyl mercury production in water column and surface sediments of acidified and circumneutral lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44, 750–757. https://doi.org/10.1139/f87-091

    Article  CAS  Google Scholar 

  • Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M., Krabbenhoft, D. P., Slemr, F., St. Louis, V. L., & Sunderland, E. M. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences, 113(3), 526–531. https://doi.org/10.1073/pnas.1516312113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Flamenco, P. Grundy, S. Manstan, M. Upp, and numerous Connecticut Department of Energy and Environmental Protection (CT DEEP) fishery biologists for their help sampling largemouth bass. Sample collection of largemouth bass was performed under the auspices of the University of Connecticut’s Institutional Animal Care and Use Committee (IACUC) protocol A19-029, and bass were collected under state scientific collection permit SC-19016. We thank J. Brandt, M. Lally and the anonymous reviewers for comments that improved earlier drafts of this manuscript.

Funding

Funding for this study was administered by the Connecticut Department of Environmental Protection (CT DEEP), with support from the New England Interstate Water Pollution Control Commission (NEIWPCC), through a United States Environmental Protection Agency Clean Water Act Sect. 604(b) Water Quality Management Planning Grant (award number: AG191197).

Author information

Authors and Affiliations

Authors

Contributions

JV designed the study. CS collected the data. CP processed tissue samples. CS analyzed the data. CS wrote the manuscript. CS, JV, and CP edited the manuscript.

Corresponding author

Correspondence to Christopher J. Sullivan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1265 KB)

Supplementary file2 (DOCX 56 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, C.J., Vokoun, J.C. & Perkins, C.R. Spatiotemporal changes in largemouth bass mercury concentrations from Connecticut waterbodies, 1995–2021. Environ Monit Assess 195, 780 (2023). https://doi.org/10.1007/s10661-023-11405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11405-4

Keywords

Navigation