Skip to main content

Advertisement

Log in

Monitoring spatio-temporal changes in wetlands with harmonized image series in Google Earth Engine

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Study of rapidly changing lakes and wetlands with remote sensing methods is critical for understanding the climatic and anthropogenic effects. However, most of the studies search for the change of water body in specific time periods. Although this approach reduces the workload related to downloading and processing a large number of satellite images in computer environment, it actually causes ignoring some critical changes that occurred out of specified time periods. On the other hand, this situation reduces the data volume and the limited data causes problems for the management of water resources.  The Google Earth Engine (GEE) platform allows the opportunity to rapidly and practically process large-scale temporal data without downloading. In this study, areal changes in Lake Akşehir in Türkiye, from 1985 to 2020, were calculated and mapped by the GEE as a case. In order to calculate the changes, the Landsat 5 TM, 7 ETM + and 8 OLI&TIRS images were harmonized and created annual mosaics. The Normalized difference water index (NDWI) and the automated water extraction index (AWEI) were applied to these annual mosaics. By this approach, the change in the water area representing a shrank by 87% on average (according to the calculations 91% for the NDWI and 83% for the AWEI) from 1985 to 2020 was assessed practically and rapidly on annual mosaics created from all images between the studied period, instead of assessment based on images taken on only one date in the chosen years as in previous studies. Such an approach will provide time and labour savings and provide more meaningful and uninterrupted data for studies about changes in other wetland areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmed, K. R., & Akter, S. (2017). Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with Landsat multi-spectral surface reflectance satellite data. Remote Sensing Applications: Society and Environment, 8, 168–181.

    Article  Google Scholar 

  • Atalay, İ. (1977). Sultandağları ile Akşehir ve Eber Gölü Havzalarının Strüktüral, Jeomorfolojik ve Toprak Erozyonu Etüdü. Atatürk Üniv. Yay. No.500, Erzurum, 37 p.

  • Avdan, U., Demircioğlu, Yıldız, N., & Dağlıyar, A. (2013). Akşehir Gölü ve Çevresinin Arazi Kullanimi ve Zamansal Değişim Analizinin Uzaktan Algilama Yöntemleri İle Belirlenmesi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VII. Teknik Sempozyumu (TUFUAB 2013). https://www.tufuab.org.tr/uploads/files/articles/aksehir-golu-ve-cevresinin-arazi-kullanimi-ve-zamansal-degisim-analizinin-uzaktan-alg-1804.pdf. Accessed 24 Nov 2022.

  • Bahadır, M. (2012). Eber ve Akşehir göllerinin bütünleşik kıyı alanları yönetimi. Coğrafi Bilimler Dergisi, 10(1), 63–90.

    Article  Google Scholar 

  • Bahadır, M. (2013). Akşehir Gölü’nde Alansal Değişimlerin Uzaktan Algilama Teknikleri İle Belirlenmesi. Marmara Coğrafya Dergisi, 28, 246–275.

    Google Scholar 

  • Çatal, A., & Dengiz, O. (2015). Akşehir Gölünün Akşehir Çölüne Dönüşü Süreci ve Etki Eden Faktörler. Toprak Su Dergisi, 4(1), 18–26.

    Google Scholar 

  • Chen, B., Xiao, X., Li, X., Pan, L., Dought, R., Ma, J., et al. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120.

    Article  Google Scholar 

  • Chipman, J. W. (2019). A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sensing, 11(2), 158.

    Article  Google Scholar 

  • Claverie, M., Vermote, E. F., Franch, B., & Masek, J. G. (2015). Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sensing of Environment, 169, 390–403. https://doi.org/10.1016/j.rse.2015.08.030

    Article  Google Scholar 

  • de Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ, 115, 692–702. [Google Scholar]

  • Dervisoglu, A. (2021). Analysis of the temporal changes of inland Ramsar sites in Turkey using Google Earth Engine. ISPRS International Journal of Geo-Information, 10(8), 521.

    Article  Google Scholar 

  • Dervisoglu, A. (2022). Investigation of long and short-term water surface area changes in coastal Ramsar Sites in Turkey with Google Earth Engine. ISPRS International Journal of Geo-Information, 11(1), 46.

    Article  Google Scholar 

  • Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & Van De Giesen, N. (2016). Earth’s surface water change over the past 30 years. Nature Climate Change, 6(9), 810–813.

    Article  Google Scholar 

  • Dong, J., Xiao, X., Menarguez, M., Zhang, G., Qin, Y., Thau, D., Biradar, C., & Moore, B., III. (2016). Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 185, 142–154.

    Article  Google Scholar 

  • Dönmez, S. (2018). Akşehir Gölü su seviyesinin çekilmesinin meteorolojik ve uydu verileri ile incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(1), 177–188.

  • Erdem, O. (2007). Wetland management planning directory. Ankara: General Directorate of Nature Conservation and National Parks Bird Research Association.

  • Essex, B., Koop, S. H. A., & Van Leeuwen, C. J. (2020). Proposal for a national blueprint framework to monitor progress on water-related sustainable development goals in Europe. Environmental Management, 65, 1–18.

    Article  CAS  Google Scholar 

  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35.

    Article  Google Scholar 

  • Firatli, E., Dervisoglu, A., Yagmur, N., Musaoglu, N., & Tanik, A. (2022). Spatio-temporal assessment of natural lakes in Turkey. Earth Science Informatics, 15(2), 951–964.

  • Gao, B. C. (1996). Normalized difference water index for remote sensing of vegetation liquid water from space. In Imaging Spectrometry. International Society for Optics and Photonics, 2480, 225–236.

  • Gorelick, N. (2013). Google earth engine. In EGU General Assembly Conference Abstracts, 15, 11997.

    Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

    Article  Google Scholar 

  • Gürbüz, A., Kazancı, N., Hakyemez, H. Y., Leroy, S. A. G., Roberts, N., Saraç, G., Ergun, Z., Boyraz-Arslan, S., Gürbüz, E., Koç, K., Yedek, Ö., & Yücel, T. O. (2021). Geological evolution of a tectonic and climatic transition zone: The Beyşehir-Suğla basin, lake district of Turkey. International Journal of Earth Sciences, 110, 1077–1107.

    Article  Google Scholar 

  • Gürbüz, E. (2018). Tracing temporal changes with Google Earth Engine: Lake Uluabat, southern Marmara Region, Turkey. Proceedings of EurasianGIS 2018 Congress, Baku, pp. 177–179.

  • Hird, J. N., DeLancey, E. R., McDermid, G. J., & Kariyeva, J. (2017). Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sensing, 9(12), 1315.

    Article  Google Scholar 

  • Hui, F., Xu, B., Huang, H., Yu, Q., & Gong, P. (2008). Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. International Journal of Remote Sensing, 29(20), 5767–5784.

    Article  Google Scholar 

  • Johansen, K., Phinn, S., & Taylor, M. (2015). Mapping woody vegetation clearing in Queensland, Australia from Landsat imagery using the Google Earth Engine. Remote Sensing Applications: Society and Environment, 1, 36–49.

    Article  Google Scholar 

  • Kaplan, G., Avdan, U., Avdan, Y. Z., & Yıldız Demircioğlu, N. (2016). Landsat Uydu Görüntüleri Kullanılarak Kuraklık İzlenmesi (Akşehir Gölü Örneği). 6. Uzaktan Algilama-CBS Sempozyumu (UZAL-CBS 2016), 535–540. http://uzalcbs.org/wp-content/uploads/2016/11/2016_1034.pdf. Accessed 24 Nov 2022.

  • Kazancı, N., & Roberts, N. (2019). The lake basins of South-west Anatolia. In: Kuzucuoğlu, C., Çiner, A., Kazancı, N. (eds) Landscapes and Landforms of Turkey, 325–337. World Geomorphological Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-03515-0_15

  • Kazancı, N., Nemec, W., İleri, Ö., & Kavuşan, G. (1994). Islah ve Kurtarma Çalışmaları İçin Akşehir ve Eber Göllerinin Sedimantolojik İncelenmesi, Ankara Üniv. Araştırma Fonu Raporu 91.05.01.01. No: B16762. https://search.trdizin.gov.tr/tr/yayin/detay/605389/islah-ve-kurtarma-calismalari-icin-aksehir-ve-eber-gollerinin-sedimantolojik-incelenmesi. Accessed 24 Nov 2022.

  • Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y. Q., & Adams, P. (2009). Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 113(7), 1382–1396.

    Article  Google Scholar 

  • Köle, M. M., Ataol, M., & Erkal, T. (2016). Eber ve Akşehir Gölleri’nde 1990 – 2016 Yılları Arasında Gerçekleşen Alansal Değişimler. TÜCAUM Uluslararası Coğrafya Sempozyumu/ International Geography Symposium. http://tucaum.ankara.edu.tr/wp-content/uploads/sites/280/2016/12/Int_semp_CBS3.pdf. Accessed 24 Nov 2022.

  • Kosztra, B., Büttner, G., Hazeu, G., & Arnold, S. (2017). Updated CLC illustrated nomenclature guidelines. European Environment Agency: Wien, Austria, 1–124.

  • Kotz, S., Balakrishnan, N., Read, C. B., & Vidakovic, B. (2005). Encyclopedia of statistical sciences, (Vol. 1). John Wiley & Sons.

    Google Scholar 

  • Li, J., Meng, Y., Li, Y., Cui, Q., Yang, X., Tao. C., ... & Zhang, W. (2022). Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning. Journal of Hydrology, 612, 128202.

  • Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y. S., Siqueira, P., & Bera, S. (2018). Sen4Rice: A processing chain for differentiating early and late transplanted rice using time-series Sentinel-1 SAR data with Google Earth engine. IEEE Geoscience and Remote Sensing Letters, 15(12), 1947–1951.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water. International Journal of Remote Sensing, 17 (7), 1425–1432.

  • Meriç, T., & Çağırankaya, S. (2013). Sulak Alanlar. Orman ve Su İşleri Bakanlığı Doğa Koruma ve Milli Parklar Genel Müdürlüğü, Ankara, 160 pp. url: http://www.turkiyesulakalanlari.com/wp-content/uploads/sulak-alanlar-kitab%C4%B1-bask%C4%B1-onay%C4%B1-i%C3%A7in.pdf (last access date: 30–4–2022)

  • Oliphant, A. J., Thenkabail, P. S., Teluguntla, P., Xiong, J., Gumma, M. K., Congalton, R. G., & Yadav, K. (2019). Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. International Journal of Applied Earth Observation and Geoinformation, 81, 110–124.

    Article  Google Scholar 

  • Ormeci, C., & Ekercin, S. (2007). An assessment of water reserve changes in Salt Lake, Turkey, through multi-temporal Landsat imagery and real-time ground surveys. Hydrological Processes: An International Journal, 21(11), 1424–1435.

    Article  Google Scholar 

  • Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F. R., & Trianni, G. (2015). Multitemporal settlement and population mapping from Landsat using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 35, 199–208.

    Article  Google Scholar 

  • Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422.

    Article  CAS  Google Scholar 

  • Peker, E. A. (2019). Spatio-temporal changes of lake water extents in lakes region (Turkey) using remote sensing (MSc Thesis). Middle East Technical University, Ankara, 125 p.

  • Pettorelli, N. (2019). Satellite remote sensing and the management of natural resources. Oxford University Press.

    Book  Google Scholar 

  • Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70.

    Article  Google Scholar 

  • Şener, E., Davraz, A., & Şener, S. (2010). Investigation of Akşehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellite images. Water Resources Management, 24(4), 727–745.

    Article  Google Scholar 

  • Smith, L. C., Sheng, Y., MacDonald, G. M., & Hinzman, L. D. (2005). Disappearing arctic lakes. Science, 308(5727), 1429–1429.

    Article  CAS  Google Scholar 

  • Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H., Baraldi, A., & Blaschke, T. (2020). Big Earth data: Disruptive changes in Earth observation data management and analysis? International Journal of Digital Earth, 13(7), 832–850.

    Article  Google Scholar 

  • Tang, Z., Li, Y., Gu, Y., Jiang, W., Xue, Y., Hu, Q., LaGrange, T., Bishop, A., Drahota, J., & Ruopu, Li. (2016). Assessing Nebraska playa wetland inundation status during 1985–2015 using Landsat data and Google Earth Engine. Environmental Monitoring and Assessment, 188(12), 654.

    Article  Google Scholar 

  • United Nations. (2018) Sustainable Development Goal 6 synthesis report on water and sanitation. https://www.unwater.org/.../sdg-6-synthesis-report-2018-on-water-and-sanitation/. Accessed 24 Oct 2022.

  • URL-1: GEE, https://earthengine.google.org. Accessed 24 Oct 2022.

  • URL-2: https://developers.google.com . Accessed 24 Oct 2022.

  • URL-3: https://land.copernicus.eu/pan-european/corine-land-cover. Accessed 20 Mar 2022.

  • Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56.

    Article  Google Scholar 

  • Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., Howe, F., & Moore, J. (2017). Decline of the world’s saline lakes. Nature Geoscience, 2017(10), 816–821.

    Article  Google Scholar 

  • Yıldırım, Ü., Erdoğan, S., & Uysal, M. (2011). Changes in the coastline and water level of the Akşehir and Eber Lakes between 1975 and 2009. Water Resources Management, 25(3), 941–962.

    Article  Google Scholar 

  • Yılmaz, H. (2015). Akarçay Havzası Entegre Su Kaynakları Yönetiminin Belirlenmesinde WEAP (“Water Evaluation and Planning” System) Yaklaşımının Kullanılması, MSc Thesis, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 61 p.

  • Zhai, K., Wu, X., Qin, Y., & Du, P. (2015). Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spatial Information Science, 18(1), 32–42.

    Article  Google Scholar 

  • Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269–277.

    Article  Google Scholar 

  • Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94.

Download references

Acknowledgements

The author is grateful to anonymous reviewers for their constructive comments, and to Adalet Dervişoğlu (İTÜ), Süleyman Sefa Bilgilioğlu (ASÜ) and Hediye Erdoğan (ASÜ) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The author designed the research, analysed and interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Esra Gürbüz.

Ethics declarations

Ethics approval

All authors have read, understood and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The CORINE LU/LC maps for the Lake Akşehir sub-basin.

Supplementary file1 (PDF 2084 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürbüz, E. Monitoring spatio-temporal changes in wetlands with harmonized image series in Google Earth Engine. Environ Monit Assess 195, 770 (2023). https://doi.org/10.1007/s10661-023-11400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11400-9

Keywords

Navigation