Abstract
The frequency of extreme weather events has increased in the latest years in Europe. The recent consecutive droughts caused severe damage in many sectors and underlined the demand for adaptation. There is a need for a better understanding of the response of ecosystems to climate change and the consequences for key ecosystem services, such as water supply and carbon sequestration, at a local and regional scale. This paper aims to support decision-making for climate adaptation in a low-mountainous region of central Germany. We analysed the temperature and precipitation trends and drought conditions. The response of two key services (surface water provision and carbon sequestration) to droughts is estimated using an ecosystem service model. The spatially averaged water yield, net ecosystem productivity (NEP), and soil moisture are assessed and compared for the five worst droughts with long-term averages to identify the vulnerable areas and ecosystems. The temperature increased on seasonal and annual scales, while precipitation decreased in some areas in summer and increased in winter and annually. The standardised precipitation-evapotranspiration index (SPEI) showed worsening drought conditions, especially after the late 1980s. Droughts caused a reduction of water yield by 54%, NEP by 18%, and upper zone soil moisture by 13%. The impacts varied spatially, with the central region being worst affected, while the southern part was relatively more resilient. Adaptation is urgently needed to reduce drought risks and enhance climate resilience. Adaptive measures can include amending crop rotations, introducing more drought-tolerant varieties, upgrading agriculture and food industry technology, increasing mixed forests, and reducing non-native tree species.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets used for analyses and model-based assessment are publicly available from the state authority and project website.
References
Ahmed, K. R., Paul-Limoges, E., Rascher, U., & Damm, A. (2020). A first assessment of the 2018 European drought impact on ecosystem evapotranspiration. Remote Sensing, 13(1), 16. https://doi.org/10.3390/RS13010016
Arend, M., Link, R. M., Zahnd, C., Hoch, G., Schuldt, B., & Kahmen, A. (2022). Lack of hydraulic recovery as a cause of post-drought foliage reduction and canopy decline in European beech. New Phytologist, 234(4), 1195–1205. https://doi.org/10.1111/NPH.18065
ATV-DVWK Deutsche Vereinigung für Wasserwirtschaft, A. und A. A. V. B. C. (2002). Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden. ATV-DVWK-Regelwerk ; Merkblatt ; 504 (Stand: Sep.). Hennef: GFA. http://slubdd.de/katalog?TN_libero_mab23546357. Accessed 29 June 2022
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., & Fan, L., et al. (2020). Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 6(24). https://doi.org/10.1126/SCIADV.ABA2724/SUPPL_FILE/ABA2724_SM.PDF
Beguería, S., & Vicente-Serrano, S. M. (2017). SPEI: Calculation of the standardised precipitation-evapotranspiration index. https://cran.r-project.org/package=SPEI. Accessed 29 June 2022
Bernhofer, C., Franke, J., Fischer, S., Kirsten, L., Körner, P., & Kostrowski, D., et al. (2015). Analyse der Klimaentwicklung in Sachsen. Schriftenreihe des LFULG 03/2015, Freistaat Sachsen, Staatsministerium für Umwelt und Landwirtschaft.https://publikationen.sachsen.de/bdb/artikel/23868. Accessed 15 June 2022
Bleiker, C. (2022). Rivers across Europe are too dry, too low and too warm | Europe | News and current affairs from around the continent | DW | 10.08.2022. https://www.dw.com/en/rivers-across-europe-are-too-dry-too-low-and-too-warm/a-62758853. Accessed 15 August 2022
Bolte, A., Ammer, C., Löf, M., Madsen, P., Nabuurs, G. J., & Schall, P., et al. (2009). Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. 24(6), 473–482. https://doi.org/10.1080/02827580903418224
Bundesanstalt für Landwirtschaft und Ernährung. (2021). Waldbrandstatistik der Bundesrepublik Deutschland für das Jahr 2021. Bonn. https://www.ble.de/DE/BZL/Daten-Berichte/Wald/wald_node.html. Accessed 11 March 2023
Caldwell, P., Sun, G., McNulty, S. G., Cohen, E. C., & Moore Myers, J. A. (2012). Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US. Hydrology and Earth System Sciences, 16(8), 2839–2857. https://doi.org/10.5194/HESS-16-2839-2012
Caldwell, P., Sun, G., McNulty, S., Moore Myers, J., Cohen, E., Herring, R., & Martinez, E. (2019). WaSSI ecosystem services model user guide v1.2. https://map.wassiweb.fs.usda.gov/help/wassiuserguide_v1_2.pdf. Accessed 9 July 2021
Carvalho-Santos, C., Honrado, J. P., & Hein, L. (2014). Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecological Complexity, 20, 69–80. https://doi.org/10.1016/J.ECOCOM.2014.09.001
Cheng, H., Lin, C., Wang, L., Xiong, J., Peng, L., & Zhu, C. (2020). The influence of different forest characteristics on non-point source pollution: A case study at Chaohu basin, China. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/IJERPH17051790
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529–533. https://doi.org/10.1038/nature03972
Cohen, J. G., Christlieb, N., Thompson, I., Hasan, F., Churchill, C. W., Stemock, B., et al. (2021). Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16(6), 065012. https://doi.org/10.1088/1748-9326/ABF004
Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(NOV), 442. https://doi.org/10.3389/FPLS.2013.00442/BIBTEX
COPA COGECA. (2003). Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry. Fact sheets of the Committee of Agricultural Organisations in the European Union and the General Committee for Agricultural Cooperation in the European U. http://docs.gip-ecofor.org/libre/COPA_COGECA_2004.pdf. Accessed 08 Aug 2022
Copernicus Global Land Service. (2022). Gross dry matter productivity (GDMP) collection 1km version 2. European Environment Agency (EEA). https://land.copernicus.eu/global/products/dmp. Accessed 10 Oct 2021
Copernicus Land Monitoring Service, E. U. (2012a). Corine land cover 2012a. European Environment Agency (EEA). https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012a. Accessed 05 Jan 2022
Copernicus Land Monitoring Service, E. U. (2012b). Imperviousness density 2012b. European Environment Agency (EEA). https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2012b. Accessed 25 Nov 2021
Copernicus Land Monitoring Service, E. U. (2016). European digital elevation model (EU-DEM), version 1.1. European Environment Agency (EEA). https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. Accessed 23 June 2021
Dardanelli, J. L., Bachmeier, O. A., Sereno, R., & Gil, R. (1997). Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Research, 54(1), 29–38. https://doi.org/10.1016/S0378-4290(97)00017-8
Debaeke, P., Pellerin, S., & Scopel, E. (2017). Climate-smart cropping systems for temperate and tropical agriculture: Mitigation, adaptation and trade-offs. Cahiers Agricultures, 26(3), 34002. https://doi.org/10.1051/CAGRI/2017028
Dukat, P., Bednorz, E., Ziemblińska, K., & Urbaniak, M. (2022). Trends in drought occurrence and severity at mid-latitude European stations (1951–2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorology and Atmospheric Physics, 134(1), 1–21. https://doi.org/10.1007/S00703-022-00858-W/FIGURES/13
EFFIS. (2022). EFFIS - Statistics portal. https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates. Accessed 15 August 2022
European Environment Agency. (2017). Climate change, impacts and vulnerability in Europe 2016: An indicator-based report. Publications Office. https://doi.org/10.2800/534806
Federal Ministry of Food and Agriculture. (2022). BMEL - Klimaschutz - Trockenheit und Dürre im Jahr 2018. https://www.bmel.de/DE/themen/landwirtschaft/klimaschutz/duerre-2018.html. Accessed 16 August 2022
Franke, J., Goldberg, V., Eichelmann, U., Freydank, E., & Bernhofer, C. (2004). Statistical analysis of regional climate trends in Saxony. Germany. Climate Research, 27(2), 145–150. https://doi.org/10.3354/CR027145
German Aerospace Center. (2022). Concern about German forests - DLR Portal. https://www.dlr.de/content/en/articles/news/2022/01/20220221_concern-about-german-forests.html. Accessed 22 March 2023
German Environment Agency. (2019). 2019 monitoring report on the German strategy for adaptation to climate change. Dessau-Roßlau. https://www.umweltbundesamt.de/sites/default/files/medien/421/publikationen/das_2019_monitoring_report_bf.pdf. Accessed 01 Aug 2022
German Federal Cabinet. (2008). German strategy for adaptation to climate change. Berlin, The. https://www.bmuv.de/fileadmin/bmu-import/files/english/pdf/application/pdf/das_gesamt_en_bf.pdf
Hamed, K. H., & Ramachandra Rao, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X
Hamon, W. R. (1963). Computation of direct runoff amounts from storm rainfall. International Association of Scientific Hydrology. Publication, 63, 52–62.
Hänsel, S., Ustrnul, Z., Łupikasza, E., & Skalak, P. (2019). Assessing seasonal drought variations and trends over Central Europe. Advances in Water Resources, 127, 53–75. https://doi.org/10.1016/J.ADVWATRES.2019.03.005
Hauffe, C., Pahner, S., Rohm, P., Pfützner, B., Kloecking, B., Mey, S., et al. (2022). KliWES 2.0 – Klimawandel und Wasserhaushalt, Schriftenreihe, Heft 17/2022. Dresden. https://publikationen.sachsen.de/bdb/artikel/40252. Accessed 11 Sept 2022
Huuskonen, S., Domisch, T., Finér, L., Hantula, J., Hynynen, J., Matala, J., et al. (2021). What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia? Forest Ecology and Management, 479, 118558. https://doi.org/10.1016/J.FORECO.2020.118558
Ionita, M., & Nagavciuc, V. (2021). Changes in drought features at the European level over the last 120 years. Natural Hazards and Earth System Sciences, 21(5), 1685–1701. https://doi.org/10.5194/nhess-21-1685-2021
Jandl, R., Spathelf, P., Bolte, A., & Prescott, C. E. (2019). Forest adaptation to climate change—Is non-management an option? Annals of Forest Science, 76(2), 1–13. https://doi.org/10.1007/S13595-019-0827-X/FIGURES/8
Kendall, M. G. (1948). Rank correlation methods. London: Charles Griffin.
Klauer, B., Rode, M., Schiller, J., Franko, U., & Mewes, M. (2011). Decision support for the selection of measures according to the requirements of the EU water framework directive.https://doi.org/10.1007/s11269-011-9944-5
Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424–425, 264–277. https://doi.org/10.1016/J.JHYDROL.2012.01.011
Koren, V., Smith, M., & Duan, Q. (2003). Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. 239–254. https://doi.org/10.1002/9781118665671.CH18
Kosztra, B., Büttner, G., Hazeu, G., & Arnold, S. (2017). Updated CLC illustrated nomenclature guidelines. European Environment Agency: Wien, Austria. https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf. Accessed 04 March 2023
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P., & Arrighi, J., et al. (2021). Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Atribution. https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf. Accessed 08 August 2022
Krupková, L., Havránková, K., Krejza, J., Sedlák, P., & Marek, M. V. (2019). Impact of water scarcity on spruce and beech forests. Journal of Forestry Research, 30(3), 899–909. https://doi.org/10.1007/S11676-018-0642-5/TABLES/3
Li, X., & Xiao, J. (2019). Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: A global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 2019, 11(21), 2563. https://doi.org/10.3390/RS11212563
Li, C., Sun, G., Cohen, E., Zhang, Y., Xiao, J., McNulty, S. G., & Meentemeyer, R. K. (2020). Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States. Journal of Hydrology, 583, 124581. https://doi.org/10.1016/J.JHYDROL.2020.124581
Liu, C. L. C., Kuchma, O., & Krutovsky, K. V. (2018). Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15, e00419. https://doi.org/10.1016/J.GECCO.2018.E00419
Liu, N., Dobbs, G. R., Caldwell, P. V, Miniat, C. F., Bolstad, P. V, Nelson, S., & Sun, G. (2020). Quantifying the role of State and private forest lands in providing surface drinking water supply for the Southern United States. Gen. Tech. Rep. SRS-248. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station, 248, 1–405. https://doi.org/10.2737/SRS-GTR-248
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187
McDonald, J. E. (1961). On the ratio of evaporation to precipitation. Bulletin of the American Meteorological Society, 42(3), 185–189. https://doi.org/10.1175/1520-0477-42.3.185
McKee, T. B., Doesken, N. J., Kleist, J., et al. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17, 179–183.
Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/TRANS.58.10715
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Neary, D. G., Ice, G. G., & Jackson, C. R. (2009). Linkages between forest soils and water quality and quantity. Forest Ecology and Management, 258(10), 2269–2281. https://doi.org/10.1016/J.FORECO.2009.05.027
Nendel, C., Kersebaum, K. C., Mirschel, W., & Wenkel, K. O. (2014). Testing farm management options as climate change adaptation strategies using the MONICA model. European Journal of Agronomy, 52, 47–56. https://doi.org/10.1016/J.EJA.2012.09.005
Natural Resources Conservation Service (NRCS). (2004). National engineering handbook: Part 630—hydrology. United States Department of Agriculture-Natural Resources Conservation Service: Washington, DC, USA.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 1–27. https://doi.org/10.1038/s41597-020-0534-3
Patakamuri, S. K., Muthiah, K., & Sridhar, V. (2020). Long-term homogeneity, trend, and change-point analysis of rainfall in the arid district of Ananthapuramu, Andhra Pradesh State, India. Water, 12(1), 211. https://doi.org/10.3390/W12010211
Patakamuri, S. K., & O’Brien, N. (2020). modifiedmk: Modified versions of Mann Kendall and Spearman’s rho trend tests. https://cran.r-project.org/package=modifiedmk. Accessed 25 June 2022
Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C (applied Statistics), 28(2), 126–135. https://doi.org/10.2307/2346729
Pluntke, T., Kronenberg, R., Hänsel, S., Rumpf, D., Zimmermann, F., Matschullat, J., & Bernhofer, C. (2021). Erfassung und Abschätzung von Trockenheitsmerkmalen in Sachsen. Dresden. https://doi.org/10.4126/FRL01-006425413
Pohlert, T. (2020). trend: Non-parametric trend tests and change-point detection. https://cran.r-project.org/package=trend. Accessed 25 June 2022
Prescher, A. K., Grünwald, T., & Bernhofer, C. (2010). Land use regulates carbon budgets in eastern Germany: From NEE to NBP. Agricultural and Forest Meteorology, 150(7–8), 1016–1025. https://doi.org/10.1016/J.AGRFORMET.2010.03.008
Pretzsch, H., Schütze, G., & Uhl, E. (2013). Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biology, 15(3), 483–495. https://doi.org/10.1111/J.1438-8677.2012.00670.X
Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., & Thober, S., et al. (2022). The 2018–2020 multi-year drought sets a new benchmark in Europe. Earth’s Future, 10(3), e2021EF002394. https://doi.org/10.1029/2021EF002394
Riediger, J., Breckling, B., Nuske, R. S., & Schröder, W. (2014). Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environmental Sciences Europe, 26(1), 1–13. https://doi.org/10.1186/S12302-014-0018-1/FIGURES/7
Rode, M., Klauer, B., Petry, D., Volk, M., Wenk, G., & Wagenschein, D. (2008). Integrated nutrient transport modelling with respect to the implementation of the European WFD: The Weiße Elster Case Study, Germany. Water SA, 34(4), 490–496. https://doi.org/10.4314/wsa.v34i4
Rogelis, M. C., Werner, M., Obregón, N., & Wright, N. (2016). Hydrological model assessment for flood early warning in a tropical high mountain basin. Hydrology and Earth System Sciences Discussions, 2016, 1–36. https://doi.org/10.5194/hess-2016-30
Rouault, G., Candau, J. N., Lieutier, F., Nageleisen, L. M., Martin, J. C., & Warzée, N. (2006). Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Annals of Forest Science, 63(6), 613–624. https://doi.org/10.1051/FOREST:2006044
Rukh, S., Sanders, T. G. M., Krüger, I., Schad, T., & Bolte, A. (2023). Distinct responses of European beech (Fagus sylvatica L.) to drought intensity and length—A review of the impacts of the 2003 and 2018–2019 drought events in Central Europe. Forests, 14(2), 248. https://doi.org/10.3390/F14020248
Running, S., Mu, Q., Zhao, M., & Moreno, A. (2019). MOD16A2GF MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAChttps://doi.org/10.5067/MODIS/MOD16A2GF.006
Sartorius, C., Hillenbrand, T., & Walz, R. (2011). Impact and cost of measures to reduce nutrient emissions from wastewater and storm water treatment in the German Elbe river basin. Regional Environmental Change, 11(2), 377–391. https://doi.org/10.1007/S10113-010-0140-6/FIGURES/4
Saxon State Ministry for Energy, Climate Protection, E. and A. (LFULG). (2016). Blühbeginn des Apfels. https://www.klima.sachsen.de/download/IL5Apfelbluete.pdf. Accessed 1 August 2022
Schuler, L. J., Bugmann, H., & Snell, R. S. (2017). From monocultures to mixed-species forests: Is tree diversity key for providing ecosystem services at the landscape scale? Landscape Ecology, 32(7), 1499–1516. https://doi.org/10.1007/S10980-016-0422-6/FIGURES/7
Schwärzel, K., Menzer, A., Clausnitzer, F., Spank, U., Häntzschel, J., Grünwald, T., et al. (2009). Soil water content measurements deliver reliable estimates of water fluxes: A comparative study in a beech and a spruce stand in the Tharandt forest (Saxony, Germany). Agricultural and Forest Meteorology, 149(11), 1994–2006. https://doi.org/10.1016/J.AGRFORMET.2009.07.006
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
Seppälä, R. (2009). A global assessment on adaptation of forests to climate change. Scandinavian Journal of Forest Research, 24(6), 469–472. https://doi.org/10.1080/02827580903378626
Smets, B., Swinnen, E., & Van Hoolstm, R. (2019). Copernicus global land operations “vegetation and energy” “CGLOPS-1” - product user manual: Dry matter productivity(DMP) - gross dry matter productivity (GDMP) - collection 1km - version 2. Brussels, Belgium. https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_DMP1km-V2_I3.22.pdf
Šrámek, V., Hellebrandová, K. N., & Fadrhonsová, V. (2019). Interception and soil water relation in Norway spruce stands of different age during the contrasting vegetation seasons of 2017 and 2018. Journal of Forest Science, 65(2), 51–60.
Sun, G., Caldwell, P., Noormets, A., McNulty, S. G., Cohen, E., & Myers, J. M., et al. (2011). Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. Journal of Geophysical Research: Biogeosciences, 116(G3), 0–05.https://doi.org/10.1029/2010JG001573
Sun, S., Sun, G., Caldwell, P., McNulty, S., Cohen, E., Xiao, J., & Zhang, Y. (2015a). Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part II assessment results and management implications. Forest Ecology and Management, 353, 269–279. https://doi.org/10.1016/J.FORECO.2015.04.002
Sun, S., Sun, G., Caldwell, P., McNulty, S. G., Cohen, E., Xiao, J., & Zhang, Y. (2015b). Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model. Forest Ecology and Management, 353, 260–268. https://doi.org/10.1016/J.FORECO.2015.03.054
Swinnen, E., Van Hoolst, R., & Toté, C. (2019). Copernicus global land operations “vegetation and energy” quality assessment report for dry matter productivity (DMP) and gross dry matter productivity (GDMP). Collection 1 km, version 2. Brussels, Belgium. https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_DMP1km-V2_I1.11.pdf. Accessed 07 June 2022
Toreti, A., Masante, D., Acosta, N. J., Bavera, D., Cammalleri, C., De, J. A., et al. (2022). Drought in Europe July 2022. Publications Office of the European Union. https://doi.org/10.2760/014884
Trenczek, J., Lühr, O., Eiserbeck, L., Sandhövel, M., & Ibens, D. (2022). Schäden der Dürre- und Hitzeextreme 2018 und 2019. Eine ex-post-Analyse. Projektbericht “Kosten durch Klimawandelfolgen”. https://www.prognos.com/sites/default/files/2022-07/Prognos_KlimawandelfolgenDeutschland_DetailuntersuchungHitzesommer18_19_AP2_3a_.pdf. Accessed 16 Aug 2022
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., et al. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27. https://doi.org/10.1175/2012EI000434.1
Vitolo, C., Di Napoli, C., Di Giuseppe, F., Cloke, H. L., & Pappenberger, F. (2019). Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environment International, 127, 21–34. https://doi.org/10.1016/J.ENVINT.2019.03.008
Weilnhammer, V., Schmid, J., Mittermeier, I., Schreiber, F., Jiang, L., Pastuhovic, V., et al. (2021). Extreme weather events in Europe and their health consequences – A systematic review. International Journal of Hygiene and Environmental Health, 233, 113688. https://doi.org/10.1016/J.IJHEH.2021.113688
Zal, N., Bastrup-Birk, A., Bariamis, G., Scholz, M., Tekidou, A., Kasperidus, H. D., et al. (2015). Water-retention potential of Europe’s forests : a European overview to support natural water-retention measures. European Environment Agency Technical Report 13/2015: Copenhagen, Denmark. https://doi.org/10.2800/790618
Zambrano-Bigiarini M. (2020). hydroTSM: Time series management, analysis and interpolation for hydrological modelling. https://github.com/hzambran/hydroTSM. Accessed 29 June 2022
Zhang, Y., Song, C., Sun, G., Band, L. E., McNulty, S., Noormets, A., et al. (2016). Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agricultural and Forest Meteorology, 223, 116–131. https://doi.org/10.1016/J.AGRFORMET.2016.04.003
Acknowledgements
Special thanks go to Dr Ge Sun and Dr Ning Liu for their invaluable support and advice on applying the WaSSI model. Finally, we thank Prof. Edeltraud Guenther for her constructive comments to improve the manuscript.
Funding
This work is supported by the Federal Ministry of Education and Research (BMBF) in the frame of the funding initiative Regional Information on Climate Action (RegIKlim).
Author information
Authors and Affiliations
Contributions
Abdulhakeem Al-Qubati led in data collection, analysis, and manuscript writing. Lulu Zhang was involved in planning, supervising, and revising the work. Lulu Zhang and Karim Pyarali helped with data collection and analysis. All authors discussed the results and contributed to the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix. Goodness-of-fit metrics.
Appendix. Goodness-of-fit metrics.
In the equations above, \(n\) is the number of monthly measurements; \({M}_{i}\) and \(\overline{M}\) are the measured value in month \(i\), and the mean value of the observation, respectively; \({S}_{i}\) and \(\overline{S}\) are the simulated variable in month \(i\) and the mean value of the simulated variable, respectively. \({\sigma }_{M}\) and \({\sigma }_{S}\) denote the standard deviation of the measured and simulated variables, respectively, while \({\mu }_{M}\) and \({\mu }_{S}\) denote the average of the measured and simulated variables, respectively.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Al-Qubati, A., Zhang, L. & Pyarali, K. Climatic drought impacts on key ecosystem services of a low mountain region in Germany. Environ Monit Assess 195, 800 (2023). https://doi.org/10.1007/s10661-023-11397-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-023-11397-1