Skip to main content

Advertisement

Log in

Teleconnections between ocean–atmosphere circulations and historical integrated drought in the Middle East and North Africa

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the Middle East and North Africa (MENA) with extreme water scarcity worldwide, drought significantly impacts various aspects of the local people. This study uses the empirical multivariate standardized drought index (MSDI), wavelet power spectrum, and a blind source septation technique of independent component analysis (ICA) to unravel linkages between Atlantic- and Pacific-based climate indices and MENA’s drought between Jan 1979 and Dec 2016. It is found that drought in the eastern MENA is more than its western linked to climate indices. PDO, ENSO, and AMO, on the whole, have statistically stronger correlations with the MENA’s drought than NAO (absolute R2 is less than 0.17, 0.22, and 0.21 for interannual, decadal, and interdecadal modes, respectively). The blind sources extracted by ICA confirm the higher impacts of PDO (R2 = 0.39), ENSO (R2 = 0.30), and AMO (R2 = 0.38) on the Middle East’s drought. PDO’s modulation linkage to MENA’s drought occurs from interannual to decadal, and interdecadal variability cycles. ENSO largely impacts the 2–7-year interannual (R2 = 0.40–0.48 for the Middle East) and 8–12-year decadal (R2 = 0.18–0.30) drought cycles, while the PDO more affects 8–12-year decadal (R2 = 0.29–0.58) modes. The interdecadal (30–50-year) variability of MENA’s drought mostly correlates with AMO and PDO. Overall, the interannual droughts are mostly controlled by ENSO while the decadal by PDO. For the interdecadal droughts, PDO and AMO are the most important in the Middle East and the western MENA, respectively. This study highlights that an integrated drought signal is not solely derived from a single climate index since each index may modulate a specific drought variability mode that may differ from other indices. The physical mechanisms behind these observations are further described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The drought data records across the world are accessible in https://amir.eng.uci.edu/, upon requestion. The monthly time series of the climate indices of AMO, Nao, PDO, and ENSO were freely downloaded from NOAA, https://www.ncdc.noaa.gov/teleconnections.

References

  • Al Senafi, F., & Anis, A. (2015). Shamals and climate variability in the Northern Arabian/Persian Gulf from 1973 to 2012. International Journal of Climatology, 35(15), 4509–4528.

    Article  Google Scholar 

  • Alizadeh-Choobari, O., & Adibi, P. (2019). Impacts of large-scale teleconnections on climate variability over Southwest Asia. Dynam Atmos Ocean, 86, 41–51.

    Article  Google Scholar 

  • Alizadeh-Choobari, O., & Najafi, M. S. (2018). Climate variability in Iran in response to the diversity of the El Niño-Southern Oscillation. International Journal of Climatology, 38(11), 4239–4250.

    Article  Google Scholar 

  • Athar, H. (2015). Teleconnections and variability in observed rainfall over Saudi Arabia during 1978–2010. Atmospheric Science Letters, 16(3), 373–379.

    Article  Google Scholar 

  • Barlow, M., Cullen, H., & Lyon, B. (2002). Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. Journal of Climate, 15(7), 697–700.

    Article  Google Scholar 

  • Barlow, M., Zaitchik, B., Paz, S., Black, E., Evans, J., & Hoell, A. (2016). A review of drought in the Middle East and southwest Asia. Journal of Climate, 29(23), 8547–8574.

    Article  Google Scholar 

  • Barlow, M. (2011). Africa and west Asia. In W. K. M. Lau & D. E. Waliser (Eds.), Intraseasonal Variability in the Atmosphere-Ocean Climate System (pp. 477–493). Springer Praxis.

    Google Scholar 

  • Black, E. (2012). The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. International Journal of Climatology, 32(11), 1654–1664.

    Article  Google Scholar 

  • Bucchignani, E., Mercogliano, P., Panitz, H. J., & Montesarchio, M. (2018). Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Advances in Climate Change Research, 9(1), 66–80.

    Article  Google Scholar 

  • Cullen, H. M., & Demenocal, P. B. (2000). North Atlantic influence on Tigris-Euphrates streamflow. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(8), 853–863.

    Article  Google Scholar 

  • Cullen, H. M., Kaplan, A., Arkin, P. A., & Demenocal, P. B. (2002). Impact of the North Atlantic oscillation on Middle Eastern climate and streamflow. Climatic Change, 55(3), 315–338.

    Article  Google Scholar 

  • Cunha, A. P. M., Zeri, M., Deusdará Leal, K., Costa, L., Cuartas, L. A., Marengo, J. A., ... & Ribeiro-Neto, G. (2019). Extreme drought events over Brazil from 2011 to 2019. Atmosphere, 10(11), 642

  • Donat, M. G., Peterson, T. C., Brunet, M., King, A. D., Almazroui, M., Kolli, R. K., ... & Al Shekaili, M. N. (2014). Changes in extreme temperature and precipitation in the Arab region: Long‐term trends and variability related to ENSO and NAO. International Journal of Climatology34(3), 581–592.

  • Droogers, P., Immerzeel, W. W., Terink, W., Hoogeveen, J., Bierkens, M. F. P., Van Beek, L. P. H., & Debele, B. (2012). Water resources trends in Middle East and North Africa towards 2050. Hydrology and Earth System Sciences, 16(9), 3101–3114.

    Article  Google Scholar 

  • Evans, J. P., & Smith, R. B. (2006). Water vapor transport and the production of precipitation in the eastern Fertile Crescent. Journal of Hydrometeorology, 7(6), 1295–1307.

    Article  Google Scholar 

  • Faour, G., Mhawej, M., & Fayad, A. (2016). Detecting changes in vegetation trends in the Middle East and North Africa (MENA) region using SPOT vegetation. Cybergeo: European Journal of Geographyhttps://doi.org/10.4000/cybergeo.27620.

  • Fragaszy, S. R., Jedd, T., Wall, N., Knutson, C., Fraj, M. B., Bergaoui, K., ... & McDonnell, R. (2020). Drought monitoring in the Middle East and North Africa (MENA) region: Participatory engagement to inform early warning systems. Bulletin of the American Meteorological Society, 101(7), E1148-E1173.

  • Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566.

    Article  Google Scholar 

  • Gutzler, D. S., Kann, D. M., & Thornbrugh, C. (2002). Modulation of ENSO-based long-lead outlooks of southwestern US winter precipitation by the Pacific decadal oscillation. Weather and Forecasting, 17(6), 1163–1172.

    Article  Google Scholar 

  • Hao, Z., & AghaKouchak, A. (2014). A nonparametric multivariate multi-index drought monitoring framework. Journal of Hydrometeorology, 15(1), 89–101.

    Article  Google Scholar 

  • Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated drought monitoring and prediction system. Scientific Data, 1(1), 1–10.

    Article  Google Scholar 

  • Heim, R. R., Jr. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149–1166.

    Article  Google Scholar 

  • Hoell, A., Barlow, M., & Saini, R. (2012). The leading pattern of intraseasonal and interannual Indian Ocean precipitation variability and its relationship with Asian circulation during the boreal cold season. Journal of Climate, 25(21), 7509–7526.

    Article  Google Scholar 

  • Hoell, A., Barlow, M., & Saini, R. (2013). Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. Journal of Climate, 26(22), 8850–8867.

    Article  Google Scholar 

  • Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    Article  CAS  Google Scholar 

  • Hyvarinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  CAS  Google Scholar 

  • IPCC. (2013). Annex I: Atlas of global and regional climate projections. Climate change 2013: The physical science basis. T. F. Stocker et al., Eds., Cambridge University Press, 1311–1394. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_AnnexI_FINAL-1.pdf.

  • Jiang, P., Yu, Z., & Acharya, K. (2019). Drought in the western United States: Its connections with large-scale oceanic oscillations. Atmosphere, 10(2), 82.

    Article  Google Scholar 

  • Jutten, C., & Karhunen, J. (2004). Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures. International Journal of Neural Systems, 14(05), 267–292.

    Article  Google Scholar 

  • Karami, N. (2019). The modality of climate change in the Middle East: Drought or drying up? The Journal of Interrupted Studies, 2(1), 118–140.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Le, T., & Bae, D. H. (2020). Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations. Hydrology and Earth System Sciences, 24(3), 1131–1143.

    Article  Google Scholar 

  • Le, T., Ha, K. J., & Bae, D. H. (2021). Projected response of global runoff to El Niño-Southern oscillation. Environmental Research Letters, 16(8), 084037.

    Article  Google Scholar 

  • Le, T., & Bae, D. H. (2022). Causal impacts of El Niño–Southern oscillation on global soil moisture over the period 2015–2100. Earth's Future, 10(3), e2021EF002522.

  • Lee, T. W. (1998). Independent component analysis. Independent component analysis, Springer, 1998, pp. 27–66.

  • Lee, T., Ouarda, T. B. M. J., & Li, J. (2013). An orchestrated climate song from the Pacific and Atlantic Oceans and its implication on climatological processes. International journal of climatology, 33(4), 1015–1020.

    Article  Google Scholar 

  • Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., & Zittis, G. (2016). Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137(1), 245–260.

    Article  Google Scholar 

  • Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., El Maayar, M., Giannakopoulos, C., ... & Xoplaki, E. (2012). Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic change, 114, 667–687.

  • Li, Y., & Lau, N. C. (2012). Impact of ENSO on the atmospheric variability over the North Atlantic in late winter—Role of transient eddies. Journal of Climate, 25(1), 320–342.

    Article  CAS  Google Scholar 

  • Mantua, N., & Hare, S. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58(1), 35–44. https://doi.org/10.1023/A:1015820616384

    Article  Google Scholar 

  • Mariotti, A., Ballabrera-Poy, J., & Zeng, N. (2005). Tropical influence on Euro-Asian autumn rainfall variability. Climate Dynamics, 24(5), 511–521.

    Article  Google Scholar 

  • McCabe, G. J., Palecki, M. A., & Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences, 101(12), 4136–4141.

    Article  CAS  Google Scholar 

  • Mo, K. C. (2011). Drought onset and recovery over the United States. Journal of Geophysical Research: Atmospheres116(D20).

  • Nazemosadat, M. J., & Cordery, I. (2000). On the relationships between ENSO and autumn rainfall in Iran. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(1), 47–61.

    Article  Google Scholar 

  • Nazemosadat, M. J., & Ghasemi, A. R. (2004). Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. Journal of Climate, 17(20), 4005–4018.

    Article  Google Scholar 

  • Niranjan Kumar, K., & Ouarda, T. B. M. J. (2014). Precipitation variability over UAE and global SST teleconnections. Journal of Geophysical Research: Atmospheres, 119(17), 10–313.

    Google Scholar 

  • Niranjan Kumar, K., Ouarda, T. B., Sandeep, S., & Ajayamohan, R. S. (2016). Wintertime precipitation variability over the Arabian Peninsula and its relationship with ENSO in the CAM4 simulations. Climate dynamics, 47, 2443–2454.

    Article  Google Scholar 

  • Notaro, M., Yu, Y., & Kalashnikova, O. V. (2015). Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. Journal of Geophysical Research: Atmospheres, 120(19), 10–229.

    Google Scholar 

  • Octaviani, M., Stemmler, I., Lammel, G., & Graf, H. F. (2015). Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environmental Science & Technology, 49(6), 3593–3602.

    Article  CAS  Google Scholar 

  • Paparrizos, J., Gravano, L. (2016). k-shape: Efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1855–1870. ACM SIGMOD Record, 45(1), 69–76. https://doi.org/10.1145/2949741.2949758.

  • Price, C., Stone, L., Huppert, A., Rajagopalan, B., & Alpert, P. (1998). A possible link between El Niño and precipitation in Israel. Geophysical Research Letters, 25(21), 3963–3966.

    Article  CAS  Google Scholar 

  • Rezaei, A. (2021). Ocean-atmosphere circulation controls on integrated meteorological and agricultural drought over Iran. Journal of Hydrology, 603, 126928.

    Article  Google Scholar 

  • Rezaei, A. (2022). Large-scale climate variability footprint in water levels of alluvial aquifers across Iran. Theoretical and Applied Climatology, 147(3), 1525–1543.

    Article  Google Scholar 

  • Rezaei, A., & Gurdak, J. J. (2020). Large-scale climate variability controls on climate, vegetation coverage, lake and groundwater storage in the Lake Urmia watershed using SSA and wavelet analysis. Science of the Total Environment, 724, 138273.

    Article  CAS  Google Scholar 

  • Shlens, J. (2014). A tutorial on independent component analysis. arXiv preprint arXiv:1404.2986.

  • Sun, C., Li, J., & Jin, F. F. (2015). A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dynamics, 45, 2083–2099.

    Article  Google Scholar 

  • Sung, M. K., An, S. I., Kim, B.-M., & Woo, S. H. (2014). A physical mechanism of the precipitation dipole in the western United States based on PDO-storm track relationship. Geophysical Research Letters, 41(13), 4719–4726.

    Article  Google Scholar 

  • Tharwat, A. (2021). Independent component analysis: An introduction. Applied Computing and Informatics, 17(2), 222–249.

    Article  Google Scholar 

  • Wang, S., Huang, J., He, Y., & Guan, Y. (2014). Combined effects of the Pacific decadal oscillation and El Niño-southern oscillation on global land dry–wet changes. Scientific Reports, 4(1), 1–8.

    Google Scholar 

  • Wilhite, D. A. (2005). Drought and water crises: Science, technology, and management issues. Taylor and Francis, 432 pp. 9780429120091. https://doi.org/10.1201/9781420028386.

  • Yang, W., & Zurbenko, I. (2010). Kolmogorov-Zurbenko filters. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 340–351.

    Article  Google Scholar 

  • Zhao, Y., Wang, L., Huang, T., Mo, J., Zhang, X., Gao, H., & Ma, J. (2017). Feature extraction of climate variability, seasonality, and long-term change signals in persistent organic pollutants over the Arctic and the Great Lakes. Journal of Geophysical Research: Atmospheres, 122(16), 8921–8939.

    Article  CAS  Google Scholar 

  • Zhu, Y., Li, B., Lian, L., Wu, T., Wang, J., Dong, F., & Wang, Y. (2022). Quantifying the effects of climate variability, land-use changes, and human activities on drought based on the SWAT–PDSI model. Remote Sensing, 14(16), 3895.

    Article  Google Scholar 

  • Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., ... & Lelieveld, J. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3), e2021RG000762.

Download references

Acknowledgements

The author thanks the Vice Chancellor for Research at IASBS, Zanjan, Iran.

Funding

This work is financially implemented by my own means.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualizing, data analysis, methodology, and writing and editing all have been done by Abolfazl Rezaei.

Corresponding author

Correspondence to Abolfazl Rezaei.

Ethics declarations

Ethics approval

This is original research, and it (in whole or in part) has not been previously published in any journal or presented in any conference in any language.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 539 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A. Teleconnections between ocean–atmosphere circulations and historical integrated drought in the Middle East and North Africa. Environ Monit Assess 195, 775 (2023). https://doi.org/10.1007/s10661-023-11386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11386-4

Keywords

Navigation