Skip to main content

Advertisement

Log in

Investigating heavy-metal soil contamination state on the rate of stomach cancer using remote sensing spectral features

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heavy metal (HM) contamination in agricultural soils has been a serious environmental and health problem in the past decades. High concentration of HM threatens human health and can be a risk factor for many diseases such as stomach cancer. In order to investigate the relationship between HM content and stomach cancer, the under-study area should be adequately large so that the possible relationship between soil contamination and the patients’ distribution can be studied. Examining soil content in a vast area with traditional techniques like field sampling is neither practical nor possible. However, integrating remote sensing imagery and spectrometry can provide an unexpensive and effective substitute for detecting HM in soil. To estimate the concentration of arsenic (As), chrome (Cr), lead (Pb), nickel (Ni), and iron (Fe) in agricultural soil in parts of Golestan province with Hyperion image and soil samples, spectral transformations were used to preprocess and highlight spectral features, and Spearman’s correlation was calculated to select the best features for detecting each metal. The generalized regression neural network (GRNN) was trained with the chosen spectral features and metal containment, and the trained GRNN generated the pollution maps from the Hyperion image. Mean concentration of Cr, As, Fe, Ni, and Pb was estimated at 40.22, 11.8, 21,530.565, 39.86, and 0.5 mg/kg, respectively. Concentrations of As and Fe were near the standard limit and overlying the pollution maps, and patients’ distribution showed high concentrations of these metals can be considered as stomach cancer risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author Mahmod Reza Sahebi, upon reasonable request.

References

  • Abbas, A. M., Kredy, H. M., & Hasan, M. S. (2021). Selected trace elements and heavy metals in the serum of postoperative gastric cancer patients and their relationship to CEA. Journal of Communicable Diseases (E-ISSN: 2581–351X & P-ISSN: 0019–5138), 53(3), 220–26.

  • Amin, M. M., Kazemi, A., Eskandari, O., Ghias, M., Fatehizadeh, A., & Zare, M. R. (2015). Geographical distribution of stomach cancer related to heavy metals in Kurdistan, Iran. International Journal of Environmental Health Engineering, 4(1), 12. https://doi.org/10.4103/2277-9183.157700

    Article  Google Scholar 

  • Behnampour, N., Hajizadeh, E., Zayeri, F., & Semnani, S. (2014). Modeling of influential predictors of gastric cancer incidence rates in Golestan province, North Iran. Asian Pacific Journal of Cancer Prevention: APJCP, 15(3), 1111–1117. https://doi.org/10.7314/apjcp.2014.15.3.1111

    Article  Google Scholar 

  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114(April), 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

    Article  Google Scholar 

  • Chabrillat, Sabine, Eyal Ben-Dor, Raphael A. Viscarra Rossel, and José A. M. Demattê. 2013. Quantitative soil spectroscopy. Applied and Environmental Soil Science, 2013(March), e616578. https://doi.org/10.1155/2013/616578

  • Cigizoglu, H. K., & Alp, M. (2006). Generalized regression neural network in modelling river sediment yield. Advances in Engineering Software, 37(2), 63–68. ISSN 0965–9978. https://doi.org/10.1016/j.advengsoft.2005.05.002

  • Collatuzzo, G., Etemadi, A., Sotoudeh, M., Nikmanesh, A., Poustchi, H., Khoshnia, M., Pourshams, A., et al. (2022). Meat consumption and risk of esophageal and gastric cancer in the Golestan Cohort Study, Iran. International Journal of Cancer, 151(7), 1005–1012. https://doi.org/10.1002/ijc.34056

    Article  CAS  Google Scholar 

  • Dong, J., Dai, W., Jiren, Xu., & Li, S. (2016). Spectral estimation model construction of heavy metals in mining reclamation areas. International Journal of Environmental Research and Public Health, 13(7), 640. https://doi.org/10.3390/ijerph13070640

    Article  CAS  Google Scholar 

  • Dong, W. Q., & Y., Y. Cui, and X. Liu. (2001). Instances of soil and crop heavy metal contamination in China. Soil and Sediment Contamination: An International Journal, 10(5), 497–510. https://doi.org/10.1080/20015891109392

    Article  Google Scholar 

  • Douglas, R. K., Nawar, S., Cipullo, S., Alamar, M. C., Coulon, F., & Mouazen, A. M. (2018). Evaluation of Vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils. Science of the Total Environment, 626(June), 1108–1120. https://doi.org/10.1016/j.scitotenv.2018.01.122

    Article  CAS  Google Scholar 

  • Fei, X., Lou, Z., Christakos, G., Ren, Z., Liu, Q., & Lv, X. (2018). The association between heavy metal soil pollution and stomach cancer: A case study in Hangzhou City, China. Environmental Geochemistry and Health, 40(6), 2481–2490. https://doi.org/10.1007/s10653-018-0113-0

    Article  CAS  Google Scholar 

  • Ghasemi-Kebria, F., Amiriani, T., Fazel, A., Naimi-Tabiei, M., Norouzi, A., Khoshnia, M., & Malekzadeh, R., et al. (2020). Trends in the incidence of stomach cancer in Golestan province, a high-risk area in Northern Iran, 2004–2016. Archives of Iranian Medicine, 23(6), 362–68. https://doi.org/10.34172/aim.2020.28

  • Gholizadeh, A., Borůvka, L., Saberioon, M., & Vašát, R. (2016). A memory-based learning approach as compared to other data mining algorithms for the prediction of soil texture using diffuse reflectance spectra. Remote Sensing, 8(4), 341. https://doi.org/10.3390/rs8040341

    Article  Google Scholar 

  • Goodarzi, R., Mokhtarzade, M., & M. Javad Valadan Zoej. (2015). A robust fuzzy neural network model for soil lead estimation from spectral features. Remote Sensing, 7(7), 8416–8435. https://doi.org/10.3390/rs70708416

    Article  Google Scholar 

  • Guo, P.-T., Li, M.-F., Luo, W., Tang, Q.-F., Liu, Z.-W., & Lin, Z.-M. (2015). Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma, 237–238(January), 49–59. https://doi.org/10.1016/j.geoderma.2014.08.009

    Article  CAS  Google Scholar 

  • Han, A., Xiaoling, Lu., Qing, S., Bao, Y., Bao, Y., Ma, Q., Liu, X., & Zhang, J. (2021). Rapid determination of low heavy metal concentrations in grassland soils around mining using Vis–NIR spectroscopy: a case study of Inner Mongolia, China. Sensors (basel, Switzerland), 21(9), 3220. https://doi.org/10.3390/s21093220

    Article  CAS  Google Scholar 

  • Hong, Y., Shen, R., Cheng, H., Chen, S., Chen, Y., Guo, L., He, J., Liu, Y., Yu, L., Liu, Y. (2019a). Cadmium concentration estimation in peri-urban agricultural soils: using reflectance spectroscopy, soil auxiliary information, or a combination of both? Geoderma, 354(November), 113875. https://doi.org/10.1016/j.geoderma.2019.07.033

  • Hong, Y., Shen, R., Cheng, H., Chen, Y., Zhang, Y., Liu, Y., Zhou, M., Lei, Yu., Liu, Yi., & Liu, Y. (2019b). Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Science of the Total Environment, 651(February), 1969–1982. https://doi.org/10.1016/j.scitotenv.2018.09.391

    Article  CAS  Google Scholar 

  • Ilic, M., & Ilic, I. (2022). Epidemiology of stomach cancer. World Journal of Gastroenterology, 28(12), 1187–1203. https://doi.org/10.3748/wjg.v28.i12.1187

    Article  Google Scholar 

  • Kamel, A. H., Afan, H. A., Sherif, M., Ahmed, A. N., & El-Shafie, A. (2021). RBFNN versus GRNN modeling approach for sub-surface evaporation rate prediction in arid region. Sustainable Computing: Informatics and Systems30, 100514. ISSN 2210–5379. https://doi.org/10.1016/j.suscom.2021.100514

  • Kemper, T., & Sommer, S. (2002). Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology, 36(12), 2742–2747. https://doi.org/10.1021/es015747j

    Article  CAS  Google Scholar 

  • Kooistra, L., Leuven, R. S. E. W., Wehrens, R., Nienhuis, P. H., & Buydens, L. M. C. (2003). A comparison of methods to relate grass reflectance to soil metal contamination. International Journal of Remote Sensing, 24(24), 4995–5010. https://doi.org/10.1080/0143116031000080769

    Article  Google Scholar 

  • Liu, K., Zhao, D., Fang, J. Y. et al. (2017). Estimation of heavy-metal contamination in soil using remote sensing spectroscopy and a statistical approach. Journal of the Indian Society of Remote Sensing45, 805–813. https://doi.org/10.1007/s12524-016-0648-4

  • Liu, Z., Lu, Y., Peng, Y., Zhao, L., Wang, G., & Hu, Y. (2019a). Estimation of soil heavy metal content using hyperspectral data. Remote Sensing, 11, 1464. https://doi.org/10.3390/rs11121464

    Article  Google Scholar 

  • Liu, Z., Ying, Lu., Peng, Y., Zhao, Li., Wang, G., & Yueming, Hu. (2019b). Estimation of soil heavy metal content using hyperspectral data. Remote Sensing, 11(12), 1464. https://doi.org/10.3390/rs11121464

    Article  Google Scholar 

  • Luo, W., & Fu, Z. (2013). Application of generalized regression neural network to the agricultural machinery demand forecasting. Applied Mechanics and Materials, 278–280, 2177–2182. https://doi.org/10.4028/www.scientific.net/AMM.278-280.2177

    Article  Google Scholar 

  • Marouf, B. H. (2018). Association between serum heavy metals level and cancer incidence in Darbandikhan and Kalar Area, Kurdistan Region, Iraq. Nigerian Journal of Clinical Practice, 21(6), 766–771. https://doi.org/10.4314/njcp.v21i6

    Article  CAS  Google Scholar 

  • Mashimbye, Z. E., Cho, M. A., Nell, J. P., & W. P. De clercq, A. Van niekerk, and D. P. Turner. (2012). Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data: A case study of selected South African soils. Pedosphere, 22(5), 640–649. https://doi.org/10.1016/S1002-0160(12)60049-6

    Article  Google Scholar 

  • Peng, Yi., Kheir, R. B., Adhikari, K., Malinowski, R., Greve, M. B., Knadel, M., & Greve, M. H. (2016). Digital mapping of toxic metals in qatari soils using remote sensing and ancillary data. Remote Sensing, 8(12), 1003. https://doi.org/10.3390/rs8121003

    Article  Google Scholar 

  • Pound, M. P., Atkinson, J. A., Townsend, A. J., et al. (2017). Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience, 6(10), 1–10. https://doi.org/10.1093/gigascience/gix083. PMID:29020747;PMCID:PMC5632296

  • Pourshams, A., Khademi, H., Malekshah, A. F., Islami, F., Nouraei, M., Sadjadi, A. R., Jafari, E., et al. (2010). Cohort profile: the Golestan Cohort Study–a prospective study of oesophageal cancer in Northern Iran. International Journal of Epidemiology, 39(1), 52–59. https://doi.org/10.1093/ije/dyp161

    Article  Google Scholar 

  • Pyo, J., Hong, S. M., Kwon, Y. S., Kim, M. S., & Cho, K. H. (2020). Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Science of The Total Environment, 741, 140162. ISSN 0048–9697. https://doi.org/10.1016/j.scitotenv.2020.140162

  • Rathod, P. H., Rossiter, D. G., Noomen, M. F., & van der Meer, F. D. (2013). Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. International Journal of Phytoremediation, 15(5), 405–426. https://doi.org/10.1080/15226514.2012.702805

    Article  CAS  Google Scholar 

  • Shi, T., Chen, Y., Liu, Y., & Guofeng, Wu. (2014). Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials, 265(January), 166–176. https://doi.org/10.1016/j.jhazmat.2013.11.059

    Article  CAS  Google Scholar 

  • Siegel, R., Ward, E., Brawley, O., & Jemal, A. (2011). Cancer statistics, 2011. CA: A Cancer Journal for Clinicians, 61(4), 212–36. https://doi.org/10.3322/caac.20121

  • Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568–576. https://doi.org/10.1109/72.97934

    Article  CAS  Google Scholar 

  • Tian, Y., Zhang, J., Yao, X., Cao, W., & Zhu, Y. (2013). Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma, 202–203(July), 161–170. https://doi.org/10.1016/j.geoderma.2013.03.018

    Article  CAS  Google Scholar 

  • Viscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006). Determining the composition of mineral-organic mixes using UV–Vis–NIR diffuse reflectance spectroscopy. Geoderma, 137(1), 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004

    Article  CAS  Google Scholar 

  • Wang, F., Gao, J., & Zha, Y. (2018). Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 136(February), 73–84. https://doi.org/10.1016/j.isprsjprs.2017.12.003

    Article  Google Scholar 

  • Wang, J., Cui, L., Gao, W., Shi, T., Chen, Y., & Gao, Y. (2014). Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma, 216(March), 1–9. https://doi.org/10.1016/j.geoderma.2013.10.024

    Article  CAS  Google Scholar 

  • Wang, M., Song, H., Chen, W.-Q., Ciyong, Lu., Qianshen, Hu., Ren, Z., Yang, Y., Yanjun, Xu., Zhong, A., & Ling, W. (2011). Cancer mortality in a Chinese population surrounding a multi-metal sulphide mine in Guangdong province: An ecologic study. BMC Public Health, 11(1), 319. https://doi.org/10.1186/1471-2458-11-319

    Article  Google Scholar 

  • Wei, L., Yuan, Z., Zhong, Y., Yang, L., Xin, Hu., & Zhang, Y. (2019). An improved gradient boosting regression tree estimation model for soil heavy metal (arsenic) pollution monitoring using hyperspectral remote sensing. Applied Sciences, 9(9), 1943. https://doi.org/10.3390/app9091943

    Article  CAS  Google Scholar 

  • Wu, Y., Chen, J., Xinmin, Wu., Tian, Q., Ji, J., & Qin, Z. (2005). Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Applied Geochemistry, 20(6), 1051–1059. https://doi.org/10.1016/j.apgeochem.2005.01.009

    Article  CAS  Google Scholar 

  • Xu, X., Chen, S., Ren, L., Han, C., Lv, D., Zhang, Y., & Ai, F. (2021). Estimation of heavy metals in agricultural soils using Vis-NIR spectroscopy with fractional-order derivative and generalized regression neural network. Remote Sensing, 13(14), 2718. https://doi.org/10.3390/rs13142718

    Article  Google Scholar 

  • Xu, X., Chen, S., Zhengyuan, Xu., Yan, Yu., Zhang, S., & Dai, R. (2020). Exploring appropriate preprocessing techniques for hyperspectral soil organic matter content estimation in black soil area. Remote Sensing, 12(22), 3765. https://doi.org/10.3390/rs12223765

    Article  Google Scholar 

  • Yan, H., Mou, Y., Xuefeng, Xu., Jinfeng, Du., Wang, R., & Liu, P. (2019). A comparative assessment of predicting CH4 adsorption on different activated carbons using generalized regression neural network (GRNN), and adaptive network-based fuzzy inference system (ANFIS). Energy Sources, Part a: Recovery, Utilization, and Environmental Effects, 41(16), 1983–1992. https://doi.org/10.1080/15567036.2018.1548527

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhao, Z., & Zheng, J. (2020). CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. Journal of Hydrology, 588(September), 125087. https://doi.org/10.1016/j.jhydrol.2020.125087

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kimia Mohammadnezhad and Mahmod Reza Sahebi wrote the main manuscript with support from Sudabeh Alatab and Alireza Sajadi. Kimia Mohammadnezhad and Mahmod Reza Sahebi planned and carried out the simulations. Sudabeh Alatab and Alireza Sajadi verified the results related to stomach cancer. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mahmod Reza Sahebi.

Ethics declarations

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadnezhad, K., Sahebi, M.R., Alatab, S. et al. Investigating heavy-metal soil contamination state on the rate of stomach cancer using remote sensing spectral features. Environ Monit Assess 195, 583 (2023). https://doi.org/10.1007/s10661-023-11234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11234-5

Keywords

Navigation