Abstract
Detailed wetland inventories and information about the spatial arrangement and the extent of wetland types across the Earth’s surface are crucially important for resource assessment and sustainable management. In addition, it is crucial to update these inventories due to the highly dynamic characteristics of the wetlands. Remote sensing technologies capturing high-resolution and multi-temporal views of landscapes are incredibly beneficial in wetland mapping compared to traditional methods. Taking advantage of the Google Earth Engine’s computational power and multi-source earth observation data from Sentinel-1 multi-spectral sensor and Sentinel-2 radar, we generated a 10 m nationwide wetlands inventory map for Iran. The whole country is mapped using an object-based image processing framework, containing SNIC superpixel segmentation and a Random Forest classifier that was performed for four different ecological zones of Iran separately. Reference data was provided by different sources and through both field and office-based methods. Almost 70% of this data was used for the training stage and the other 30% for evaluation. The whole map overall accuracy was 96.39% and the producer’s accuracy for wetland classes ranged from nearly 65 to 99%. It is estimated that 22,384 km2 of Iran are covered with water bodies and wetland classes, and emergent and shrub-dominated are the most common wetland classes in Iran. Considering the water crisis that has been started in Iran, the resulting ever-demanding map of Iranian wetland sites offers remarkable information about wetland boundaries and spatial distribution of wetland species, and therefore it is helpful for both governmental and commercial sectors.
This is a preview of subscription content, access via your institution.












Availability of data and material
Publicly available datasets were analyzed in this study. These datasets can be found here: https://rslab.ut.ac.ir/.
Code availability
Not applicable.
References
Achanta, R., & Susstrunk, S. (2017). Superpixels and polygons using simple non-iterative clustering. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4895–4904). Presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE. https://doi.org/10.1109/CVPR.2017.520
Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecology and Management, 18(3), 281–296. https://doi.org/10.1007/s11273-009-9169-z
Alibakhshi, S., Groen, T. A., Rautiainen, M., & Naimi, B. (2017). Remotely-sensed early warning signals of a critical transition in a wetland ecosystem. Remote Sensing, 9(4), 352. https://doi.org/10.3390/rs9040352
Amani, M., Kakooei, M., Ghorbanian, A., Warren, R., Mahdavi, S., & Brisco, B., et al. (2022). Forty years of wetland status and trends analyses in the Great Lakes using Landsat archive imagery and Google Earth Engine. Remote Sensing, 14(15), 3778. https://doi.org/10.3390/rs14153778
Amani, M., Salehi, B., Mahdavi, S., Granger, J. E., Brisco, B., & Hanson, A. (2017). Wetland classification using multi-source and multi-temporal optical remote sensing data in Newfoundland and Labrador. Canada. Canadian Journal of Remote Sensing, 43(4), 360–373. https://doi.org/10.1080/07038992.2017.1346468
Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 11(1), 9135. https://doi.org/10.1038/s41598-021-88522-y
Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., & Hanssen, R. F. (2012). ESA’s sentinel missions in support of Earth system science. Remote Sensing of Environment, 120, 84–90. https://doi.org/10.1016/j.rse.2011.07.023
Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Chopra, R., Verma, V. K., & Sharma, P. K. (2001). Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India, through remote sensing. International Journal of Remote Sensing, 22(1), 89–98. https://doi.org/10.1080/014311601750038866
Corcoran, J. M., Knight, J. F., & Gallant, A. L. (2013). Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in Northern Minnesota. Remote Sensing, 5(7), 3212–3238. https://doi.org/10.3390/rs5073212
Cowardin, L. M. (1979). Classification of wetlands and deepwater habitats of the United States. Fish and Wildlife Service, US Department of the Interior.
Cox, C. (1992). Satellite imagery, aerial photography and wetland archaeology: An interim report on an application of remote sensing to wetland archaeology: The pilot study in Cumbria. England. World Archaeology, 24(2), 249–267. https://doi.org/10.1080/00438243.1992.9980206
Dabboor, M., White, L., Brisco, B., & Charbonneau, F. (2015). Change detection with compact polarimetric SAR for monitoring wetlands. Canadian Journal of Remote Sensing, 41(5), 408–417. https://doi.org/10.1080/07038992.2015.1104634
Durieux, L., Kropáček, J., de Grandi, G. D., & Achard, F. (2007). Object-oriented and textural image classification of the Siberia GBFM radar mosaic combined with MERIS imagery for continental scale land cover mapping. International Journal of Remote Sensing, 28(18), 4175–4182. https://doi.org/10.1080/01431160701236837
Gallant, A. L., Kaya, S. G., White, L., Brisco, B., Roth, M. F., Sadinski, W., & Rover, J. (2014). Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data. Water, 6(3), 694–722. https://doi.org/10.3390/w6030694
Gessner, U., Machwitz, M., Esch, T., Tillack, A., Naeimi, V., Kuenzer, C., & Dech, S. (2015). Multi-sensor mapping of West African land cover using MODIS, ASAR and TanDEM-X/TerraSAR-X data. Remote Sensing of Environment, 164, 282–297. https://doi.org/10.1016/j.rse.2015.03.029
Ghimire, B., Rogan, J., & Miller, J. (2010). Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 1(1), 45–54. https://doi.org/10.1080/01431160903252327
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
Grenier, M., Labrecque, S., Garneau, M., & Tremblay, A. (2008). Object-based classification of a SPOT-4 image for mapping wetlands in the context of greenhouse gases emissions: The case of the Eastmain region, Québec. Canada. Canadian Journal of Remote Sensing, 34(sup2), S398–S413. https://doi.org/10.5589/m08-049
Guo, L., Chehata, N., Mallet, C., & Boukir, S. (2011). Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 56–66. https://doi.org/10.1016/j.isprsjprs.2010.08.007
Hemati, M. A., Hasanlou, M., Mahdianpari, M., & Mohammadimanesh, F. (2021a). Wetland mapping of northern provinces of Iran using Sentinel-1 and Sentinel-2 in Google Earth Engine. In 2021a IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 96–99). Presented at the IGARSS 2021a - 2021a IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium: IEEE. https://doi.org/10.1109/IGARSS47720.2021.9554984
Hemati, M., Hasanlou, M., Mahdianpari, M., & Mohammadimanesh, F. (2021b). A systematic review of Landsat data for change detection applications: 50 years of monitoring the earth. Remote Sensing, 13(15), 2869. https://doi.org/10.3390/rs13152869
Hemati, M., Mahdianpari, M., Hasanlou, M., & Mohammadimanesh, F. (2022). Iranian wetland hydroperiod change detection using an unsupervised method on 20 years of Landsat data within the Google Earth Engine. In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 6209–6212). Presented at the IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia: IEEE. https://doi.org/10.1109/IGARSS46834.2022.9884716
Hopkinson, C., Fuoco, B., Grant, T., Bayley, S. E., Brisco, B., & MacDonald, R. (2020). Wetland hydroperiod change along the Upper Columbia River floodplain, Canada, 1984 to 2019. Remote Sensing, 12(24), 4084. https://doi.org/10.3390/rs12244084
Hosseiny, B., Mahdianpari, M., Brisco, B., Mohammadimanesh, F., & Salehi, B. (2022). WetNet: A spatial–temporal ensemble deep learning model for wetland classification using Sentinel-1 and Sentinel-2. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2021.3113856
Kharazmi, R., Tavili, A., Rahdari, M. R., Chaban, L., Panidi, E., & Rodrigo-Comino, J. (2018). Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland. Iran. Environmental Monitoring and Assessment, 190(6), 356. https://doi.org/10.1007/s10661-018-6726-z
Kouhgardi, E., Hemati, M., Shakerdargah, E., Shiri, H., & Mahdianpari, M. (2022). Monitoring shoreline and land use/land cover changes in sandbanks provincial park using remote sensing and climate data. Water, 14(22), 3593. https://doi.org/10.3390/w14223593
Li, J., & Chen, W. (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26(22), 5051–5069. https://doi.org/10.1080/01431160500166516
Mahdianpari, M., Brisco, B., Granger, J. E., Mohammadimanesh, F., Salehi, B., & Banks, S., et al. (2020a). The second generation Canadian wetland inventory map at 10 meters resolution using Google Earth Engine. Canadian Journal of Remote Sensing, 46(3), 360–375. https://doi.org/10.1080/07038992.2020.1802584
Mahdianpari, M., Brisco, B., Granger, J., Mohammadimanesh, F., Salehi, B., Homayouni, S., & Bourgeau-Chavez, L. (2021). The third generation of Pan-Canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8789–8803. https://doi.org/10.1109/JSTARS.2021.3105645
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., & Gill, E., et al. (2020b). Big data for a big country: The first generation of Canadian wetland inventory map at a spatial resolution of 10-m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Canadian Journal of Remote Sensing, 46(1), 15–33. https://doi.org/10.1080/07038992.2019.1711366
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. (2019). The first wetland inventory map of Newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Remote Sensing, 11(1), 43. https://doi.org/10.3390/rs11010043
Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & Motagh, M. (2017). Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 13–31. https://doi.org/10.1016/j.isprsjprs.2017.05.010
Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., & Jia, M., et al. (2020). National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 11–25. https://doi.org/10.1016/j.isprsjprs.2020.03.020
Millennium Ecosystem Assessment. (2005). Retrieved May 2, 2021, from https://www.millenniumassessment.org/en/index.html
Minaei, M., & Kainz, W. (2016). Watershed land cover/land use mapping using remote sensing and data mining in Gorganrood. Iran. ISPRS International Journal of Geo-Information, 5(5), 57. https://doi.org/10.3390/ijgi5050057
Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., & Anderson, C. J., et al. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583–597. https://doi.org/10.1007/s10980-012-9758-8
Munyati, C. (2000). Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing, 21(9), 1787–1806. https://doi.org/10.1080/014311600209742
Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5), 381–402. https://doi.org/10.1023/A:1020908432489
Qaderi Nasab, F., & Rahnama, M. B. (2020). Developing restoration strategies in Jazmurian wetland by remote sensing. International Journal of Environmental Science and Technology, 17(5), 2767–2782. https://doi.org/10.1007/s13762-019-02568-0
Qureshi, S., Alavipanah, S. K., Konyushkova, M., Mijani, N., Fathololomi, S., & Firozjaei, M. K., et al. (2020). A remotely sensed assessment of surface ecological change over the Gomishan Wetland. Iran. Remote Sensing, 12(18), 2989. https://doi.org/10.3390/rs12182989
Ramsar Convention. (2016). Ramsar handbook 5th edition.
Ramsar Convention Secretariat. (2013). The Ramsar convention manual, 6th edition. Retrieved January 18, 2021, from https://www.ramsar.org/document/the-ramsar-convention-manual-6th-edition
Rezaee, M., Mahdianpari, M., Zhang, Y., & Salehi, B. (2018). Deep convolutional neural network for complex wetland classification using optical remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(9), 3030–3039. https://doi.org/10.1109/JSTARS.2018.2846178
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
Rundquist, D. C., Narumalani, S., & Narayanan, R. M. (2001). A review of wetlands remote sensing and defining new considerations. Remote Sensing Reviews, 20(3), 207–226. https://doi.org/10.1080/02757250109532435
Salehi, B., Mahdianpari, M., Amani, M., M. Manesh, F., Granger, J., Mahdavi, S., & Brisco, B. (2019). A collection of novel algorithms for wetland classification with SAR and optical data. In D. Gökçe (Ed.), Wetlands Management - Assessing Risk and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.80688
Salehi, B., Zhang, Y., Zhong, M., & Dey, V. (2012). Object-based classification of urban areas using VHR imagery and height points ancillary data. Remote Sensing, 4(8), 2256–2276. https://doi.org/10.3390/rs4082256
Schmitt, A., & Brisco, B. (2013). Wetland monitoring using the curvelet-based change detection method on polarimetric SAR imagery. Water, 5(3), 1036–1051. https://doi.org/10.3390/w5031036
Scott, D. A., & Jones, T. A. (1995). Classification and inventory of wetlands: A global overview. Vegetatio, 118(1–2), 3–16. https://doi.org/10.1007/BF00045186
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308–6325. https://doi.org/10.1109/JSTARS.2020.3026724
Song, X. -P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639–643. https://doi.org/10.1038/s41586-018-0411-9
Tiner, R. W., Lang, M. W., & Klemas, V. (Eds.). (2015). Remote sensing of wetlands: applications and advances. Boca Raton: CRC Press, Taylor & Francis Group.
UN. (2019). World Population Prospects - Population Division - United Nations. Retrieved August 11, 2020, from https://population.un.org/wpp/
Venter, Z. S., & Sydenham, M. A. K. (2021). Continental-scale land cover mapping at 10 m resolution over Europe (ELC10). Remote Sensing, 13(12), 2301. https://doi.org/10.3390/rs13122301
Walker, W. S., Stickler, C. M., Kellndorfer, J. M., Kirsch, K. M., & Nepstad, D. C. (2010). Large-area classification and mapping of forest and land cover in the Brazilian Amazon: A comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(4), 594–604. https://doi.org/10.1109/JSTARS.2010.2076398
Wdowinski, S., Kim, S. -W., Amelung, F., Dixon, T. H., Miralles-Wilhelm, F., & Sonenshein, R. (2008). Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sensing of Environment, 112(3), 681–696. https://doi.org/10.1016/j.rse.2007.06.008
Whiteside, T. G., & Bartolo, R. E. (2015). Mapping aquatic vegetation in a tropical wetland using high spatial resolution multispectral satellite imagery. Remote Sensing, 7(9), 11664–11694. https://doi.org/10.3390/rs70911664
Wulder, M., Li, Z., Campbell, E., White, J., Hobart, G., Hermosilla, T., & Coops, N. (2018). A national assessment of wetland status and trends for Canada’s forested ecosystems using 33 years of earth observation satellite data. Remote Sensing, 10(10), 1623. https://doi.org/10.3390/rs10101623
Yousefi, M., Kafash, A., Valizadegan, N., Ilanloo, S. S., Rajabizadeh, M., & Malekoutikhah, S., et al. (2019). Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemporary Problems of Ecology, 12(4), 394–403. https://doi.org/10.1134/S1995425519040127
Author information
Authors and Affiliations
Contributions
Conceptualization: M.A.H., M.H., and M.M. Methodology: M.A.H. Writing original draft preparation: M.H. and M.M. Writing review and editing: M.H., F.M., M.H., and M.M. Visualization: M.A.H., M.H., and F.M. Supervision: M.H. and M.M. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hemati, M., Hasanlou, M., Mahdianpari, M. et al. Iranian wetland inventory map at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Environ Monit Assess 195, 558 (2023). https://doi.org/10.1007/s10661-023-11202-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-023-11202-z