Skip to main content

Advertisement

Log in

Using morphometric analysis for assessment of flash flood susceptibility in the Mediterranean region of Turkey

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Flash floods are one of the most severe natural disasters around the world because of their rapid and unpredictable nature. It is expected that the frequency and intensity of flood events will increase because of extreme rainfall events induced by climate change. In this context, the generation of a flood susceptibility map contributes to effective flood management in a basin. The present study aims to generate a flash flood susceptibility map for the Imali Stream Basin (ISB) situated within the Mediterranean region of Turkey. For this purpose, morphometric analysis, geographic information system (GIS), remote sensing (RS), and principal component analysis (PCA) were used in this study. ASTER GDEM (v.3) was used to delineate 9 sub-watersheds and to obtain the required morphometric parameters. To generate a flash flood susceptibility map, the original compound values ​​calculated for each sub-watershed were transformed into values ​​between 0 and 1 by using the min–max normalization method. Then, these values were divided into 3 classes called low, moderate, and high by using the equal interval classification method in ArcGIS. According to both flash flood susceptibility maps produced by using morphometric analysis and PCA, sub-watershed 5 has the highest flash flood susceptibility in the basin. The flash flood that occurred in sub-watershed 5 in 2016 contributes to these results. Therefore, flood management based on morphometric analysis can be a highly effective method for decision-makers and planners in the Mediterranean region, one of the hotspots to be affected by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during the present study are provided by the corresponding author on reasonable request.

References

  • Abboud, I. A., & Nofal, R. A. (2017). Morphometric analysis of wadi Khumal basin, western coast of Saudi Arabia, using remote sensing and GIS techniques. Journal of African Earth Sciences, 126, 58–74.

    Article  CAS  Google Scholar 

  • Abdel-Fattah, M., Saber, M., Kantoush, S. A., Khalil, M. F., Sumi, T., & Sefelnasr, A. M. (2017). A hydrological and geomorphometric approach to understanding the generation of wadi flash floods. Water, 9(7), 553. https://doi.org/10.3390/w9070553

    Article  Google Scholar 

  • Abrams, M., Crippen, R., & Fujisada, H. (2020). ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing, 12, 1156. https://doi.org/10.3390/rs12071156

    Article  Google Scholar 

  • Abuzied, S., Yuan, M., Ibrahim, S., Kaiser, M., & Saleem, T. (2016). Geospatial risk assessment of flash floods in Nuweiba area, Egypt. Journal of Arid Environments, 133, 54–72.

    Article  Google Scholar 

  • Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: a remote sensing and GIS approach. Journal of Hydrology, 511, 850–860.

    Article  Google Scholar 

  • Ajaykumar, K. K., Tasadoq, H. J., Sanjay, S. K., Bhavana, N. U., & Rabindranath, N. S. (2019). Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: A remote sensing and GIS approach. Geomatics, Natural Hazards and Risk, 10(1), 986–1006. https://doi.org/10.1080/19475705.2018.1555189

    Article  Google Scholar 

  • Aladejana, O. O., & Fagbohun, B. J. (2019). Geomorphic, morphometric and structural analysis of North West Benin Owena River Basin, Nigeria: Implications for groundwater development. Sustainable Water Resources Management, 5, 715–735. https://doi.org/10.1007/s40899-018-0252-6

    Article  Google Scholar 

  • Ali, U., Ali, S. A., Ikbal, J., Bashir, M., Fadhl, M., et al. (2018). Soil erosion risk and flood behaviour assessment of Sukhnag catchment, Kashmir Basin: Using GIS and remote sensing. Journal of Remote Sensing & GIS, 7, 230. https://doi.org/10.4172/2469-4134.1000230

    Article  Google Scholar 

  • Alqahtani, F., & Qaddah, A. A. (2019). GIS digital mapping of flood hazard in Jeddah-Makkah region from morphometric analysis. Arabian Journal of Geosciences, 12(6), 199.

    Article  Google Scholar 

  • Altaf, F., Meraj, G., & Romshoo, S. A. (2013). Morphometric analysis to infer hydrological behaviour of Lidder Watershed, Western Himalaya, India. Hindawi Publishing Corporation. Geography Journal. https://doi.org/10.1155/2013/178021

  • Altaf, S., Meraj, G., & Romshoo, S. A. (2014). Morphometry and land cover based multi criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment, 186, 8391–8412. https://doi.org/10.1007/s10661-014-4012-2

    Article  Google Scholar 

  • Altin, T. B., & Altin, B. N. (2011). Drainage morphometry and its influence on landforms in volcanic terrain, Central Anatolia, Turkey. Procedia - Social and Behavioral Sciences, 19, 732–740.

    Article  Google Scholar 

  • Arabameri, A., Tiefenbacher, J. P., Blaschke, T., Pradhan, B., & Tien, B. D. (2020). Morphometric analysis for soil erosion susceptibility mapping using novel GIS-based ensemble model. Remote Sensing, 12(5), 874. https://doi.org/10.3390/rs12050874

    Article  Google Scholar 

  • Arango, M. I., Aristizábal, E., & Gómez, F. (2021). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105, 983–1012. https://doi.org/10.1007/s11069-020-04346-5

    Article  Google Scholar 

  • Arefin, R., Mohir, M. M. I., & Alam, J. (2020). Watershed prioritization for soil and water conservation aspect using GIS and remote sensing: PCA-based approach at northern elevated tract Bangladesh. Applied Water Science, 10, 91. https://doi.org/10.1007/s13201-020-1176-5

    Article  Google Scholar 

  • Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., & Ahmad, B. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environment and Earth Science, 78, 54. https://doi.org/10.1007/s12665-019-8046-1

    Article  Google Scholar 

  • Bhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, 29, 877–893. https://doi.org/10.1080/10106049.2013.868042

    Article  Google Scholar 

  • Brauch, H. G. (2003). Urbanization and natural disasters in the Mediterranean building disaster management series safer cities: the future of the disaster risk century chapter 11. World Bank Washington DC.

  • Çelik, H. E., Kurdoğlu, O., İnan, M., et al. (2020). Identifying causes of the 2015 Hopa flash flood in NE Turkey and mitigation strategies. Environmental Monitoring and Assessment, 192, 769. https://doi.org/10.1007/s10661-020-08737-w

    Article  Google Scholar 

  • Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B., & Ahmad, B. B. (2020). Modeling flood susceptibility using data-driven approaches of Naïve Bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment, 701, 134979.

    Article  CAS  Google Scholar 

  • Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub-basin using remote sensing and GIS techniques. International Journal of Geomatics and Geosciences, 2(1), 311–335.

    Google Scholar 

  • Chorley, R. J., Malm, D. E. G., & Pogorzelski, H. A. (1957). A new standard for estimating basin shape. American Journal of Science, 255(2), 138–141.

    Article  Google Scholar 

  • Choudhari, P. P., Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes, 2(4), 256–267.

    Article  Google Scholar 

  • Costa, J. E. (1987). Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. Journal of Hydrology, 93, 313–338.

    Article  Google Scholar 

  • Das, D. (2014). Identification of erosion prone areas by morphometric analysis using GIS. Journal of the Institution of Engineers (India): Series A, 95, 61–74. https://doi.org/10.1007/s40030-014-0069-8

    Article  Google Scholar 

  • Dimple, D., Rajput, J., Al-Ansari, N., Elbeltagi, A., Zerouali, B., & Santos, C. A. G. (2022). Determining the hydrological behaviour of catchment based on quantitative morphometric analysis in the hard rock area of Nand Samand catchment, Rajasthan, India. Hydrology, 9, 31. https://doi.org/10.3390/hydrology9020031

    Article  Google Scholar 

  • Dumas, D. (2011). Wildlife hit hard by Queensland floods. Australian Geographic. Retrieved March 2, 2021, from https://www.australiangeographic.com.au/news/2011/01/wildlife-hit-hard-byqueensland-floods/

  • Dutal, H., & Reis, M. (2020). Identification of priority areas for sediment yield reduction by using a GeoWEPP-based prioritization approach. Arabian Journal of Geosciences, 13, 1024. https://doi.org/10.1007/s12517-020-06039-6

    Article  Google Scholar 

  • EC (European Commission). (2007). Directive 2007/60 EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. Official Journal of the European Communities, L 288/27.

  • Elkhrachy, I. (2018). Vertical accuracy assessment for SRTM and ASTER digital elevation models: A case study of Najran city, Saudi Arabia. Ain Shams Engineering Journal, 9(4), 1807–1817. https://doi.org/10.1016/j.asej.2017.01.007

    Article  Google Scholar 

  • Elmaghraby, M., Masoud, M., & Niyazi, B. (2014). Assessment of surface runoff in arid, data scarce regions; an approach applied to Wadi Al-Hamd, Al Madinah Al Munawarah, Saudi Arabia. Life Science Journal, 11, 271–289.

    Google Scholar 

  • Elmoustafa, A. M., & Mohamed, M. M. (2013). Flash flood risk assessment using morphological parameters in Sinai Peninsula. Open Journal of Modern Hydrology, 3, 122–129.

    Article  Google Scholar 

  • Elsadek, W. M., Ibrahim, M. G., Mahmod, W. E., & Kanae, S. (2019). Developing an overall assessment map for flood hazard on large area watershed using multi-method approach: Case study of Wadi Qena watershed, Egypt. Natural Hazards, 95(3), 739–767.

    Article  Google Scholar 

  • El-Shamy, I. (1992). Recent Recharge and flash flooding opportunities in the Eastern Desert, Egypt. Annals of the Geological Survey of Egypt, 18, 323–334.

    Google Scholar 

  • Elssadek, W. M. M., Ibrahim, M. G., & Mahmod, W. E. (2018). Flash flood risk estimation of Wadi Qena Watershed, Egypt using GIS based morphometric analysis. Applied Environmental Research, 40, 41–50.

    Google Scholar 

  • Erol, B., Işık, M.S., & Erol, S. (2020). Global ve bölgesel (yüksek çözünürlüklü) sayısal yükseklik modellerinin doğruluk analizi üzerine bir inceleme. Afyon Kocatepe University Journal of Engineering20(045501), 598–612.

  • Esper Angillieri, M. Y. (2008). Morphometric analysis of Colanguil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55, 107–111.

    Article  Google Scholar 

  • ESRI. (2015). ArcGIS Desktop: Release 10.3.1 Redlands, CA: Environmental Systems Research Institute.

  • Eze, B. E., & Efiong, J. (2010). Morphometric parameters of the Calabar River basin: Implication for hydrologic processes. Journal of Geography and Geology, 2, 18–26.

    Google Scholar 

  • FAO. (2017). Watershed management in action – Lessons learned from FAO field projects. Rome.

  • Farhan, Y., & Anaba, O. (2016). Flash flood risk estimation of Wadi Yutum (Southern Jordan) watershed using GIS based morphometric analysis and remote sensing techniques. Open Journal of Modern Hydrology, 6(02), 79.

    Article  Google Scholar 

  • Farhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Science, 8, 113–148. https://doi.org/10.4236/as.2017.81009

    Article  Google Scholar 

  • Farhan, Y., Anaba, O., & Salim, A. (2016). Morphometric analysis and flash floods assessment for drainage basins of the Ras En Naqb Area, South Jordan Using GIS. Journal of Geoscience and Environment Protection, 4, 9–33. https://doi.org/10.4236/gep.2016.46002

    Article  Google Scholar 

  • Ferreira, C. S. S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., & Kalantari, Z. (2021). Soil degradation in the European Mediterranean region: processes, status and consequences. Science of the Total Environment, 805, 150106.

    Article  Google Scholar 

  • Gad, M., El-Shiekh, A., Khalifa, R., & Ahmed, K. (2016). Flash flood risk assessment applying multi-criteria analysis for some Northwestern coastal basins, Egypt. European Journal of Business and Social Sciences, 4, 41–60.

    Google Scholar 

  • Gajbhiye, S., Mishra, S. K., & Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Applied Water Science, 4, 51–61. https://doi.org/10.1007/s13201-013-0129-7

    Article  Google Scholar 

  • Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaskovicova, L., Bloschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., March, L., Matreata, S., Medina, V., Preciso, E., Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1–2), 70–78.

    Article  Google Scholar 

  • Gesch, D. B., et al. (2016). Validation of the ASTER global digital elevation model version 3 over the conterminous United States. XXIII ISPRS Congress (Prague, 12-19 July 2016). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 143-8. https://doi.org/10.5194/isprs-archives-XLI-B4-143-2016

  • Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan ’ s priority methods : a case study of Harsit River basin. Journal of Hydrology, 603, 127061. https://doi.org/10.1016/j.jhydrol.2021.127061

  • Ghimire, M. L. (2020). Basin characteristics, river morphology, and process in the Chure-Terai landscape: A case study of the Bakraha river, East Nepal. Geographical Journal of Nepal, 13, 107–142. https://doi.org/10.3126/gjn.v13i0.28155

    Article  Google Scholar 

  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.

    Article  Google Scholar 

  • Gravelius, H. (1914). Flusskunde. Goschen Verlagshan dlug Berlin. En Zavoianu, I. 1985. In: Morphometry of drainage basins. Elsevier, Amsterdam.

  • Green, W. H., & Ampt, G. A. (1911). Studies on soil physics. 1. The flow of air and water through soils. Journal of Agricultural Science, 4, 11–24.

    Google Scholar 

  • Hadley, R. F., & Schumm, S. A. (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River Basin. USGS Water Supply, 1531-B, 198.

  • Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang, Y., Bi, J., Mendes de Moura, Y., & Sellers, P. J. (2014). Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 111, 16041–16046.

    Article  CAS  Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. EOS Transactions of the American Geophysical Union, 13, 350–361.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins: Hydro-physical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.

    Article  Google Scholar 

  • Howard, A. D. (1990). Role of hypsometry and planform in basin hydrologic response. Hydrological Processes, 4(4), 373–385.

    Article  Google Scholar 

  • Jain, S., Shukla, S., & Wadhvani, R. (2018). Dynamic selection of normalization techniques using data complexity measures. Expert Systems with Applications, 106, 252–262.

    Article  Google Scholar 

  • Jetten, V. G. (2002). LISEM user manual. Utrecht University, Utrecht.

    Google Scholar 

  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374, 20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  • Khalid, C. (2018). Hydrological modeling of the Mikkés watershed (Morocco) using ARCSWAT model. Sustainable Water Resources Management, 4, 105–115. https://doi.org/10.1007/s40899-017-0145-0

    Article  Google Scholar 

  • Kömüşcü, A. Ü., & Çelik, S. (2013). Analysis of the Marmara flood in Turkey, 7–10 September 2009: An assessment from hydrometeorological perspective. Natural Hazards, 66, 781–808. https://doi.org/10.1007/s11069-012-0521-x

    Article  Google Scholar 

  • Kop, A., Ezer, M., Bodur, M. N., et al. (2014). Geochemical monitoring along the Türkoğlu (Kahramanmaraş)-Gölbaşı (Adıyaman) segments of the East Anatolian Fault system. Arabian Journal for Science and Engineering, 39, 5521–5536. https://doi.org/10.1007/s13369-013-0912-7

    Article  CAS  Google Scholar 

  • Kumar, A., Singh, S., Pramanik, M., et al. (2022). Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach. Environment, Development and Sustainability, 24, 3723–3761. https://doi.org/10.1007/s10668-021-01586-8

  • Lagacherie, P., Alvaro-Fuentes, J., Annabi, M., Bernoux, M., Bouarfa, S., et al. (2018). Managing Mediterranean soil resources under global change: Expected trends and mitigation strategies. Regional Environmental Change18(3), 663–675. https://doi.org/10.1007/s10113-017-1239-9. hal-02607446

  • Langat, P. K., Kumar, L., & Koech, R. (2020). GIS-based geomorphometric analysis for potential applications in reversing land and biosystem degradation. Environmental Monitoring and Assessment, 192, 668. https://doi.org/10.1007/s10661-020-08640-4

    Article  Google Scholar 

  • Li, Z. (2014). Watershed modeling using arc hydro based on DEMs: a case study in Jackpine watershed. Environmental Systems Research, 3, 11. https://doi.org/10.1186/2193-2697-3-11

    Article  CAS  Google Scholar 

  • Ling, Z., & Hua, L. G. (2012). Potential flash flood risk assessment model and its application in sub-basin. World Automation Congress, 2012, 1–4.

    Google Scholar 

  • Livingstone, A. (2013). Alberta floods: assessing the human, environmental and economic impacts. The Toronto Star, June 24.

  • Llasat, M. C., Botija, M., Prat, M. A., Porcu, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., & Nicolaides, K. (2010). High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Advances in Geosciences, 23, 1–9.

    Article  Google Scholar 

  • López-Pérez, A., & Fernández-Reynoso, D. S. (2021). Watershed prioritization using morphometric analysis and vegetation index: a case study of Huehuetan river sub-basin, Mexico. Arabian Journal of Geosciences, 14, 1852. https://doi.org/10.1007/s12517-021-08212-x

    Article  Google Scholar 

  • Lykoudi, E., & Zanis, D. (2004). The influence of drainage network formation and characteristics over a catchment’s sediment yield. In: Proceedings of second international conference on fluvialhydraulics-river flow. University of Napoli-Federico II, Naples, pp 793–800.

  • Mahala, A. (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10, 33. https://doi.org/10.1007/s13201-019-1118-2

    Article  Google Scholar 

  • Mahmood, S., & Rahman, A. U. (2019a). Flash flood susceptibility modelling using geomorphometric approach in the Ushairy Basin, eastern Hindu Kush. Journal of Earth System Science, 128(4), 97.

    Article  Google Scholar 

  • Mahmood, S., & Rahman, A. U. (2019). Flash flood susceptibility modeling using geo-morphometric and hydrological approaches in Panjkora Basin, Eastern Hindu Kush, Pakistan. Environmental Earth Sciences, 78, 43. https://doi.org/10.1007/s12665-018-8041-y

    Article  Google Scholar 

  • Malik, A., Kumar, A., & Kandpal, H. (2019a). Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12, 118. https://doi.org/10.1007/s12517-019-4310-7

    Article  Google Scholar 

  • Malik, A., Kumar, A., Kushwaha, D. P., et al. (2019b). The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: case study in India. Water, 11, 1138. https://doi.org/10.3390/w11061138

    Article  Google Scholar 

  • Markhamreh, Z., Al-Hawary, M., & Odeh, S. (2020). Assessment of morphometric characteristics of Wadi Al-Shumar catchment in Jordan. Open Journal of Geology, 10, 155–170. https://doi.org/10.4236/ojg.2020.102009

    Article  Google Scholar 

  • Masoud, M. H. (2016). Geoinformatics application for assessing the morphometric characteristics’ effect on hydrological response at watershed (case study of Wadi Qanunah, Saudi Arabia). Arabian Journal of Geosciences, 9(4), 280.

    Article  Google Scholar 

  • Meraj, G., Romshoo, S. A., Yousuf, A. R., et al. (2015). Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Natural Hazards, 77, 153–175. https://doi.org/10.1007/s11069-015-1605-1

    Article  Google Scholar 

  • Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA-based approach. Applied Water Science, 7, 1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Article  Google Scholar 

  • Migiros, G., Bathrellos, G. D., Skilodimou, H. D., & Karamousalis, T. (2011). Pinios (Peneus) river (Central Grecee): Hydrological – geomorphological elements and changes during the quaternary. Central European Journal of Geosciences, 3(2), 215–228. https://doi.org/10.2478/s13533-011-0019-1

    Article  Google Scholar 

  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in Clinch Mountains Area, Virginia and Tennessee. Technical report, 3 Office of the Naval Research. Department of Geology, Columbia University, New York.

  • Mishra, A. K., & Rai, S. C. (2020). Geo-hydrological inferences through morphometric aspects of the Himalayan glacial-fed river: a case study of the Madhyamaheshwar River basin. Arabian Journal of Geosciences, 13(13), 1–18.

    Article  Google Scholar 

  • Miyata, S., Kosugi, K., Gomi, T., & Mizuyama, T. (2009). Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resources Research, 45, W06402. https://doi.org/10.1029/2008WR007270

    Article  Google Scholar 

  • Moglen, G. E., Eltahir, E. A., & Bras, R. L. (1998). On the sensitivity of drainage density to climate change. Water Research, 34, 855–862.

    Article  Google Scholar 

  • Mohammed, A., Adugna, T., & Takala, W. (2018). Morphometric analysis and prioritization of watersheds for soil erosion management in Upper Gibe catchment. Journal of Degraded and Mining Lands Management, 6(1), 1419–1426. https://doi.org/10.15243/jdmlm.2018.061.1419

    Article  Google Scholar 

  • Mohamed, A., Amro, E., Ahmed, K., Moustafa, K., Nassir, A., Anis, C., & Kashif, N. (2019). Flash flood risk assessment in urban arid environment: Case study of Taibah and Islamic universities’ campuses, Medina, Kingdom of Saudi Arabia. Geomatics, Natural Hazards and Risk, 10(1), 780–796. https://doi.org/10.1080/19475705.2018.1545705

    Article  Google Scholar 

  • Morgan, R. P. C. (2005). Soil erosion and conservation. New York: Blackwell Publishing.

    Google Scholar 

  • Murphey, J. B., Wallace, D. E., & Lane, L. J. (1977). Geomorphic parameters predict hydrograph characteristics in the Southwest. Water Resources Bulletin, 13, 25–38.

    Article  Google Scholar 

  • Nag, S. K. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1), 69–76. https://doi.org/10.1007/BF03007341

    Article  Google Scholar 

  • NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team. (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.003. Accessed 15 Feb 2020.

  • Nasir, M. J., Iqbal, J., & Ahmad, W. (2020). Flash flood risk modeling of swat river sub-watershed: a comparative analysis of morphometric ranking approach and El-Shamy approach. Arabian Journal of Geosciences, 13, 1082. https://doi.org/10.1007/s12517-020-06064-5

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and water assessment tool. Theoretical Documentation. TWRI Report, Texas Water Resources Institute, Texas.

  • Ngo, P. T. T., Hoang, N. D., Pradhan, B., Nguyen, Q. K., Tran, X. T., Nguyen, Q. M., et al. (2018). A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data. Sensors, 18(11), 3704.

    Article  Google Scholar 

  • Nkpa, M. O., Ekpe, A. O., Imokhai, T. T., PraiseGod, C. E., & Chidozie, C. N. (2020). Flood vulnerability assessment of the upper Cross River basin using morphometric analysis. Geomatics, Natural Hazards and Risk, 11(1), 1378–1403. https://doi.org/10.1080/19475705.2020.1785954

    Article  Google Scholar 

  • Obeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management14, e12711. https://doi.org/10.1111/jfr3.12711

  • Omran, A., Schröder, D., El Rayes, A., & Geriesh, M. (2011). Flood hazard assessment in Wadi Dahab based on basin morphometry using GIS Techniques. GI_Forum Symposium and Exhibit applied Geoinformatics, Salzburg, Austria, Wichman, pp 1–11.

  • Ozalp, M., Erdoğan Yüksel, E., & Yıldırımer, S. (2017). Subdividing large mountainous watersheds into smaller hydrological units to predict soil loss and sediment yield using the GeoWEPP model. Polish Journal of Environmental Studies26(5), 2135–2146. https://doi.org/10.15244/pjoes/69171

  • Ozalp, M., Erdoğan Yüksel, E., & Yuksek, T. (2016). Soil property changes after conversion from forest to pasture in Mount Sacinka, Artvin, Turkey. Land Degradation and Development, 27, 1007–1017.

    Article  Google Scholar 

  • Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point floods. Environmental Geology, 56, 1405–1415.

    Article  Google Scholar 

  • Pande, C. B., & Moharir, K. (2017). GIS based quantitative morphometric analysis and its consequences: a case study from Shanur River Basin, Maharashtra India. Applied Water Science, 7(2), 861–871.

    Article  CAS  Google Scholar 

  • Pande, C., Moharir, K., & Pande, R. (2018). Assessment of morphometric and hypsometric study for catchment development using spatial technology-a case study of Wardha river basin in Maharashtra, India. International Journal of River Basin Management, 4(4), 1–36. https://doi.org/10.1080/15715124.2018.1505737

  • Patton, P. C. (1988). Drainage basin morphometry and floods. In V. R. Baker, R. C. Kochel, & P. C. Patton (Eds.), Flood geomorphology (pp. 51–65). Wiley.

    Google Scholar 

  • Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438, 310–317.

    Article  CAS  Google Scholar 

  • Prakash, K., Rawat, D., Singh, S., Chaubey, K., Kanhaiya, S., & Mohanty, T. (2019). Morphometric analysis using SRTM and GIS in synergy with depiction: A case study of the Karmanasa River basin, North Central India. Applied Water Science, 9, 13. https://doi.org/10.1007/s13201-018-0887-3

    Article  Google Scholar 

  • Rahimy, P. (2012). Effects of soil depth spatial variation on runoff simulation, using the Limburg Soil Erosion Model (LISEM), a case study in Faucon catchment, France. Soil & Water Res, 7, 52–63.

    Article  Google Scholar 

  • Rahmati, O., Samadi, M., Shahabi, H., et al. (2019). A. Swpt: An automated gis-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 8, 47–62.

    Google Scholar 

  • Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River basin, India. Applied Water Science, 7, 217–232. https://doi.org/10.1007/s13201-014-0238-y

    Article  Google Scholar 

  • Rais, S., & Javed, A. (2014). Drainage characteristics of Manchi basin, Karauli District, Eastern Rajasthan using remote sensing and GIS techniques. International Journal of Geomatics and Geosciences, 5, 285–299.

    Google Scholar 

  • Reicosky, D. C. (2005). Alternatives to mitigate the greenhouse effect: emission control by carbon sequestration. In: Simpósio sobre Plantio direto e Meio ambiente; Sequ¨estro de carbono equalidade da agua, pp. 20–28.. Anais. Foz do Iguaçu, 18–20 de Maio.

  • Saber, M., & Yilmaz, K. K. (2018). Evaluation and bias correction of satellite-based rainfall estimates for modelling flash floods over the Mediterranean region: application to Karpuz River Basin, Turkey. Water, 10(5), 657. https://doi.org/10.3390/w10050657

    Article  Google Scholar 

  • Sahu, N., Reddy, G. O., Kumar, N., Nagaraju, M. S. S., Srivastava, R., & Singh, S. K. (2017). Morphometric analysis in basaltic terrain of Central India using GIS techniques: a case study. Applied Water Science, 7(5), 2493–2499.

    Article  Google Scholar 

  • Salvia, M., Olazabal, M., Fokaides, P. A., Tardieu, L., Simoes, S. G., Geneletti, D., Huartado, S., Viguié, V., Spyridaki, N., Pietrapertosa, F., Ioannou, B., Matosovic, M., Flamos, A., Balzan, M., Feliu, E., Riznar, K., Sel, N., Heidrich, O., & Reckien, D. (2021). Climate mitigation in the Mediterranean Europe: an assessment of regional and city-level plans. Journal of Environmental Management, 295, 113146. https://doi.org/10.1016/j.jenvman.2021.113146

  • Schumm, S. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 64, 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

    Article  Google Scholar 

  • Shaban, A., Khawlie, M., Abdallah, C., & Awad, M. (2005). Hydrological and watershed characteristics of the El-Kabir River, North Lebanon. Lakes & Reservoirs: Research & Management, 10(2), 93–101.

  • Siddiqui, R., Said, S., & Shakeel, M. (2020). Nagmati River sub-watershed prioritization using PCA, integrated PCWS, and AHP: A case study. Natural Resources Research, 29, 2411–2430. https://doi.org/10.1007/s11053-020-09622-6

    Article  Google Scholar 

  • Singh, M. C., Yousuf, A., & Prasad, V. (2021). Morphometric and principal component analysis–based prioritization of reservoir catchments using geospatial techniques for land and water conservation aspects in North-West India. Arabian Journal of Geosciences, 14, 598. https://doi.org/10.1007/s12517-021-06822-z

    Article  Google Scholar 

  • Singh, N., & Singh, K. K. (2017). Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Applied Water Science, 7(1), 275–283.

    Article  Google Scholar 

  • Singh, O., & Kumar, D. (2019). Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India. Natural Hazards, 96, 247–268. https://doi.org/10.1007/s11069-018-3540-4

    Article  Google Scholar 

  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668.

    Article  Google Scholar 

  • Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7, 2089–2102. https://doi.org/10.1007/s13201-016-0395-2

    Article  Google Scholar 

  • Sreedevi, P. D., Owais, S., Khan, H. H., & Ahmed, S. (2009). Morphometric analysis of a watershed of south India using SRTM data and GIS. Journal of the Geological Society of India, 73, 543–552.

    Article  Google Scholar 

  • Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47, 412–420.

    Article  Google Scholar 

  • Strahler, A. N. (1956). Quantitative slope analysis. Geological Society of America Bulletin, 67, 571–596.

    Article  Google Scholar 

  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63, 923–938.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38, 913–920.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Part II. Quantitative geomorphology of drainage basins and channel Networks. Handbook of Applied Hydrology, McGraw-Hill, New York, pp 4–39.

  • Sujatha, E. R., Selvakumar, R., Rajasimman, U. A. B., & Rajamanickam, G. V. (2015). Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM. Geomatics, Natural Hazards and Risk, 6(4), 326–341. https://doi.org/10.1080/19475705.2013.845114

  • Taha, M. M. N., Elbarbary, S. M., Naguib, D. M., & El-Shamy, I. Z. (2017). Flash flood hazard zonation based on basin morphometry using remote sensing and GIS techniques: a case study of Wadi Qena basin, Eastern Desert, Egypt. Remote Sensing Applications: Society and Environment, 8, 157–167. https://doi.org/10.1016/j.rsase.2017.08.007

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    Article  Google Scholar 

  • Thomas, J., Joseph, S., & Thrivikramaji, K. P. (2010). Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2), 135–156.

    Article  Google Scholar 

  • Tola, S. Y., & Shetty, A. (2022). Flood susceptibility modeling based on morphometric parameters in Upper Awash River basin, Ethiopia using geospatial techniques. Sustainable Water Resources Management, 8, 49. https://doi.org/10.1007/s40899-022-00642-z

    Article  Google Scholar 

  • Umrikar, B. N. (2017). Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, 7(5), 2231–2243.

    Article  Google Scholar 

  • Vittala, S. S., Govindiah, S., & Honne Gowda, H. (2004). Morphometric analysis of sub watersheds in the Pawagada Area of Tumkur District, South India, using re-mote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 32, 351–362. https://doi.org/10.1007/BF03030860

    Article  Google Scholar 

  • Ward, R. C., & Robinson, M. (2000). Principles of hydrology (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Wentz, E. A. (2000). A shape definition for geographic applications based on edge, elongation, and perforation. Geographical Analysis, 32(1), 95–112.

    Google Scholar 

  • Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environment and Earth Science, 62, 611–623.

    Article  Google Scholar 

  • Youssef, A. M., Pradhan, B., & Sefry, S. A. (2016). Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environment and Earth Science, 75(1), 12.

    Article  Google Scholar 

  • Zhang, S., Li, Z., Lin, X., & Zhang, C. (2019). Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water, 11, 1373.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hurem Dutal.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutal, H. Using morphometric analysis for assessment of flash flood susceptibility in the Mediterranean region of Turkey. Environ Monit Assess 195, 582 (2023). https://doi.org/10.1007/s10661-023-11201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11201-0

Keywords

Navigation