Skip to main content

Advertisement

Log in

LWDS: lightweight DeepSeagrass technique for classifying seagrass from underwater images

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In many coastal areas around the world, the seagrasses provide an essential source of livelihood for many civilizations and support high levels of biodiversity. Seagrasses are highly valuable, as they provide habitat for numerous fish, endangered sea cows, Dugong dugon, and sea turtles. The health of seagrasses is being threatened by many human activities. The process of seagrass conservation requires the annotation of every seagrass species within the seagrass family. The manual annotation procedure is time-consuming and lacks objectivity and uniformity. Automatic annotation based on lightweight DeepSeagrass (LWDS) is proposed to solve this problem. LWDS computes combinations of various resized input images and various neural network structures, to determine the ideal reduced image size and neural network structure with satisfactory accuracy and within a reasonable computation time. The main advantage of this LWDS is it classifies the seagrasses quickly and with lesser parameters. The DeepSeagrass dataset is used to test LWDS's applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The dataset is publicly available.

References

  • Abirami, B., Radhakrishnan, M., Kumaran, S., & Wilson, A. (2021). Impacts of global warming on marine microbial communities. Science of the Total Environment, 791, 147905.

    Article  CAS  Google Scholar 

  • Albouy, C., Delattre, V., Donati, G., Frölicher, T. L., Albouy-Boyer, S., Rufino, M., Pellissier, L., Mouillot, D., & Leprieur, F. (2020). Global vulnerability of marine mammals to global warming. Scientific Reports, 10(1), 1–12.

    Google Scholar 

  • Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., & Asari, V. K. (2018). The history began from AlexNet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.  Accessed 2 Aug  2022.

  • Asha Paul, M., Rani, P. A. J., & Manopriya, J. L. (2020). Gradient based aura feature extraction for coral reef classification. Wireless Personal Communications, 114(1), 149–166.

    Article  Google Scholar 

  • Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G., & Kriegman, D. (2012). Automated annotation of coral reef survey images. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, 1170–1177.

  • Bicknell, A. W. J., Godley, B. J., Sheehan, E. V., Votier, S. C., & Witt, M. J. (2016). Camera technology for monitoring marine biodiversity and human impact. Frontiers in Ecology and the Environment, 14(8), 424–432.

    Article  Google Scholar 

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S., & Costello, M. J. (2021). Global warming is causing a more pronounced dip in marine species richness around the equator. Proceedings of the National Academy of Sciences, 18(15), e2015094118.

    Article  Google Scholar 

  • Cheung, W. W. L., Reygondeau, G., & Frölicher, T. L. (2016). Large benefits to marine fisheries of meeting the 1.5 C global warming target. Science, 354(6319), 1591–1594.

    Article  CAS  Google Scholar 

  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE. https://arxiv.org/abs/1610.02357v3.  Accessed 10 Aug  2022

  • Eakin, C. M., Kleypas, J., & Hoegh-Guldberg, O. (2008). Global climate change and coral reefs: Rising temperatures, acidification and the need for resilient reefs. Status of the Coral Reefs of the World, 29–34.

  • Effrosynidis, D., Arampatzis, A., & Sylaios, G. (2018). Seagrass detection in the Mediterranean: A supervised learning approach. Ecological Informatics, 48, 158–170.

    Article  Google Scholar 

  • Elawady, M. (2015). Sparse coral classification using deep convolutional neural networks. arXiv preprint arXiv:1511.09067.  Accessed 12 Sep 2022.

  • Foley, N., & Armstrong, C. W. (2010). The ecological and economic value of cold-water coral ecosystems, 53(7), 313–326.

    Google Scholar 

  • He, K. M., Zhang, X., Ren S., & Sun, J. (2016). Deep residual learning for image identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Computer Society. http://www.arxiv.org/pdf/1512.03385.pdf. Accessed 22 Sep 2022.

  • Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobile nets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv, 1704.04861.

  • Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K. W., Dally J., & Keutzer K. (2017). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. Preprint, submitted February 24 from. https://arxiv.org/abs/1602.07360

  • Ivajnšič, D., Orlando-Bonaca, M., Donša, D., Grujić, V. J., Trkov, D., Mavrič, B., & Lipej, L. (2022). Evaluating seagrass meadow dynamics by integrating field-based and remote sensing techniques. Plants, 11(9), 1196.

    Article  Google Scholar 

  • Jackson, J. B., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque B. J., & Hughes, T. P. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–637.

  • Jaworek-Korjakowska, J., Kleczek, P., & Gorgon, M. (2019). Melanoma thickness prediction based on convolutional neural network with VGG-19 model transfer learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 0–0.

  • Jian, M., Liu, X., Luo, H., Xiangwei, Lu., Hui, Yu., & Dong, J. (2021). Underwater image processing and analysis: A review. Signal Processing: Image Communication, 91, 116088.

    Google Scholar 

  • Koch, M. S., Schopmeyer, S. A., Kyhn-Hansen, C., Madden, C. J., & Peters, J. S. (2007). Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany, 86(1), 14–24.

    Article  CAS  Google Scholar 

  • Koonce, B. (2021). SqueezeNet convolutional neural networks with Swift for Tensorflow: Image recognition and dataset categorization. Apress, 2021.

  • Ma N., Zhang, X., Zheng, H., & Sun, J., (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In Proceedings of the European Conference on Computer Vision, 116–131.

  • Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, S. J., Briscoe, D. K., et al. (2015). Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. Marine Policy, 58, 42–50.

    Article  Google Scholar 

  • Mazarrasa, I., Samper-Villarreal, J., Serrano, O., Lavery, P. S., Lovelock, C. E., Marbà, N., Duarte, C. M., & Cortés, J. (2018). Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin, 134, 106–117.

    Article  CAS  Google Scholar 

  • Moniruzzaman, M., Islam, S. M. S., Lavery, P., & Bennamoun, M. (2019). Faster R-CNN based deep learning for seagrass detection from underwater digital images. In 2019 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7.

  • Noman, M. K., Islam, S. M. S., Abu-Khalaf, J., Jalali, S. M. J., & Lavery, P. (2023a). Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques. Ecological Informatics, p. 102047.

  • Noman, M. K., Islam, S. M. S., Abu-Khalaf, J., & Lavery, P. (2021a). Multi-species seagrass detection using semi-supervised learning. In 2021a 36th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE.

  • Noman, M. K., Islam, S. M. S., Abu-Khalaf, J., & Lavery, P. (2021b). Seagrass detection from underwater digital images using Faster R-CNN with NASNet. In 2021b Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6. IEEE.

  • Noman, M. K., Jalali, S. M. J., & Lavery, P. (2023b). OFDA-CNN: A novel metaheuristic algorithm-based deep CNN for multi-species seagrass classification. Available at SSRN 4348793.

  • Newmaster, A. F., Berg, K. J., Ragupathy, S., Palanisamy, M., Sambandan, K., & Newmaster, S. G. (2011). Local knowledge and conservation of seagrasses in the Tamil Nadu State of India. Journal of Ethnobiology and Ethnomedicine, 7(1), 1–17.

    Article  Google Scholar 

  • Pan, H., Pang, Z., Wang, Y., Wang, Y., & Chen, L. (2020). A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects. IEEE Access, 8, 119951–119960.

    Article  Google Scholar 

  • Paul, M. A., & Rani, P. (2021a). Statistical modeling based directional pattern design (SMDPD) feature extraction for coral reef classification. Environmental Monitoring and Assessment, 193(9), 1–14.

    Article  Google Scholar 

  • Paul, M. A., Rani, P. A. J., & Sheela, J. (2021b). Coral reef classification using improved WLD feature extraction with convolution neural network classification. Recent Advances in Computer Science and Communications (Formerly: Recent Patents on Computer Science), 14(8), 2579–2588.

  • Ramaswamy, S. R., & Nobi, E. P. (2009). Mapping the extend of seagrass meadows of Gulf of Mannar Biosphere Reserve, India using IRS ID satellite imagery. International Journal of Biodiversity and Conservation, 1(5), 187–193.

    Google Scholar 

  • Raine, S., Marchant, R., Moghadam, P., Maire, F., Kettle, B., & Kusy. B. (2020) Multi-species seagrass detection and classification from underwater images. In 2020 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8.

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.

  • Sharma, S., & Kumar, S. (2022). The Xception model: A potential feature extractor in breast cancer histology images classification. ICT Express, 8(1), 101–108.

    Article  Google Scholar 

  • Simpson, J., Bruce, E., Davies, K. P., & Barber, P. (2022). A blueprint for the estimation of seagrass carbon stock using remote sensing-enabled proxies. Remote Sensing, 14(15), 3572.

    Article  Google Scholar 

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. arXiv:1512.00567. https://arxiv.org/abs/1512.00567

  • Tahara, S., Sudo, K., Yamakita, T., & Nakaoka, M. (2022). Species level mapping of a seagrass bed using an unmanned aerial vehicle and deep learning technique. PeerJ, 10, e14017.

    Article  Google Scholar 

  • Theckedath, D., & Sedamkar, R. R. (2020). Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks. SN Computer Science, 1(2), 1–7.

    Article  Google Scholar 

  • Türkmen, S., & Heikkilä, J. (2019). An efficient solution for semantic segmentation: ShuffleNet v2 with atrous separable convolutions. In Scandinavian Conference on Image Analysis, pp. 41–53. Springer, Cham.

  • Veettil, B. K., Ward, R. D., Lima, M. D. A. C., Stankovic, M., Hoai, P. N., & Quang, N. X. (2020). Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecological Indicators, 117, 106560. www.arxiv.org/abs/2103.05226

  • Wang, C. -Y., Liao, H. -Y. M., Wu, Y. -H., Chen, P. -Y., Hsieh, J. -W., & Yeh, I. -H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391.

  • Weidmann, F., Jäger, J., Reus, G., Schultz, S. T., Kruschel, C., Wolff, V., & Fricke-Neuderth, K. (2019). A closer look at seagrass meadows: Semantic segmentation for visual coverage estimation. In OCEANS 2019-Marseille, pp. 1–6. IEEE.

  • Yamakita, T., Sodeyama, F., Whanpetch, N., Watanabe, K., & Nakaoka, M. (2019). Application of deep learning techniques for determining the spatial extent and classification of seagrass beds, Trang, Thailand. Botanica Marina, 62(4), 291–307.

    Article  Google Scholar 

  • Yang, Xi., Zhang, J., Chen, C., & Yang, D. (2022). An efficient and lightweight CNN model with soft quantification for ship detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13.

    CAS  Google Scholar 

  • Zhang, X., Zhou, X., Lin M., & Sun J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6848–6856

Download references

Author information

Authors and Affiliations

Authors

Contributions

Asha Paul is responsible for designing the framework, validating the results, and writing the article. Sampath Kumar, Shrdda Sagar, and Sreeji are responsible for collecting the information required for the work and critical review.

Corresponding author

Correspondence to M. Asha Paul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

The authors declare that they have not yet submitted this research article to another journal and it is entirely original research article. The manuscript should be prepared with utmost care.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, M.A., Kumar, K.S., Sagar, S. et al. LWDS: lightweight DeepSeagrass technique for classifying seagrass from underwater images. Environ Monit Assess 195, 614 (2023). https://doi.org/10.1007/s10661-023-11183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11183-z

Keywords

Navigation