Skip to main content
Log in

Radiogeochemistry, mineralogy, lithology, radiogenic heat production, and health implication using airborne radiometric data of Ilesha and its surroundings

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current study analyzed and interpreted airborne radiometric data from Ilesha’s basement complex rock and its surroundings. At the surface, the concentrations of the most frequent primordial radionuclides notably K, elemental concentration of uranium eU, and elemental concentration of thorium eTh were measured. The weighted mean elemental and activity concentrations were 0.85%, 2.75 ppm, 10.22 ppm, and 267.54 Bq kg−1, 34.41 Bq kg−1, 41.51 Bq kg−1 for 40 K, 238U, and 232Th, respectively. The low concentration of 40 K was certainly due to the effects of weathering, kaolinization of granites, and pedogenesis activities. The abundance of uranium was ascribed to the availability of uranium minerals such as allanite, apatite, and sphene with accessories minerals, while that of thorium was due to minerals such as cheralite, thorite, uranothorite, thorianite, and uranothorianite with accessories minerals. The RPHR weighted mean 1.48 µWm−3 compared to the earth's crust mean between 0.8 and1.2 µWm−3 was higher due to significant presence of gneiss rocks in all the studied profiles. Radiological hazard, in particular, dose rates, external hazard index, internal hazard index, radium equivalent, annual gonadal dose, effective dose dispensed to various organs of the body were computed to determine the deleterious effects of rocks in the area. The weighted means of annual gonadal dose of 363.98 µSv y−1 and outdoor 0.91 × 10×3 and indoor 1.65 × 10−3 excessive life cancer risks were more than the global average 300 µSv y−1, 0.29 × 10−3 and 1.16 × 10−3. As a result, proper surveillance is required in the area in order to prevent epidemics occurrence in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data for analysis and interpretation was made available by NGSA. Data was interpreted as seen in the Tables provided in the manuscript.

References

  • Abbady, A. G. (2010). Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley Egypt. Applied Radiation Isotopes, 68(10), 20–34.

    Article  Google Scholar 

  • Abd El Raham, R. M. (2022). Taalab SA, Al Full ZZ, Mohamed MS, Sayyed MI, Almousa N, Hanfi MY (2022) Natural radionuclide levels and radiological hazards of Khour Abalea mineralized pegmatites. Southeastern Desert Egypt, Mineral, 12, 353.

    Google Scholar 

  • Akingboye, A. S., Ogunyele, A. C., Jimoh, A. T., Adaramoye, O. B., Adeola, A. O., & Ajayi, T. (2021). Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: Insights from in situ gamma-ray spectrometry. Environmental Earth Sciences, 80(6), 1–24.

    Article  Google Scholar 

  • Akinlalu, A. A., Olayanju, G. M., Adiat, K. A. N., & Omosuyi, G. O. (2021). Mineralisation potential assessment using analytical hierarchy process (AHP) modeling technique: A case study of Ilesha schist belt, southwestern Nigeria. Results in Geophysical Sciences, 7, 100026.

  • Akpan, A. E., Ebong, E. D., Ekwok, S. E., & Eyo, J. O. (2020). Assessment of radionuclide distribution and associated radiological hazards for soils and beach sediments of Akwa Ibom Coastline, southern Nigeria. Arabian Journal Geosciences, 13(15), 12p. https://doi.org/10.1007/s12517-020-05727-7

  • Al-Harmaneh, I. F. (2017). Radiological hazards for marble, granite and ceramics tiles used in buildings in Riyadh, Saudi Arabia. Environmental Earth Sciences, 76, 516. https://doi.org/10.1007/s12665-017-6849-5

  • Andreoli, M. A. G., Hart, R. J., & Coetzee, A. L. D. H. (2006). Correlations between U, Th content and metamorphic grade in the Western Namaqualand Belt, South Africa, with implications for radioactive heating of the crust. Journal of Petrology, 47(6), 1095–1118.

    Article  CAS  Google Scholar 

  • Arthaud, M. H., Caby, R., Fuck, R. A., Dantas, E. L., & Parente, C. V. (2008). Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. Geological Society London Special Publications, 294(1), 49–67. https://doi.org/10.1144/sp294.4

  • Augustine, K. A., Adekunle, K. B., & Adejumobi, C. A. (2014). Determination of natural radioactivity and hazard in soil samples in and around gold mining ore in Itagunmodi, South-Western Nigeria. Journal of Radiation Research and Applied Sciences, 7(3), 249–255. https://doi.org/10.1016/j.jrras.2014.06.001

  • Avwiri, G. O., Nte, F. U., & Olanrewaju, A. I. (2011). Determination of radionuclide concentration of landfill at Eliozu, Port Harcourt, Rivers State. Scientia Africana, 10(1).

  • Bea, F., Montero, P., & Zinger, T. (2003). The nature, origin, and thermal influence of the granite source layer of Central Iberia. The Journal of Geology, 111, 579–595.

    Article  CAS  Google Scholar 

  • Bea, F. (2012). The sources of energy for crustal melting and the geochemistry of heat-producing element. Lithos, 153, 278–291.

    Article  CAS  Google Scholar 

  • Beretka, J., & Matthew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics, 48, 87–95.

    Article  CAS  Google Scholar 

  • Caby, R., & Boesse, J. M. (2001). Pan-African nappe system in southwest Nigeria: The Ife-Ilesha schist belt. Journal of African Earth Sciences, 33, 211–225.

    Article  Google Scholar 

  • Carvalho, M., Fernando, P., Oliveira, J. M., & Alberto, G. (2011). Factors affecting 210Po and 210Pb activity concentrations in mussels and implications for environmental biomonitoring programme. Journal of Environmental Radioactivity, 102(2), 128–137.

    Article  CAS  Google Scholar 

  • Chandrasekaran, A., Ravisankar, R., Senthilkumar, G., Thillaivelavan, K., Dhinakaran, B., Vijayagopal, P., Bramha, S. N., & Venkatraman, B. (2014). Spatial distribution and lifetime cancer risk due to Gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt Journal Basic Applied Science, 1, 38–48. https://doi.org/10.1016/j.ejbas.2014.02.001

    Article  Google Scholar 

  • David, B., & James, C. W. (2011). A radiometric airborne geophydsical survey of the Isle of Wight. Proceedings of the Geologists’ Association, 122(2011), 789–799.

    Google Scholar 

  • Dickson, B. L., & Scott, K. M. (1997). Interpretation of Ariel gamma-ray surveys – adding the geochemical factors. AGSO Journal of Australian Geology and Geophysics, 17, 187–200.

    CAS  Google Scholar 

  • EC. (1999). Radiation protection unit, radiological protection principles concerning the natural radioactivity of building materials radiation protection, 112, Directorate General Environment Nuclear Safety and Civil Protection,European Commission.

  • Efimov, A.V. (1978). Multiplikativnyj pokazatel dlja vydelenija endogennych rud po aerogammaspektrometriceskim dannym. In Metody Rudnoj Geofiziki, edited by Naucno-proizvodstven Oje objedinenie "Geofizika" Leningrad.

  • Elueze, A. A. (1988). Geology of the Precambrian Schist belt in Ilesha area Southwestern Nigeria. Geological Survey Nigeria, 77–82.

  • Erdi-Krauz, G., Matolin, M., Minty, B., Nicolet, J., Redford, W. S., & Schetselaar, E. M. (2003). Guidelines for radioelement mapping using gamma ray spectrometry data, International Atomic Energy Agency.

  • Faanu, A., Adukpo, O. K., Tettey-Larbi, L., Lawluvi, H., Kpeglo, D. O., Darko, E. O., Emi-Reynolds, G., Awudu, R. A., Kansaana, C., Amoah, P. A., Efa, A. O., Ibrahim, A. D., Agyeman, B., Kpodzro, R., & Agyeman, L. (2016). Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central region of Ghana. Springerplus, 5, 98–113.

    Article  CAS  Google Scholar 

  • Faweya, E. B. (2014). Determination of radioactivity levels and hazard of water and sediment samples in various gold mining pits at Itagunmodi Ilesha Nigeria. European Journal of Academic Essays, 1(10), 1–8. Portugal

  • Faweya, E. B., Ayeni, M. J., Olowomofe, G. O., & Akande, H. T. (2018). Estimation of radiation exposure in soils and organic (animal) and inorganic (chemical) fertilizers using active technique International Journal of Environmental Science and Technology, 15, 1967–1982. https://doi.org/10.1007/s13762-017-1574-x

  • Faweya, E. B., Oniya, E. O., & Ojo, F. O. (2013). Assessment of radiological parameters and heavy-metal contents of sediment samples from lower Niger River Nigeria. Arabian Journal Science Engineering, 38, 1903–1908. https://doi.org/10.1007/s13369-013-0549-6

    Article  CAS  Google Scholar 

  • Folami, S. L. (1992). Interpretation of aeromagnetic anomalies in Iwaraja area, Southwestern Nigeria. Journal Mining Geology, 28, 391–396.

    Google Scholar 

  • Frattini, P., De Vivo, B., Lima, A., & Cicchella, D. (2006). Elemental and gamma ray surveys in the volcanic soils of Ischia Island (Italy). Geochemistry: Exploration Environment Analysis, 6, 325–339.

  • Geoscience. (2022). https://www.ga.gov.au/scientific-topics/disciplines/geophysics/radiometrics.Retrieved on 7th March 2022, Geoscience Australia.

  • Guagliard, I., Buttafuoco, G., Apollaro, C., Bloise, A., De Rosa, R., & Cicchella, D. (2013). Using gamma ray spectrometry and geosstatistics for assessing geochemical behaviour of radioactive elements in the lese catchment (southern Italy). International Journal Environment Research, 7(3), 645–658.

    Google Scholar 

  • Gupta, H. K. (2011). Radiogenic heat production of rocks; Encyclopedia of solid earth geophysics, 2011 edition. https://doi.org/10.1007/978-90-481-8702-7_74

  • Haenel, R., Stegena, L., & Rybach, L. (Eds). (1988). Handbook of terrestrial heat flow density determinations, Springer.

  • Haldar, S. K. (2012). Mineral exploration: Principles and applications: Exploration Geophysics: Newness 2012: 372 pages.

  • Holmberg, H., Naess, E., & Evensen, J. E. (2012). Thermal modeling in the Oslo rift Norway. Proceedings of the 37th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford California January 30-February 1, 2012.

  • Hoover, D. B., Heran, W. D., & Hill, P. L. (1992). The geophysical expression of selected mineral deposits. US Geological Survey Open File Report 92–557, 129pp.

  • IAEA. (1991). International Atomic Energy Agency: Airborne gamma ray spectrometer surveying. Technical Reports Series No, 323, 1–116.

    Google Scholar 

  • IAEA. (1995). Application of uranium exploration data and techniques in environmental studies. IAEA-TECDOC-827, Vienna.

  • IAEA. (2003). Guidelines for radioelement mapping using gamma ray spectrometry data IAEA, Vienna, 2003 IAEA-Tecdoc-1363.

  • IAEA. (2005). Naturally occurring radioactive materials (iv). Proceeding of an International Conference held in Szezyrk, IAEA TEC DOC-1472, Poland.

  • ICRP. (1996). International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides. Part 4 Inhalation Dose Coefficients. ICRP Report, ICRP Publication:Pergamon, Turkey 71.

  • ICRP. (2008). Radiation dose to patients from radiopharmaceutical Addendum 3 to ICRP publication 53, ICRP publication 106 Ann” ICRP 38; 1–2.

  • Joseph, A., & Hamman, T. (2020). Statistical variability of radiation exposure from Precambrian basement rocks, NW Nigeria: Implication on radiogenic heat production. Scientific African, 10, e00577 https://doi.org/10.1016/j.sciaf.2020.e00577

  • Kayode, J. S. (2006). Ground magnetic study of Jeda-Iloko area. Federal University of Technology, Nigeria.

    Google Scholar 

  • Kayode, J. S., & Adelusi, A. O. (2013). Nyabeze PK (2013) Interpretation of ground magnetic data of Ilesa. Southwestern Nigeria for Potential Mineral Targets Advances in Applied Science Research, 4(1), 163–172.

    Google Scholar 

  • Kazeem, O. O., & Gbenga, M. O. (2021). Ayokunle AA (2021) Integrated geophysical investigation of the mode of occurrence of mineralisation in part of Ilesha Schist Belt. Southwestern Nigeria Arabian Journal of Geosciences, 14, 1552. https://doi.org/10.1007/s12517-021-07849-y

    Article  Google Scholar 

  • Lima, A., Albanese, S., & Cicchella, D. (2005). Geochemistry base lines for the radioelements K, U, Th in the Campania region, Italy: A comparison of steam-sediments geochemistry and gamma-ray surveys. Applied Geochemistry, 20, 611–625.

    Article  CAS  Google Scholar 

  • Makinde, W. O., Oluyemi, E. A., & Olabanji, I. O. (2013). Assessing the impacts of gold mining operations on river sediments and water from Ilesa West Local Government Area, Osun State, Nigeria. E3S Web of Conferences, 1, 41010.

  • Minty, B. R. S. (1997). Fundamentals of airborne gamma-ray spectrometry. AGSO Journal of Australian Geology and Geophysics, 17, 39–50.

    CAS  Google Scholar 

  • Morsy, Z., & Nabil, E. -W. -F. (2012). Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy. Annals of Nuclear Energy, 44, 8–11.

    Article  CAS  Google Scholar 

  • Naheem, B. S., Julius, O. F., Leke, S. A., & Muyiwa, M. O. (2021). Silas SD (2021) New insights on the Ife-Ilesha Schist belt using integrated satellite, aeromanetic and radiometric data. Scientific Reports, 11, 15314. https://doi.org/10.1038/s41598-021-94813-1

    Article  CAS  Google Scholar 

  • NGSA. (2004). Nigeria Geophysical Survey Agency.

  • Okeyode, I. C., Olurin, O. T., Ganiyu, S. A., & Olowofela, J. A. (2019). High resolution airborne radiometric and magnetic studies of Ilesha and its environs. Southwestern Nigeria. Material and Geoenvironment (RMZ). https://doi.org/10.2478/rmzmag-2018-0020

    Article  Google Scholar 

  • Oluwaseun, T. O. (2018). Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs Southwest Nigeria using Euler deconvolution method. https://doi.org/10.1515/rmzmag-2017-0013

  • Rafique, M., Rahman, S. U., Basharat, M., Aziz, W., Ahmad, I., Lone, K. A., Ahmad, K., & Matiullah. (2014). Evaluation of Excess life time cancer risk from gamma dose rates in Jhelum valley. Journal Radiation Research Applied Sciencehttps://doi.org/10.1016/j.jrras.2013.11.005

  • Rawlins, B. G., Lark, R. M., & Webster, R. (2007). Understanding airborne radiometry survey signals across part of Eastern England. Earth Surface Processes and Landforms, 32, 1503–1515.

    Article  Google Scholar 

  • Robert, B., & Peter, O. (2017). Forward and inverse modeling of hand digitized aeromagnetic data from Ilesha South West. Nigeria Journal of Geology & Geophysics, Journal Geology Geophysics, 6, 5. https://doi.org/10.4172/2381-8719.1000301

  • Standiford, M., & McLaren, S. (2006). Thermo-mechanical controls on heat production distributions and the long-term evolution of the continents. In M. Brown & T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust (pp. 67–92). Cambridge University Press.

    Google Scholar 

  • Scott, B. R. (2007). Health risk evaluation for ingestion exposure of humans to polonium-210, dose-response 5: 94–122.

  • Slagstad, T. (2008). Radiogenic heat production of Archean to Permian geological provinces in Norway. Norwegian Journal of Geology, 88, 149–166.

    Google Scholar 

  • Tettey-Larbi, L., Darko, E. O., Schandorf, C., Appiah, A. A., Sam, F., Faanu, A., Okoh, D. K., Lawluvi, H., Ahyeman, B. K., Kansaana, C., Amoah, P. A., Osei, R. K., Agalga, R., & Osei, S. (2013). Gross alpha and beta activity and annual committed effective dose due to natural radionuclides in some medicinal plants community used in Ghana. International Journal Scientific Technology, 3(4), 217–229.

    Google Scholar 

  • UNSCEAR. (1988). Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR). United Nations, New York, p 647.

  • UNSCEAR. (1993). Sources and effects of ionizing radiation. United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR). United Nations, New York, p 920.

  • UNSCEAR. (2000a). Exposure from natural radiation source. United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), Report to general assembly. Annex B. United Nations, New York, p 76.

  • UNSCEAR. (2000b). Sources and effects of ionising radiation. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with scientific annexes, I.

  • Uyanık, N. A., Uyanık. O., Gur. F., & Aydın, İ. (2013) Natural radioactivity of bricks and brick material in the Salihli-Turgutlu area of Turkey. Environmental Earth Science, 68(2), 499–506. https://doi.org/10.1007/s12665-012-1754-4

  • Within Nigeria. (2022). N Opera News.

  • Youssef, M. A. S., & Elkhodary, S. T. (2013). Utilization of airborne gamma ray spectrometric data for geological mapping, radioactive mineral exploration and environmental monitoring of southeastern Aswan city, South Eastern Desert, Egypt, Geophysical Journal International.

  • Youssef, M. A. S. (2016). Estimating and interpretation of radioactive heat production using airborne gamma ray survey data of Gabal Arru-bushi area Central Eastern Desert Egypt. Journal of African Earth Sciences, 1, 1. https://doi.org/10.1093/gji/ggt375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate NGSA for making the survey data available for analysis and interpretation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (Faweya Ebenezer Babatope); methodology (Faweya Ebenezer Babatope and Adewumi Taiwo); final analysis (Faweya Ebenezer Babatope and Adewumi Taiwo); writing original draft (Faweya Ebenezer Babatope and Adewumi Taiwo); writing review and editing (Faweya Ebenezer Babatope and Adewumi Taiwo); funding acquisition (Faweya Ebenezer Babatope and Olojede Dare Samson); supervision (Faweya Ebenezer Babatope and Ikubanni Stephen Oluwole). All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. B. Faweya.

Ethics declarations

Ethical approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.”

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faweya, E.B., Olojede, D.S., Adewumi, T. et al. Radiogeochemistry, mineralogy, lithology, radiogenic heat production, and health implication using airborne radiometric data of Ilesha and its surroundings. Environ Monit Assess 195, 620 (2023). https://doi.org/10.1007/s10661-023-11168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11168-y

Keywords

Navigation