Skip to main content

Advertisement

Log in

Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study analyzes spatio-temporal urban growth in Kathmandu Urban Agglomeration (KUA) and its impact on ecological infrastructures between 2000 and 2020. A geographically weighted regression (GWR) approach was used to investigate intra-urban drivers of urban growth between 2000–2010 (epoch 1) and 2010–2020 (epoch 2), and to predict built-up growth for the year 2030. The study makes crucial contributions to the urban growth modelling literature by (a) investigating six different neighborhood sizes (3 × 3 to 13 × 13) for computing proportion of built-up cells and (b) eliminating/selecting covariates using correlation check and global lasso regression. The superiority of GWR model over global regression model has been evaluated using the Akaike information criterion score and the stationarity test. The chronological urban growth analysis of KUA highlights rapid growth in mountainous landscape from 54.90 to 166 km2 during 2000–2020 and is projected to increase to 224.22 km2 during 2000–2030. This has significantly altered the forest-agriculture landscape during 2000–2020 (111.2 km2) and is expected to affect a large segment of ecological (blue-green) infrastructure (138 km2) by 2030. The findings of this study may be used for policy formulation, appropriate land use planning, and sustainable urban development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data and scripts used in the study are available at https://github.com/PratyushTripathy/Kathmandu_urban_growth_gwr.

References

  • Adhvaryu, B. (2011). The Ahmedabad urban development plan-making process: A critical review. Planning, Practice & Research, 26(2), 229–250.

    Article  Google Scholar 

  • Aguayo, M. I., Wiegand, T., Azócar, G. D., Wiegand, K., & Vega, C. E. (2007). Revealing the driving forces of mid-cities urban growth patterns using spatial modeling: a case study of Los Ángeles. Chile. Ecology and Society, 12(1), 1–30.

    Google Scholar 

  • Ahmad, T., Pandey, A. C., & Kumar, A. (2019). Evaluating urban growth and its implication on flood hazard and vulnerability in Srinagar city, Kashmir Valley, using geoinformatics. Arabian Journal of Geosciences, 12, 1–20.

    Article  CAS  Google Scholar 

  • Arsanjani, J. J., Kainz, W., & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: The case of Tehran. International Journal of Image and Data Fusion, 2(4), 329–345.

    Article  Google Scholar 

  • Barredo, J. I., & Demicheli, L. (2003). Urban sustainability in developing countries’ megacities: Modelling and predicting future urban growth in Lagos. Cities, 20(5), 297–310.

    Article  Google Scholar 

  • Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771.

    Article  CAS  Google Scholar 

  • Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298.

    Article  Google Scholar 

  • Cao, Y., Zhang, X., Fu, Y., Lu, Z., & Shen, X. (2020). Urban spatial growth modeling using logistic regression and cellular automata: A case study of Hangzhou. Ecological Indicators, 113, 106200.

    Article  Google Scholar 

  • Charlton, M., Fotheringham, S., & Brunsdon, C. (2006). NCRM methods review papers, NCRM/006. Geographically weighted regression.

  • Chaudhari, S., & Kumar, A. (2020). Evaluating the contribution of urban ecosystem services in regulating thermal comfort. Spatial Information Research, 29, 71–82.

    Article  Google Scholar 

  • Chen, S., Feng, Y., Ye, Z., Tong, X., Wang, R., Zhai, S., ... & Jin, Y. (2020). A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules. GIScience & Remote Sensing, 57(7), 924–942.

  • Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning b: Planning and Design, 24(2), 247–261.

    Article  Google Scholar 

  • Cosentino, C., Amato, F., & Murgante, B. (2018). Population-based simulation of urban growth: The Italian case study. Sustainability, 10(12), 4838.

    Article  Google Scholar 

  • Diksha, & Kumar, A. (2017). Analysing urban sprawl and land consumption patterns in major capital cities in the Himalayan region using geoinformatics. Applied Geography, 89, 112–123. https://doi.org/10.1016/j.apgeog.2017.10.010

    Article  Google Scholar 

  • Diksha, & Kumar, A. (2022). Measuring the paradigm shift in ecological services in the Mountainous urban and peri-urban systems of the Himalayas. International Journal of Ecology and Environmental Sciences, 48, 243–250. https://doi.org/10.55863/ijees.2022.0105

  • Diksha, Kumar, A., & Lal, P. (2022). Analyzing climatic variability and extreme events in the Himalayan regions focusing on mountainous urban agglomerations. Geocarto International, 37(6), 14148–14170. https://doi.org/10.1080/10106049.2022.2086635

  • Ding, Y., & Peng, J. (2018). Impacts of urbanization of mountainous areas on resources and environment: Based on ecological footprint model. Sustainability, 10(3), 765.

    Article  Google Scholar 

  • Duwal, S., Amer, S., & Kuffer, M. (2018). Modelling urban growth in the Kathmandu Valley, Nepal. In GIS in sustainable urban planning and management (pp. 205–224). Boca Raton, MA, USA: CRC Press.

    Chapter  Google Scholar 

  • Duwal, S. (2013). Modeling urban growth in Kathmandu Valley (Doctoral Thesis, pp. 1–80). Retrieved September 11, 2020, from http://www.itc.nl/library

  • Feng, Y., Wang, R., Tong, X., & Zhai, S. (2021). Comparison of change and static state as the dependent variable for modeling urban growth. Geocarto International, 1–24. https://doi.org/10.1080/10106049.2021.1959657

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships (pp. 1–267). Chichester, UK: John Wiley & Sons.

  • Gao, C., Feng, Y., Tong, X., Lei, Z., Chen, S., & Zhai, S. (2020). Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Computers, Environment and Urban Systems, 81, 101459.

    Article  Google Scholar 

  • Gómez, J. A., Patiño, J. E., Duque, J. C., & Passos, S. (2019). Spatiotemporal modeling of urban growth using machine learning. Remote Sensing, 12(1), 109. https://doi.org/10.3390/rs12010109

    Article  Google Scholar 

  • Gómez, J. A., Guan, C., Tripathy, P., Duque, J. C., Passos, S., Keith, M., & Liu, J. (2021). Analyzing the spatiotemporal uncertainty in urbanization predictions. Remote Sensing, 2021(13), 512. https://doi.org/10.3390/rs13030512

    Article  Google Scholar 

  • Google Earth. (2021). Google earth ver.6.0.1.2032 (beta). Retrieved March 7, 2021, from https://www.google.com/earth

  • Gounaridis, D., Chorianopoulos, I., & Koukoulas, S. (2018). Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: The case of Athens. Applied Geography, 90, 134–144.

    Article  Google Scholar 

  • Haack, B. N., & Khatiwada, G. (2007). Rice and bricks: Environmental issues and mapping of the unusual crop rotation pattern in the Kathmandu Valley, Nepal. Environmental Management, 39(6), 774–782.

    Article  Google Scholar 

  • Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (Eds.). (2011). Agent-based models of geographical systems (pp. 1–759). Dordrecht, Netherlands: Springer Netherlands.

  • Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86(3), 286–302.

    Article  Google Scholar 

  • Hosseinali, F., Alesheikh, A. A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, 105–113.

    Article  Google Scholar 

  • Hu, Z., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667–688. https://doi.org/10.1016/j.compenvurbsys.2006.11.001

    Article  Google Scholar 

  • Ishtiaque, A., Shrestha, M., & Chhetri, N. (2017). Rapid urban growth in the Kathmandu Valley, Nepal: Monitoring land use land cover dynamics of a himalayan city with landsat imageries. Environments, 4(4), 72.

    Article  Google Scholar 

  • Jain, G. V., & Sharma, S. A. (2018). Spatio-temporal analysis of urban growth in selected small, medium and large Indian cities. Geocarto International, 34(8), 887–908. https://doi.org/10.1080/10106049.2018.1450450

    Article  Google Scholar 

  • Kivell, P. (1993). Land and the city, patterns and processes of urban change. Geography, 78, 330–331.

    Google Scholar 

  • Kohler, T., Pratt, J., Debarbieux, B., Balsiger, J., Rudaz, G., & Maselli, D. (1992). Sustainable mountain development, green economy and institutions. From Rio, 3–3.

  • Kumar, A., & Pandey, A. C. (2017). Analyzing seismic activities during 1900 to 2015 to assess urban risk in Nepal Himalayas using Geoinformatics. Journal of Urban and Environmental Engineering, 11(2), 133–141.

    Google Scholar 

  • Kumar, A., Pandey, A. C., Hoda, N., & Jeyaseelan, A. T. (2011). Evaluation of urban sprawl pattern in the tribal-dominated cities of Jharkhand state. India. International Journal of Remote Sensing, 32(22), 7651–7675.

    Article  Google Scholar 

  • Kumar, A., Lal, P., Prasad, A., Tripathy, P., & Saikia, P. (2022). Analyzing urban damage and surface deformation based hazard-risk in Kathmandu city occurred during Nepal earthquake (2015) using SAR interferometry. Advances in Space Research. https://doi.org/10.1016/j.asr.2022.02.003

    Article  Google Scholar 

  • Kumar, M., Singh, R. B., Pravesh, R., Kumar, P., Tripathi, D. K., & Sahu, N. (2018). Urban growth dynamics and modelling using remote sensing data and multivariate statistical techniques. Current Science, 114(10), 2080–2091.

    Article  Google Scholar 

  • Kumari, S., Lal, P., & Kumar, A. (2022). Spatial heterogeneity for urban built-up footprint and its characterization using microwave remote sensing. Advances in Space Research. https://doi.org/10.1016/j.asr.2022.03.025

    Article  Google Scholar 

  • Laitiainen, P. (2014). Disasters in North kivu Province Democratic Republic of Congo. Emergency and Disaster Reports, 1(4), 1–52.

    Google Scholar 

  • Lal, K., Kumar, D., & Kumar, A. (2017). Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 91–102.

    Article  Google Scholar 

  • Lal, P., Kumar, A., Prasad, A., Kumar, S., Saikia, P., Dayanandan, A., Roy, P. S., & Khan, M. L. (2021). COVID-19 pandemic hazard–risk–vulnerability analysis: A framework for an effective Pan-India response. Geocarto International, 1–12. https://doi.org/10.1080/10106049.2021.2012529

  • Li, H., Peng, J., Yanxu, L., & Yi’na, H. (2017). Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecological Indicators, 82, 50–60. https://doi.org/10.1016/j.ecolind.2017.06.032

    Article  Google Scholar 

  • Liao, F. H., & Wei, Y. H. (2014). Modeling determinants of urban growth in Dongguan, China: A spatial logistic approach. Stochastic Environmental Research and Risk Assessment, 28(4), 801–816. https://doi.org/10.1007/s00477-012-0620-y

    Article  Google Scholar 

  • Liao, J., Tang, L., Shao, G., Qiu, Q., Wang, C., Zheng, S., & Su, X. (2014). A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. International Journal of Geographical Information Science, 28(4), 720–738. https://doi.org/10.1080/13658816.2013.869820

    Article  Google Scholar 

  • Linard, C., Tatem, A. J., & Gilbert, M. (2013). Modelling spatial patterns of urban growth in Africa. Applied Geography, 44, 23–32. https://doi.org/10.1016/j.apgeog.2013.07.009

    Article  Google Scholar 

  • Luo, J., & Wei, Y. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), 51–64. https://doi.org/10.1016/j.landurbplan.2008.11.010

    Article  Google Scholar 

  • Maithani, S. (2010). Cellular automata based model of urban spatial growth. Journal of the Indian Society of Remote Sensing, 38(4), 604–610. https://doi.org/10.1007/s12524-010-0053-3

    Article  Google Scholar 

  • Malato, G. (2021). Feature selection in machine learning using Lasso regression. Medium. Retrieved February 12, 2022, from https://towardsdatascience.com/feature-selection-in-machine-learning-using-lasso-regression-7809c7c2771a

  • Mirbagheri, B., & Alimohammadi, A. (2017). Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Transactions in GIS, 21(6), 1280–1297.

    Article  Google Scholar 

  • Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141–153.

    Article  Google Scholar 

  • Mondal, B., Das, D. N., & Bhatta, B. (2017). Integrating cellular automata and Markov techniques to generate urban development potential surface: A study on Kolkata agglomeration. Geocarto International, 32(4), 401–419.

    Article  Google Scholar 

  • Munshi, T., Zuidgeest, M., Brussel, M., & van Maarseveen, M. (2014). Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, 68–86. https://doi.org/10.1016/j.cities.2014.02.007

    Article  Google Scholar 

  • Mustafa, A., Cools, M., Saadi, I., & Teller, J. (2017). Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529–540. https://doi.org/10.1016/j.landusepol.2017.10.009

    Article  Google Scholar 

  • Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J. (2018). Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156.

    Article  Google Scholar 

  • Nong, Y., & Du, Q. (2011). Urban growth pattern modeling using logistic regression. Geo-Spatial Information Science, 14(1), 62–67. https://doi.org/10.1007/s11806-011-0427-x

    Article  Google Scholar 

  • OpenStreetMap Contributors (OSM). (2020). Planet OSM. Retrieved December 28, 2020, from https://planet.osm.org

  • Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.

    Article  Google Scholar 

  • Osman, T., Divigalpitiya, P., & Arima, T. (2016). Driving factors of urban sprawl in Giza Governorate of Greater Cairo Metropolitan Region using AHP method. Land Use Policy, 58, 21–31.

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825–2830.

  • Pradhan, B., Sharma, P., & Pradhan, P. K. (2020). Urban growth and environment and health hazards in Kathmandu Valley, Nepal. In Urban health risk and resilience in Asian cities (293-324). Singapore: Springer.

  • Ramachandran, A., Snehalatha, C., Latha, E., Manoharan, M., & Vijay, V. (1999). Impacts of urbanisation on the lifestyle and on the prevalence of diabetes in native Asian Indian population. Diabetes Research and Clinical Practice, 44(3), 207–213.

    Article  CAS  Google Scholar 

  • Rimal, B., Baral, H., Stork, N. E., Paudyal, K., & Rijal, S. (2015). Growing city and rapid land use transition: Assessing multiple hazards and risks in the Pokhara Valley. Nepal. Land, 4(4), 957–978.

    Article  Google Scholar 

  • Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of Geo-Information, 7(4), 154.

    Article  Google Scholar 

  • Rincon-Ruiz, A., Pascual, U., & Flantua, S. (2013). Examining spatially varying relationships between coca crops and associated factors in Colombia, using geographically weight regression. Applied Geography, 37, 23–33.

    Article  Google Scholar 

  • Rodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 48, 52–63. https://doi.org/10.1016/j.apgeog.2014.01.011

    Article  Google Scholar 

  • Schneeberger, N., Burgi, M., Hersperger, A. M., & Ewald, K. C. (2007). Driving forces and rates of landscape change as a promising combination for landscape change research and application on the northern fringe of the Swiss Alps. Land Use Policy, 24, 349–361.

    Article  Google Scholar 

  • Shafizadeh-Moghadam, H., & Helbich, M. (2015). Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai. International Journal of Applied Earth Observation and Geoinformation, 35, 187–198.

    Article  Google Scholar 

  • Söderholm, P. (2020). The green economy transition: The challenges of technological change for sustainability. Sustainable Earth, 3(1), 1–11. https://doi.org/10.1186/s42055-020-00029-y

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2010). Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1), 70–83.

    Article  Google Scholar 

  • Thapa, R. B., & Murayama, Y. (2011). Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, 35(1), 25–34.

    Article  Google Scholar 

  • Thapa, R. B., Murayama, Y., & Ale, S. (2008). Kathmandu. Cities, 25(1), 45–57.

    Article  Google Scholar 

  • Tripathy, P., & Kumar, A. (2019). Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics. Cities, 90, 52–63. https://doi.org/10.1016/j.cities.2019.01.021

    Article  Google Scholar 

  • Tripathy, P., Rao, P., Balakrishnan, K., & Malladi, T. (2020). An open-source tool to extract natural continuity and hierarchy of urban street networks. Environment and Planning B: Urban Analytics and City Science, 48(8), 2188–2205. https://doi.org/10.1177/2399808320967680

    Article  Google Scholar 

  • UNDP (2015). World urbanization prospects: The 2014 revision (pp. 1–138). New York, USA: United Nations Department of Economics and Social Affair, Population Division.

  • UN-Habitat. (2013). State of the world’s cities 2012/2013: Prosperity of cities. London: Routledge Press. Retrieved December 25, 2019, from https://unhabitat.org/annual-report-2020

  • United Nations. (2019). World urbanization prospects: the 2018 revision. Department of Economic and Social Affairs, Population Division.

  • Wang, J., & Mountrakis, G. (2011). Developing a multi-network urbanization model: A case study of urban growth in Denver, Colorado. International Journal of Geographical Information Science, 25(2), 229–253. https://doi.org/10.1080/13658810903473213

    Article  Google Scholar 

  • Wang, H., Stephenson, S. R., & Qu, S. (2019). Modeling spatially non-stationary land use/cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model. International Journal of Geographical Information Science, 33(7), 1313–1334.

    Article  Google Scholar 

  • Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49.

    Article  Google Scholar 

  • Xian, G., Shi, H., Zhou, Q., Auch, R., Gallo, K., Wu, Z., & Kolian, M. (2022). Monitoring and characterizing multi-decadal variations of urban thermal condition using time-series thermal remote sensing and dynamic land cover data. Remote Sensing of Environment, 269, 112803.

    Article  Google Scholar 

  • Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., & Huang, Z. (2006). Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape and Urban Planning, 75(1–2), 69–80.

    Article  Google Scholar 

  • Zang, S., & Huang, X. (2006). An aggregated multivariate regression land-use model and its application to land-use change processes in the Daqing region (northeast China). Ecological Modelling, 193, 503–516.

    Article  Google Scholar 

  • Zhang, X., & Li, H. (2018). Urban resilience and urban sustainability: What we know and what do not know? Cities, 72, 141–148.

    Article  Google Scholar 

  • Zhao, C., Jensen, J. L., & Weaver, R. (2020). Global and local modeling of land use change in the border cities of Laredo, Texas, USA and Nuevo Laredo, Tamaulipas, Mexico: A Comparative Analysis. Land, 9(10), 347. https://doi.org/10.3390/land9100347

    Article  Google Scholar 

  • Zhao, Y., Xie, D., Zhang, X., & Ma, S. (2021). Integrating spatial Markov chains and geographically weighted regression-based cellular automata to simulate urban agglomeration growth: A case study of the Guangdong-Hong Kong–Macao Greater Bay Area. Land, 10(6), 633. https://doi.org/10.3390/land10060633

    Article  Google Scholar 

  • Zhu, X. X., Qiu, C., Hu, J., Shi, Y., Wang, Y., Schmitt, M., & Taubenböck, H. (2022). The urban morphology on our planet–Global perspectives from space. Remote Sensing of Environment, 269, 112794.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the United States Geological Survey (USGS) for providing LANDSAT data series, Alaska Science Facility (ASF) for providing ALOS PALSAR DEM data, and OpenStreetMap (OSM) for providing street network and waterbody that has been used in the study.

Funding

This work was supported by the Department of Biotechnology, Government of India, under the R&D project (No. BT/PR12899/NBD/39/506/2015).

Author information

Authors and Affiliations

Authors

Contributions

Diksha, Amit Kumar and Pratyush Tripathy designed the conceptual framework of the study. Diksha drafted the main manuscript text with inputs from Pratyush Tripathy. All the authors reviewed and edited the manuscript. Amit Kumar finalized the manuscript.

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Ethics approval

This is an observational study and hence no ethical approval is required.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diksha, Kumar, A. & Tripathy, P. Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas. Environ Monit Assess 195, 627 (2023). https://doi.org/10.1007/s10661-023-11164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11164-2

Keywords

Navigation