Skip to main content

Advertisement

Log in

Modeling the spatial variation of calcium carbonate equivalent to depth using machine learning techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Inorganic carbon is the largest source of carbon in terrestrial surface, particularly in arid and semiarid regions, including the Chahardowli Plain in western Iran. Inorganic carbon plays an equal or greater role than organic soil carbon in these areas, although less attention has been paid in quantifying their variability. The objective of this study was to model and map calcium carbonate equivalent (CCE) presenting inorganic carbon in soil using machine learning and digital soil mapping techniques. Chahardowli Plain in foothills of the Zagros Mountains in the southeast of Kurdistan Province in Iran was taken as a case study area. CCE was measured at 0–5, 5–15, 15–30, 30–60, and 60–100 cm depths following GloalSoilMap.net project specifications. A total of 145 samples were collected from 30 soil profiles using the conditional Latin hypercube (cLHS) method of sampling. Relationships between CCE and environmental predictors were modeled using random forest (RF) and decision tree (DT) models. In general, the RF model performed slightly superior than the DT model. The mean value of CCE increased with soil depth, from 3.5% (0–5 cm) to 63.8% (30–60 cm). Remote sensing (RS) variables and terrestrial variables were equally important. The importance of RS variables was higher at the surface than terrestrial variables, and vice versa. The most significant variables were Channel Network Base Level (CNBL) variable and Difference Vegetation Index (DVI) with the same variable importance value (21.1%). In areas affected by river activities, the use of the CNBL and vertical distance to channel networks (VDCN) as variables in digital soil mapping (DSM) could increase the accuracy of soil property prediction maps. The VDCN played a principal role in soil distribution in the study area by affecting the rate of discharge and, thus, erosion and sedimentation. A high percentage of carbonate in parts of the region could exacerbate nutrient deficiencies for most crops and provide information for sustainably managing agricultural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboukila, E. F., Nassar, I. N., Rashad, M., Hafez, M., & Norton, J. B. (2018). Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. Journal of the Saudi Society of Agricultural Sciences, 17(4), 390–397. https://doi.org/10.1016/j.jssas.2016.09.005

    Article  Google Scholar 

  • Adhikari, K., Kheir, R. B., Greve, M. B., Bøcher, P. K., Malone, B. P., Minasny, B., ... & Greve, M. H. (2013). High‐resolution 3‐D mapping of soil texture in Denmark. Soil Science Society of America Journal, 77(3), 860–876. https://doi.org/10.2136/sssaj2012.0275.

  • Alijani, Z., & Sarmadian, F. (2014). The role of topography in changing of soil carbonate content. India Journal of Scientific Research, 6, 263–271.

    Google Scholar 

  • Banaie, M. H. (1998). Soil moisture and temperature regimes map of Iran. Soil and Water Research Institute. Ministry of Agriculture, Tehran, Iran, 1 sheet.

  • Biswas, A., & Zhang, Y. (2018). Sampling designs for validating digital soil maps: A review. Pedosphere, 28(1), 1–15. https://doi.org/10.1016/S1002-0160(18)60001-3

    Article  Google Scholar 

  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1016/S1002-0160(18)60001-3

    Article  Google Scholar 

  • Brenning, A. (2008). Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. Hamburger Beiträge Zur Physischen Geographie Und Landschaftsökologie, 19(23–32), 410.

    Google Scholar 

  • Brungard, C. W., and Boettinger, J. L. (2010). Conditioned latin hypercube sampling: Optimal sample size for digital soil mapping of arid rangelands in Utah, USA. In Digital soil mapping (pp. 67–75). Springer.

  • Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards, T. C., Jr. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239, 68–83. https://doi.org/10.1016/j.geoderma.2014.09.019

    Article  Google Scholar 

  • Camera, C., Zomeni, Z., Noller, J. S., Zissimos, A. M., Christoforou, I. C., & Bruggeman, A. (2017). A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma, 285, 35–49. https://doi.org/10.1016/j.geoderma.2016.09.019

    Article  Google Scholar 

  • Campos, A. R., Giasson, E., Costa, J. J. F., Machado, I. R., Silva, E. B. D., and Bonfatti, B. R. (2019). Selection of environmental covariates for classifier training applied in digital soil mapping. Revista Brasileira de Ciência do Solo, 42. https://doi.org/10.1590/18069657rbcs20170414.

  • Chen, S., Arrouays, D., Mulder, V. L., Poggio, L., Minasny, B., Roudier, P., ... & Walter, C. (2022). Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 409, 115567. https://doi.org/10.1016/j.geoderma.2021.115567

  • Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. Ensemble machine learning (pp. 157–175). Springer. https://doi.org/10.1007/978-1-4419-9326-7_5

    Chapter  Google Scholar 

  • Darst, B. F., Malecki, K. C., & Engelman, C. D. (2018). Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genetics, 19(1), 1–6. https://doi.org/10.1186/s12863-018-0633-8

    Article  CAS  Google Scholar 

  • Dewi, C., & Chen, R. C. (2019). Random forest and support vector machine on features selection for regression analysis. International Journal of Innovative Computing, Information and Control, 15(6), 2027–2037. https://doi.org/10.24507/ijicic.15.06.2027

    Article  Google Scholar 

  • Engel, Y., Mannor, S., & Meir, R. (2004). The kernel recursive least-squares algorithm. IEEE Transactions on Signal Processing, 52(8), 2275–2285. https://doi.org/10.1109/TSP.2004.830985

    Article  Google Scholar 

  • Falahatkar, S., Hosseini, S. M., Ayoubi, S., & Salmanmahiny, A. (2016). Predicting soil organic carbon density using auxiliary environmental variables in northern Iran. Archives of Agronomy and Soil Science, 62(3), 375–393. https://doi.org/10.1080/03650340.2015.1051472

    Article  CAS  Google Scholar 

  • Gocke, M., Pustovoytov, K., & Kuzyakov, Y. (2011). Carbonate recrystallization in root-free soil and rhizosphere of Triticum aestivum and Lolium perenne estimated by 14C labeling. Biogeochemistry, 103(1), 209–222. https://doi.org/10.1016/j.chemgeo.2011.01.022

    Article  CAS  Google Scholar 

  • Hartemink, A. E., Hempel, J., Lagacherie, P., McBratney, A., McKenzie, N., MacMillan, R. A., ... & Zhang, G. L. (2010). GlobalSoilMap. net–a new digital soil map of the world. Digital Soil Mapping: Bridging Research, Environmental Application, and Operation, 423–428. https://doi.org/10.1007/978-90-481-8863-5_33

  • Hattar, B. I., Taimeh, A. Y., & Ziadat, F. M. (2010). Variation in soil chemical properties along toposequences in an arid region of the Levant. CATENA, 83(1), 34–45. https://doi.org/10.1016/j.catena.2010.07.002

    Article  CAS  Google Scholar 

  • Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., ... & Tondoh, J. E. (2015). Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PloS One, 10(6), e0125814. https://doi.org/10.1371/journal.pone.0125814

  • Hong, Y., Chen, S., Chen, Y., Linderman, M., Mouazen, A. M., Liu, Y., ... & Liu, Y. (2020). Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil and Tillage Research, 199, 104589. https://doi.org/10.1016/j.still.2020.104589

  • IUSS Working Group, W. R. B. (2006). World reference base for soil resources. World Soil Resources Report, 103.

  • Jamshidi, M., Delavar, M. A., Taghizadehe-Mehrjerdi, R., & Brungard, C. (2019). Evaluating digital soil mapping approaches for 3D mapping of soil organic carbon. Iranian Journal of Soil Research, 33(2), 227–239. https://doi.org/10.22092/IJSR.2019.119764

    Article  Google Scholar 

  • Junior, C. R. P., Pereira, M. G., de Azevedo, A. C., Van Huyssteen, C., dos Anjos, L. H. C., Fontana, A., ... & Santos, T. G. (2021). Genesis and classification of carbonate soils in the State of Rio de Janeiro, Brazil. Journal of South American Earth Sciences, 108, 103183. https://doi.org/10.1016/j.jsames.2021.103183

  • Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T. (2016). Caret: classification and regression training. R package version 6.0–73. https://CRAN.R-project.org/package=caret. Accessed 12 Nov 2019.

  • Lawrence, I., & Lin, K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 255–268. https://doi.org/10.2307/2532051

  • Ma, Y. F., Gao, Y. H., & Feng, Q. L. (2010). Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls. Journal of Crystal Growth, 312(21), 3165–3170. https://doi.org/10.1016/j.jcrysgro.2010.07.053

    Article  CAS  Google Scholar 

  • Mahler, P. J. (Ed.). (1970). Manual of land classification for irrigation. Ministry of Agriculture.

    Google Scholar 

  • Malone, B. P., Minasny, B., & McBratney, A. B. (2017). Using R for digital soil mapping (Vol. 35). Springer International Publishing.

    Book  Google Scholar 

  • McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32(9), 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009

    Article  Google Scholar 

  • Nabiollahi, K., Taghizadeh-Mehrjardi, R., & Eskandari, S. (2018). Assessing and monitoring the soil quality of forested and agricultural areas using soil-quality indices and digital soil-mapping in a semi-arid environment. Archives of Agronomy and Soil Science, 64(5), 696–707. https://doi.org/10.1080/03650340.2017.1373188

    Article  Google Scholar 

  • Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482–494. https://doi.org/10.1016/j.ecolind.2017.08.001

    Article  CAS  Google Scholar 

  • Olaya, V., & Conrad, O. (2009). Geomorphometry in SAGA. Developments in Soil Science, 33, 293–308. https://doi.org/10.1016/S0166-2481(08)00012-3

    Article  Google Scholar 

  • Parsaie, F., Farrokhian Firouzi, A., Mousavi, S. R., Rahmani, A., Sedri, M. H., & Homaee, M. (2021). Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment, 193(4), 1–15. https://doi.org/10.1007/s10661-021-08947-w

    Article  CAS  Google Scholar 

  • Planchon, O., & Darboux, F. (2002). A fast, simple and versatile algorithm to fill the depressions of digital elevation models. CATENA, 46(2–3), 159–176. https://doi.org/10.1016/S0341-8162(01)00164-3

    Article  Google Scholar 

  • Roozitalab, M. H., Siadat, H., & Farshad, A. (Eds.). (2018). The soils of Iran (p. 255). Springer international publishing.

    Google Scholar 

  • Rowley, M. C., Grand, S., Adatte, T., & Verrecchia, E. P. (2020). A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma, 361, 114065. https://doi.org/10.1016/j.geoderma.2019.114065

    Article  CAS  Google Scholar 

  • Rumao, S. (2019). Exploration of variable importance and variable selection techniques in presence of correlated variables. Rochester Institute of Technology.

    Google Scholar 

  • SAGA. (2013). System for automated geoscientific analyses. Available at: www.saga-gis.org/en/index.html (last access: 21 January 2017).

  • Sajadi, P., Singh, A., Mukherjee, S., Asthana, H., Luo, P. P., & Chapi, K. (2018). Analysis of drainage morphometry and tectonic activity in the Dehgolan Basin Kurdistan, Iran, using remote sensing and geographic information system. In Geospatial applications for natural resources management (pp. 131–150). CRC Press.

  • Searle, R., McBratney, A., Grundy, M., Kidd, D., Malone, B., Arrouays, D., & Andrews, K. (2021). Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Regional, 24, e00359. https://doi.org/10.1016/j.geodrs.2021.e00359

    Article  Google Scholar 

  • Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), 21–28. https://doi.org/10.1080/10106040608542399

    Article  Google Scholar 

  • Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130. https://doi.org/10.11919/j.issn.1002-0829.215044

    Article  Google Scholar 

  • Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods. (Vol. 14). John Wiley and Sons.

    Google Scholar 

  • Staff, S. S. (2014). Keys to Soil Taxonomy (12th ed.). Natural Resources Conservation Service, United States Department of Agriculture.

  • Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958. https://doi.org/10.1021/ci034160g

    Article  CAS  Google Scholar 

  • Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J., & Omid, M. (2014). Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region. Iran. Arid Land Research and Management, 28(2), 147–168. https://doi.org/10.1080/15324982.2013.828801

    Article  Google Scholar 

  • Team, R. C. (2016). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R foundation for statistical computing.

  • Virto, I., Antón, R., Apesteguía, M., & Plante, A. (2018). Role of carbonates in the physical stabilization of soil organic matter in agricultural Mediterranean soils. In Soil Management and Climate Change (pp. 121–136). Academic Press. https://doi.org/10.1016/B978-0-12-812128-3.00009-4

  • ViscarraRossel, R. A., Chen, C., Grundy, M. J., Searle, R., Clifford, D., & Campbell, P. H. (2015). The Australian three-dimensional soil grid: Australia’s contribution to the globalsoilmap project. Soil Res, 53, 845–864. https://doi.org/10.1071/SR14366

    Article  CAS  Google Scholar 

  • Wilford, J., De Caritat, P., & Bui, E. (2015). Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma, 259, 81–92. https://doi.org/10.1016/j.geoderma.2015.05.003

    Article  CAS  Google Scholar 

  • Wilson, J. P., & Gallant, J. C. (2000). Digital terrain analysis. Terrain Analysis: Principles and Applications, 6(12), 1–27.

    Google Scholar 

  • Wright, M. N., & Ziegler, A. (2017). Ranger A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software., 77, 1–17. https://doi.org/10.18637/jss.v077.i01

    Article  Google Scholar 

  • Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. https://doi.org/10.1016/j.earscirev.2016.03.003

    Article  CAS  Google Scholar 

  • Zeraatpisheh, M., Ayoubi, S., Jafari, A., & Finke, P. (2017). Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 285, 186–204. https://doi.org/10.1016/j.geomorph.2017.02.015

    Article  Google Scholar 

  • Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., & Finke, P. (2019). Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 338, 445–452. https://doi.org/10.1016/j.geoderma.2018.09.006

    Article  CAS  Google Scholar 

  • Zhang, G. L., Feng, L. I. U., & Song, X. D. (2017). Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, 16(12), 2871–2885. https://doi.org/10.1016/S2095-3119(17)61762-3

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Dr. David G. Rossiter, for reviewing the results of the analysis, and his valuable guidance, comments, and suggestions which have improved the scientific quality of this paper. We also wish to extend our deep gratitude to Prof. Thomas Scholten for reviewing the results of the analysis and his valuable guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amir Delavar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research data policy and data availability statements

Data are available on request due to privacy or other restrictions. The data that support the findings of this study are available on request from the corresponding author Mohammad Amir Delavar and Leila Lotfollahi. The data are not publicly available because they are part of a Ph.D. thesis and they have not been published yet, so they contain information that could be not acceptable for the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfollahi, L., Delavar, M.A., Biswas, A. et al. Modeling the spatial variation of calcium carbonate equivalent to depth using machine learning techniques. Environ Monit Assess 195, 607 (2023). https://doi.org/10.1007/s10661-023-11126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11126-8

Keywords

Navigation