Skip to main content
Log in

Spatial distribution of Hg in Pra River Basin, Southwestern Ghana using HF acid combination method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study assessed the spatial distribution of total mercury (THg) in soils, sediments, mining wastes, and Au-rich Hg-contaminated tailings from artisanal and small-scale gold mining (ASGM) from Offin, Lower and Upper Pra, Birim, and Anum Rivers, Pra River Basin, Southwestern Ghana. THg measurement using Cold Vapor Atomic Absorption Spectrometry (CVAAS) after acid digestion with HNO3/HCl/HF and k0-INAA, as a reference method, and both provided comparable results. A digestion method, HNO3/HClO2/H2SO4 acid mixture before CVAAS provided lower results, which indicates that the use of HF is of fundamental importance in THg analysis based on acid digestion and its omission may significantly underestimate the presence of Hg in soils and sediments. THg in soils, sediments, Au-rich Hg-contaminated tailings, and mining wastes from the river basin were liberated into a solution for measurement using HNO3/HCl/HF. The study revealed Offin and Lower Pra Rivers showed high distribution (ranges; mg Hg kg−1) of THg in soils (103–770) and sediments (0.20–20.8), respectively; Upper Pra and Anum rivers showed the lowest THg in soils (2.20–3.20) and sediments (0.004–0.02), respectively. About 76.0% of THg in sediments was lower than the USEPA guideline of 0.2 mg Hg kg−1. The highest mean THg (mg Hg kg−1) in Au-rich Hg-contaminated tailings (1673 ± 4.8, n = 4) and mining wastes (17.3–21.5) were from the river Offin. The study showed Offin (Dunkwa-on-Offin site 1) and Lower Pra (Beposo Township) rivers are Hg hotspots that need attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adams, M. D. (2016). Overview of the gold mining industry and major gold deposits. In Gold Ore Processing (pp. 25–30). Elsevier.

  • Addae, E. (2013). An assessment of heavy metal contamination in soils and vegetation: A case study of Korle Lagoon Reclamation site (Doctoral dissertation, University of Ghana).

  • Adonteng, A. F., (2009). The Ghanaian open market as resource for textile designs. Thesis, Kwame Nkrumah University of Science and Technology, Ghana. Pg 13.

  • Ahern, N. (2016). Mercury in gold processing. Gold Ore Processing, 753–766.

  • Akagi, H., & Nishimura, H. (1991). Speciation of mercury in the environment. Advances in Mercury Toxicology, 53–76.

  • Al-Sulaiti, M. M., Soubra, L., & Al-Ghouti, M. A. (2022). The causes and effects of mercury and methylmercury contamination in the marine environment: A review. Current Pollution Reports, 8(3), 249–272.

  • AMAP/UNEP. (2018). Technical Background Report for the Global Mercury Assessment.

  • Amegbey, N. A., & Eshun, P. A. (2003). Mercury use and occupational exposure in the Ghanaian small-scale gold mining industry. Ghana Mining Journal, 7, 54–61.

    Google Scholar 

  • Ayrault, S. (2005). Multi‒element analysis of plant and soil samples.

  • Bastos, W. R., Gomes, J. P. O., Oliveira, R. C., Almeida, R., Nascimento, E. L., Bernardi, J. V. E., ..., & Pfeiffer, W. C. (2006). Hg in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Science of the Total Environment, 368(1), 344‒351.

  • Becker, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794.

    Article  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of Hg in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284(1–3), 191–203.

    Article  CAS  Google Scholar 

  • Bini, C., & Bech, J. (2016). PHEs, environment and human health. Springer.

    Google Scholar 

  • Bishop, K. H., Lee, Y. H., Munthe, J., & Dambrine, E. (1998). Xylem sap as a pathway for total Hg and methylHg transport from soils to tree canopy in the boreal forest. Biogeochemistry, 40(2), 101–113.

    Article  Google Scholar 

  • Boszke, L., Kowalski, A., Astel, A., Barański, A., Gworek, B., & Siepak, J. (2008). Hg mobility and bioavailability in soil from contaminated area. Environmental Geology, 55(5), 1075–1087.

    Article  CAS  Google Scholar 

  • Chen, Z.-S. (1999). Selecting indicators to evaluate soil quality. Food & Fertilizer Technology Center.

  • Cho, H., Dasari, K. B., Lim, M. C., Sun, G. M., Jaćimović, R., & Yim, Y. H. (2020). Application of k0-INAA method in preliminary characterization of KRISS urban airborne particulate matter certified reference material. Applied Sciences, 10(19), 6649.

    Article  CAS  Google Scholar 

  • Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., ..., & Roeser, M. (2011). Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of the Total Environment, 410, 154–160.

  • Dickson, K. B., & Benneh, G. (1995). A new geography of Ghana (3rd ed.). Longman, Eng.

    Google Scholar 

  • Donkor, A., Bonzongo, J., Nartey, V., & Adotey, D. (2006). Hg in different environmental compartments of the Pra River Basin, Ghana. Science of the Total Environment, 368(1), 164–176.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental science & Technology, 47(10), 4967–4983.

  • Yu, H., Li, J., & Luan, Y. (2018). Meta-analysis of soil mercury accumulation by vegetables. Scientific Reports, 8(1), 1261.

  • Zheng, W., Obrist, D., Weis, D., & Bergquist, B. A. (2016). Mercury isotope compositions across North American forests. Global Biogeochemical Cycles, 30(10), 1475–1492.

    Article  CAS  Google Scholar 

  • DTSC (California Department of Toxic Substances Control) and HERO (Human and Ecological Risk Office), (2019). HERO Human Health Risk Assessment (HHRA) Note 3, DTSC-Modified Screening Levels (DTSC-SLs). https://dtsc.ca.gov/wp-content/uploads/sites/31/2019/04/HHRA-Note-3-2019-04.pdf. Accessed on 30 November 2020.

  • Fan, W., Hui, L., Zhang, M., Wen, M., Huang, X., Liu, S., & Dai, J. (2017). Adsorption characteristics and the effect of dissolved organic matter on mercury (II) adsorption of various soils in China. Journal of Soil Contamination, 26, 157–170. [Google Scholar].

    Article  Google Scholar 

  • Fitzgerald, W. F. (1986). Cycling of mercury between the atmosphere and oceans. In The role of air-sea exchange in geochemical cycling (pp. 363–408). Springer, Dordrecht.

  • Fosu-Mensah, B. Y., Ofori, A., Ofosuhene, M., Ofori-Attah, E., Nunoo, F. E., Darko, G., ..., & Appiah-Opong, R. (2018). Assessment of heavy metal contamination and distribution in surface soils and plants along the west coast of Ghana, West African Journal of Applied Ecology, 26, 167–178.

  • Friberg, L., & Vostal, J. (1972). Mercury in the environment: A toxicological and epidemiological appraisal. CRC Press.

    Google Scholar 

  • Gaudino, S., Galas, C., Belli, M., Barbizzi, S., de Zorzi, P., Jaćimović, R., ..., & Sansone, U. (2007). The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP‒MS and INAA measurement results. Accreditation and Quality Assurance, 12(2), 84‒93.

  • Ghana Statistical Service (GSS). (2012). 2010 Population and Housing Census: Summary report of final results.

  • Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. A., & Kim, K. H. (1995). Foliar exchange of Hg vapor: Evidence for a compensation point. Water, Air, and Soil Pollution, 80(1), 373–382.

    Article  CAS  Google Scholar 

  • Harter, R. D. (1983). Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Science Society of America Journal, 47, 47–51.

    Article  CAS  Google Scholar 

  • Hogarh, J. N., Adu-Gyamfi, E., Nukpezah, D., Akoto, O., & Adu-Kumi, S. (2016). Contamination from mercury and other heavy metals in a mining district in Ghana: Discerning recent trends from sediment core analysis. Environmental Systems Research, 5(1), 1–9.

    Article  Google Scholar 

  • Ericksen, J., Gustin, M., Xin, M., Weisberg, P., & Fernandez, G. (2006). Air–soil exchange of mercury from background soils in the United States. Science of the Total Environment, 366(2), 851–863.

  • Horvat, M., Lupsina, V., & Pihlar, B. (1991). Determination of total mercury in coal fly ash by gold amalgamation cold vapour atomic absorption spectrometry. Analytical Chemistry Acta, 24, 71–79.

    Article  Google Scholar 

  • Horvat, M., Zvonari, T., & Stegnar, P. (1986). Optimization of a wet digestion method for the determination of mercury in blood by cold vapour absorption spectrometry (CV AAS). Vestnik Slovenskega Kemijskega Drustva, 33(4), 475–486.

    CAS  Google Scholar 

  • Hussain, S., Yang, J., Hussain, J., Hussain, I., Kumar, M., Ullah, S., ..., & Gao, Y. (2022). Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. Environmental Research, 207, 112190.

  • HyperLab 2002 System. (2002). Installation and quick start guide, HyperLabs Software, Budapest, Hungary.

  • Hylander, L. D., Plath, D., Miranda, C. R., Lücke, S., Öhlander, J., & Rivera, A. T. (2007). Comparison of different gold recovery methods with regard to pollution control and efficiency. CLEAN-Soil, Air, Water, 35(1), 52–61.

    Article  CAS  Google Scholar 

  • Jaćimović, R., & Horvat, M. (2004). Determination of total mercury in environmental and biological samples using k0-INAA, RNAA and CVAAS/AFS techniques: Advantages and disadvantages. Journal of Radioanalytical and Nuclear Chemistry, 259(3), 385–390.

    Article  Google Scholar 

  • Jaćimović, R., Lazaru, A., Mihajlovi, D., & Ili, R. (2002). Determination of major and trace elements in some minerals by k0-instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 253(3), 427–434.

    Article  Google Scholar 

  • Jaćimović, R., Smodiš, B., Bučar, T., & Stegnar, P. (2003). k0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software. Journal of Radioanalytical and Nuclear Chemistry, 257(3), 659–663.

    Article  Google Scholar 

  • Horvat, M., Nolde, N., Fajon, V., Jereb, V., Logar, M., Sonja,L., et al. (2003). Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment, 304, 231–244.

  • Jing, Y. D., He, Z. L., & Yang, X. E. (2007). Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere, 69(10), 1662–1669.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Sadurski, W. (2004). Trace elements and compounds in soil. Elements and their compounds in the environment: Occurrence, analysis and biological relevance, Second Edition, 79–99.

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.

    Article  Google Scholar 

  • Kocman, D., Horvat, M., & Kotnik, J. (2004). Mercury fractionation in contaminated soils from the Idrija mercury mine region. Journal of Environmental Monitoring, 696–703.

  • Koranteng–Addo, E. J., Owusu–Ansah, E., Boamponsem, L. K., Bentum, J. K., & Arthur, S. (2011). Levels of zinc, copper, iron and manganese in soils of abandoned mine pits around the Tarkwa gold mining area of Ghana.

  • Krabbenhoft, D. P. (2004). Methylmercury contamination of aquatic ecosystems: a widespread problem with many challenges for the chemical sciences. In Water and sustainable development opportunities for the chemical sciences—a workshop report to the chemical sciences roundtable. National Academies Press, Washington, DC (pp. 19–26).

  • Kuldvere, A. (1990). Analyst [London], 115, 559.

  • Lamé, F., & Maring, L. (2014). Into Dutch soils. Ministry of Infrastructure and the Environment of The Netherlands: Brussels, Belgium.

  • Kusimi, J. M., Yiran, G. A., & Attua, E. M. (2015). Soil erosion and sediment yield modelling in the Pra River Basin of Ghana using the Revised Universal Soil Loss Equation (RUSLE). Ghana Journal of Geography, 7(2), 38–57.

    Google Scholar 

  • Kabata-Pendias, Alina. (2011). Trace elements in soils and plants. CRC Press Boca Raton.

  • Lin, C.-J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33(13), 2067–2079.

  • Li, S., & Jia, Z. (2018). Heavy metals in soils from a representative rapidly developing megacity (SW China): Levels, source identification and apportionment. CATENA, 163, 414–423. https://doi.org/10.1016/j.catena.2017.12.035

    Article  CAS  Google Scholar 

  • Liu, G., & Hanlon, E. (2012). Soil pH range for optimum commercial vegetable production. In Nutrient Management of Vegetable and Row Crops Handbook (pp. 126-136). Gainesville, FL, USA: University of Florida press.

  • Liu, W., Feng, Y., Zhong, H., Ptacek, C., Blowes, D., Liu, Y., ..., & Wang, S. (2020). HNO3/HClO2/H2SO4 digestion cannot completely extract Hg from biochar: A synchrotron-based study. Environmental Pollution, 265, 115002.

  • Lodenius, M. (2013). Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research, 125, 113–123.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    Article  CAS  Google Scholar 

  • Miao, X., Li, Z., Long, J., Wei, D., & Ma, Y. (2012). Mercury and arsenic adsorption-desorption behaviors in the different soils. Acta Agriculturae Nucleatae Sinica, 26, 552–557. [Google Scholar].

    CAS  Google Scholar 

  • Liu, G., Cai, Y., O Driscoll, N., Feng, X., & Jiang, G. (2012). Overview of mercury in the environment. Environmental Chemistry and Toxicology of Mercury, 1–12.

  • Murao, S., Tomiyasu, T., Ono, K., Shibata, H., Narisawa, N., & Takenaka, C. (2019). Mercury distribution in artisanal and small-scale gold mining area: A case study of hot spots in Camarines Norte, Philippines. International Journal of Environmental Science and Development, 10(5), 122–129.

    Article  CAS  Google Scholar 

  • Nude, P. M., Foli, G., & Yidana, M. (2011). Geochemical assessment of impact of mine spoils on quality of stream sediments within the Obuasi mines environment, Ghana. International Journal of Geosciences, 2, 259–266.

    Article  CAS  Google Scholar 

  • Obodai, E. A., Yankson, Y., & Jnr, J. B. (1996). Seasonal changes in hydrographic factors and breeding in two population of Crassostea Tulupa (Lamarch). Ghana Journal of Science, 36(1).

  • Pataranawat, P., Parkpian, P., Polprasert, C., Delaune, R. D., & Jugsujinda, A. (2007). Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. Journal of Environmental Science and Health, Part A, 42(8), 1081–1093.

    Article  CAS  Google Scholar 

  • Murao, S., Tomiyasu, T., Ono, K., Shibata, H., Narisawa, N., & Takenaka, C. (2019). Mercury distribution in artisanal and small-scale gold mining area: a case study of hot spots in Camarines Norte, Philippines. International Journal of Environmental Science and Development, 10(5), 122–129.

  • Rafiei, B., Bakhtiarinezhad, M., Hashemi, M., & Khodaei, A. S. (2010). Distribution of heavy metals around the Dashkasan Au mine.

  • Rea, A. W., Lindberg, S. E., & Keeler, G. J. (2001). Dry deposition and foliar leaching of Hg and selected trace elements in deciduous forest throughfall. Atmospheric Environment, 35(20), 3453–3462.

    Article  CAS  Google Scholar 

  • Saadati, N., Abdullah, M. P., Zakaria, Z., Sany, S. B. T., Rezayi, M., & Hassonizadeh, H. (2013). Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chemistry Central Journal, 7(1), 1–10.

    Article  Google Scholar 

  • Sakakibara, M., & Sera, K. (2020). Mercury in soil and forage plants from artisanal and small-scale gold mining in the bombana area, Indonesia. Toxics, 8(1), 15.

    Article  Google Scholar 

  • Ščančar, J., Milačič, R., & Horvat, M. (2000). Comparison of various digestion and extraction procedures in analysis of heavy metals in sediments. Water, Air, and Soil Pollution, 118(1), 87–99.

    Article  Google Scholar 

  • Rayment, G., Higginson, F. R., & others. (1992). Australian laboratory handbook of soil and water chemical methods. Inkata Press Pty Ltd.

  • Schlüter, K. (2000). Evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology, 39(3), 249–271.

    Article  Google Scholar 

  • Simon, L. (2014). Potentially harmful elements in agricultural soils. In PHEs, environment and human health (pp. 85–150). Springer, Dordrecht.

  • Snoj, L., Trkov, A., Jaćimović, R., Rogan, P., Žerovnik, G., & Ravnik, M. (2011). Analysis of neutron flux distribution for the validation of computational methods for the optimization of research reactor utilization. Applied Radiation and Isotopes, 69(1), 136–141.

    Article  CAS  Google Scholar 

  • Sun, X., Zhang, W., Vassov, R., Sherr, I., Du, N., & Zwiazek, J. J. (2022). Effects of Elemental Sulfur on Soil pH and Growth of Saskatoon Berry (Amelanchier alnifolia) and Beaked Hazelnut (Corylus cornuta) Seedlings. Soil Systems, 6(2), 31.

    Article  CAS  Google Scholar 

  • Taylor, R., & Anderson, E. (2018). Quartz-pebble-conglomerate gold deposits, chapter P of mineral deposit models for resource assessment, USGS Scientific Investigations Report 2010–5070-P (PDF). Reston: US Dept. of the Interior, USGS. p. 9.

  • Tomiyasu, T., Baransano, C., Hamada, Y. K., Kodamatani, H., Kanzaki, R., Hidayati, N., & Rahajoe, J. S. (2020). Distribution of total and organic mercury in soils around an artisanal and small-scale gold mining area in West Java, Indonesia. SN Applied Sciences, 2(7), 1–11.

    Article  Google Scholar 

  • Tulasi, D., Fajon, V., Kotnik, J., Shlyapnikov, Y., Adotey, D. K., Serfor-Armah, Y., & Horvat, M. (2021). Mercury methylation in cyanide influenced river sediments: A comparative study in Southwestern Ghana. Environmental Monitoring and Assessment, 193(4), 1–18.

    Article  Google Scholar 

  • Tun, A. Z., Wongsasuluk, P., & Siriwong, W. (2020). Heavy metals in the soils of placer small-scale gold mining sites in Myanmar. Journal of Health and Pollution, 10(27).

  • UN Environment. (2017). Toolkit for identification and quantification of mercury releases. Reference Report and Guideline for Inventory Level 2. Version 1.4. January 2017.

  • UNEP. (2019). Technical background report to the global mercury assessment 2018.

  • USEPA, E. (1996). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. Accessed June 2019, https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf

  • USEPA. (1997). Fate and transport of mercury in the environment (vol. 3). US. Environmental Protection Agency.

  • Veiga, M. M., Angeloci, G., Hitch, M., & Velasquez-Lopez, P. C. (2014). Processing centres in artisanal gold mining. Journal of Cleaner Production, 64, 535–544.

    Article  CAS  Google Scholar 

  • Veiga, M. M., Nunes, D., Klein, B., Shandro, J. A., Velasquez, P. C., & Sousa, R. N. (2009). Mill leaching: A viable substitute for mercury amalgamation in the artisanal gold mining sector? Journal of Cleaner Production, 17(15), 1373–1381.

    Article  CAS  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W., Xing, Y., & Shang, L. (2012). Remediation of Hg contaminated sites-A review. Journal of Hazardous Materials, 221, 1–18.

    Google Scholar 

  • World Health Organization. (2017). WHO Ten chemicals of major concern. Mercury and Health. https://doi.org/10.1016/j.jhazmat.2012.04.035118.

  • WRC. (2010a). National baseline studies and institutional analysis towards the development of the national.

  • WRC. (2010b). Pra Basin Baseline study.

  • Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury-an overview. Atmospheric Environment, 32(5), 809–822.

  • Wright, J. B., Hastings, D. A., Jones, W. B., & Williams, H. R. (1985). J. B. Wright (Ed.), Geology and Mineral Resources of West Africa (pp. 45–47). George Allen & UNWIN.

Download references

Acknowledgements

We are grateful to the staff especially, Ms. Vesna Fajon of the Department of Environmental Sciences, Jožef Stefan Institute, Slovenia. Also, to Prof. Fredrick Ato Armah, Dr. Michael Miyittah, and Dr. K. K. Mireku of the School of Biological Sciences, University of Cape Coast, Ghana. Again to Dr. Dennis K. Adotey and Dr. Delali Tulasi of the Ghana Atomic Energy Commission, Ghana.

Funding

The research leading to these results received funding from ICTP/IAEA Sandwich Training Educational Programme (STEP), Italy to undertake this research at the Department of Environmental Sciences, Jožef Stefan Institute, Slovenia.

Author information

Authors and Affiliations

Authors

Contributions

Christiana Odumah Hood wrote the paper with guidance and contributions from Prof. Dr. Milena Horvat, Prof., Samuel Yeboah Mensah, and Prof., Dr. Radojko Jacimovic.

Corresponding author

Correspondence to Christiana Odumah Hood.

Ethics declarations

Consent for publishing

The contributing authors have given their consent for the manuscript to be published.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hood, C.O., Radjoko, J., Mensah, S.Y. et al. Spatial distribution of Hg in Pra River Basin, Southwestern Ghana using HF acid combination method. Environ Monit Assess 195, 604 (2023). https://doi.org/10.1007/s10661-023-11122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11122-y

Keywords

Navigation