Skip to main content
Log in

Zoning of some physicochemical parameters in the sediments of Meighan wetland in Iran: response to urbanization, industrial, and agricultural activities

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Meighan wetland is located at 8 km far away from Arak city with a population of about 600,000 citizens in the center of Iran. Several agricultural activities and industries such as metal, chemical, and mineral, as well as industrial towns, exist around the desired wetland. This research was conducted to measure the sources of chemical contaminants entering the wetland through natural and artificial waterways, to explore the trend of changes in the contaminants, and to prepare the wetland contamination zone map followed by source detection of these contaminants. Sediment samples were taken during 2019–2020 from a depth of 0–30 cm from 87 points in the input waterways. The results indicated that the mean total concentrations of cadmium, nickel, lead, zinc, copper, and aluminum in sediments were estimated as 6.7, 93.4, 14.1, 276.4, 34.3, and 22,742.7 ppm, respectively. The concentrations of nitrate and phosphate in the sediments were given as 18.6 and 1.8 ppm, respectively. The mean comparison indicated that the most significant level of nickel and lead belonged to the input waterways of industrial and urban regions; the maximum cadmium content was seen in the input waterways from the agricultural lands; and the highest level of zinc and aluminum was recorded in the waterways of agricultural-industrial urban regions. There was a significant relationship between the results of classic statistics and zoning found in GIS. Overall, chemical pollutants with the origin of input wastewater from the treatment plant of wastewater and the input waterways from the industrial and urban regions have had the largest share of contamination for Meighan wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  • Abdi, L., Rezaian Langroodi, S., & Lak, R. (2017). A comparison of hydrogeochemistry and brines evolution in Meyghan and Hoz-e-Soltan playas. Quaternary Journal of Iran, 3(2), 191–203.

    Google Scholar 

  • Alabdeh, D., Karbassi, A. R., & Omidvar, B., et al. (2019). Speciation of metals and metalloids in Anzali wetland, Iran. International Journal of Environmental Science and Technology, 62-019-02471-8. https://doi.org/10.1007/s13762-019-02471-8

  • Alhashemi, A. H., Karbassi, A. R., Kiabi, B. H., Monavari, S. M., & Nabavi, M. B. (2011). Accumulation and bioaccessibility of trace elements in wetland sediments. African Journal of Biotechnology, 10(9), 1625–1636.

    CAS  Google Scholar 

  • Ansari, A., & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for desert wetlands – A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64–70. https://doi.org/10.1016/j.iswcr.2018.10.001

    Article  Google Scholar 

  • Ansarian, F., Kazemi, A., & SalehiArjmand, H. (2010). Assessment heavy metals (Cd, Pb, Cu Co, Ni) in some tissues of Tenualosa ilisha from Northwest Persian Gulf and their relationship with length and weight. Journal of Aquatic Sciences, 1(1), 73–87.

    Google Scholar 

  • Ansarian, F., Kazemi, A., & Salehi arjmand, H. (2016). Measurement of heavy metals in surface sediments of Meaghan Wetland to investigate the effects of Arak Sewage treatment plant. Second Conference on Science, Engineering and Environmental Technologies. Tehran, Iran. https://civilica.com/doc/585161

  • Ardakani, S., Jamshidi, K., & Niazi, V. A. (2014). Investigation of Fe, Pb, Cd and Cu concentrations in sediments of Mighan Wetland using geo-accumulation index. Wetland Ecobiology Journal., 6(2), 67–77.

    Google Scholar 

  • Bai, J., Cui, B., Chen, B., Zhang, K., Deng, W., Gao, H., & Xiao, R. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling Journal, 222(2), 301–306. https://doi.org/10.1016/j.ecolmodel.2009.12.002

    Article  CAS  Google Scholar 

  • Brillas, E. (2021). Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production, 290, 125841. https://doi.org/10.1016/j.jclepro.2021.125841

    Article  CAS  Google Scholar 

  • Calijuri, M. L., da Fonseca Santiago, A., Neto, R. F. M., & de Castro Carvalho, I. (2011). Evaluation of the ability of a natural wetland to remove heavy metals generated by runways and other paved areas from an airport complex in Brazil. Water, Air, Soil Pollution, 219(4), 319–327. https://doi.org/10.1007/s11270-010-0709-1

    Article  CAS  Google Scholar 

  • Chien, S. W. C., Wang, H. H., Chen, Y. M., Wang, M. K., & Liu, C. C. (2021). Removal of heavy metals from contaminated paddy soils using chemical reductants coupled with dissolved organic carbon solutions. Journal of Hazardous Materials, 403, 123549. https://doi.org/10.1016/j.jhazmat.2020.123549

    Article  CAS  Google Scholar 

  • Dash, S., Borah, S. S., & Kalamdhad, A. S. (2021). Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecological Indicators, 122, 107265. https://doi.org/10.1016/j.ecolind.2020.107265

    Article  CAS  Google Scholar 

  • Davari, A., DanehKar, A., Khorasani, N., & Javanshir, A. (2012). Identification of heavy metal pollution in mangrove forests of Bushehr province. Journal of Environmental Studies (JES), 38(3), 27–36.

    Google Scholar 

  • Dehghan Madiseh, S., Esmaeili, F., Sabzalizadeh, S., KholfehNilsaz, M., Mazravi, M., Nikpay, M., & Farokhian, F. (2009). Irestigation limnological in Bahmanshir River. Aqua Docs Journal, 23(4), 110–119.

    Google Scholar 

  • Ghadimi, F. (2020). Assessing the heavy metal contamination in sediments of Mighan playa using pollution indices. Journal of Stratigraphy and Sedimentology Researches University of Isfahan, 36(1), 21–38.

    Google Scholar 

  • Ghadimi, F. (2021). Determining the origin of chemical and biological pollutants in the water of Mighan Wetland in Arak. Journal of Geography and Environmental Planning, 31(4), 131–150. https://doi.org/10.22108/GEP.2021.125608.1366

    Article  Google Scholar 

  • Girolkar, S., Thawale, P., & Juwarkar, A. (2021). Chapter 12 - Bacteria-assisted phytoremediation of heavy metals and organic pollutants: Challenges and future prospects. Bioremediation for Environmental Sustainability. Approaches to Tackle Pollution for Cleaner and Greener Society, 247–267. https://doi.org/10.1016/B978-0-12-820318-7.00012-5

  • Haji Hosseini, M., Varvani, J., Abdi, N. (2013). Comparing the concentration of heavy metals (Al, Pb, Zn, Ni) in surface sediments of Meighan wetland, 2 st National Congress of Environmental Protection and Planning, Hamedan, Iran.

  • Heidarzadeh, M., Abdi, N., Farahani, J. V., Ahmadi, A., & Toranjzar, H. (2020). The effect of Typha latifolia L. on heavy metals phytoremediation at the urban and industrial wastewater entrance to the Meighan wetland, Iran. Journal of Applied Research in Water and Wastewater, 7(2), 167–171. https://doi.org/10.22126/ARWW.2021.5831.1193

    Article  Google Scholar 

  • Herlihy, A. T., Kentula, M. E., Magee, T. K., Lomnicky, G. A., Nahlik, A. M., & Serenbetz, G. (2019a). Striving for consistency in the National Wetland Condition Assessment: Developing a reference condition approach for assessing wetlands at a continental scale. Environmental Monitoring and Assessment, 191, 327. https://doi.org/10.1007/s10661-019-7325-3

    Article  Google Scholar 

  • Herlihy, A. T., Sifneos, J. C., Lomnicky, G. A., Nahlik, A. M., Kentula, M. E., Magee, T. K., Weber, M. H., & Trebitz, A. S. (2019b). The response of wetland quality indicators to human disturbance indicators across the United States. Environmental Monitoring and Assessment, 191, 296. https://doi.org/10.1007/s10661-019-7323-5

    Article  CAS  Google Scholar 

  • Ipeaiyeda, A. R., & Onianwa, P. C. (2018). Monitoring and assessment of sediment contamination with toxic heavy metals: case study of industrial efuent dispersion in Alaro River, Nigeria. Journal of Applied Water Science, 8(161), 1–10. https://doi.org/10.1007/s13201-018-0815-6

  • Jabbari, E., Fathi, M., & Moradi, M. (2020). Modeling groundwater quality and quantity to manage water resources in the Arak aquifer, Iran. Arabian Journal of Geosciences, 13, 663–669. https://doi.org/10.1007/s12517-020-05681-4

    Article  CAS  Google Scholar 

  • Jamshidi Zanjani, A., & Saeidi, M. (2014). Evaluation of pollution and qualitative zoning of surface sediments of Anzali wetland based on the results of heavy metal pollution indicators. Journal of Environmental Studies., 39(4), 157–170. https://doi.org/10.22059/JES.2014.36469

    Article  Google Scholar 

  • Kamzati, L. L. J., Kaonga, C. C., & Mapoma, H. W. T. (2019). Heavy metals in water, sediment, fish and associated risks from an endorheic lake located in Southern Africa. International Journal of Environmental Science and Technology. 62-019-02464-7. https://doi.org/10.1007/s13762-019-02464-7

  • Karbassi, A. R., Bayatii, A., & Nabi Bidhendi, Gh. R. (2006). Investigation on the heavy metal pollution intensity in Shefa-rud River bed sediments. Journal of Environmental Studies, 32(39), 41–48. https://sid.ir/paper/3142/en

  • Kentula, M. E., & Paulsen, S. G. (2019). The 2011 National Wetland Condition Assessment: Overview and an invitation. Environmental Monitoring and Assessment, 191, 325. https://doi.org/10.1007/s10661-019-7316-4

    Article  Google Scholar 

  • Khazaei, T., & Pour Khabaz, A. (2013). Investigation of heavy metal concentrations in surface sediments of different sizes (case study: Anzali Wetland). Journal of Wetland Ecobiology, 3(11), 2–12. 13911992.

    Google Scholar 

  • Khosravi, M., Bahramifar, N., & Ghasempouri, M. (2011). Survey of heavy metals (Cd, Pb, Hg, Zn and Cu) contamination in sediment of three sites Anzali Wetland. Journal of Health & Environment, 4(2), 224–231.

    Google Scholar 

  • Li, Z., Liang, Y., Hu, H., Shaheen, S. M., Zhong, H., Tack, M. G., Wu, M., Li, Y. F., Rinklebe, J., & Zhao, J. (2021). Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International Journal., 156(3), 1010–1023. https://doi.org/10.1016/j.envint.2021.106749

    Article  CAS  Google Scholar 

  • Maghzi, S., Saeidi, M., & Jamshidi, A. (2011). Evaluation of heavy metal pollution in Babolrood river sediments using sediment pollution indices. 6th National Congress of Civil Engineering. COI: NCCE06_0956.

  • Mahmoodi, S., Sari, Saraf, B., Rezaei, B., & Rostamzadeh, M. H. (2019). The effect of Meighan wetland environmental changes on land surface temperature of surrounding areas by using Landsat satellite data. Journal of RS and GIS for Natural Resourses, 3(36), 1–18.

    Google Scholar 

  • Mehri Yari, F., Pirkharrati, H., Farhadi, Kh., Soltanalinezhad, N., & Naghashafkan, F. (2020). Evaluation of heavy metals pollution in lakes subsoil and surface soils in Urmia Eastern Region using pollution indicators. Journal of Water and Soil Science., 24(1), 121–132.

    Google Scholar 

  • Mirza, R., Abedi, E., Mohammady, M., Faghiri, I., Fakhri, R., & Azimi, A. (2014). Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the northern part of the Persian Gulf (Hormuzgan Province). Polycyclic Aromatic Compounds Journal, 34(4), 343–355. https://doi.org/10.1080/10406638.2014.888672

    Article  CAS  Google Scholar 

  • Moghimi, S. (2008). An investigation on environment impact of Arak City wastewater treatment plantoutfall on water body of Meighan wetland. Wetland, Research office of Department of Environment of Markazi Province, Arak, Iran.

  • Mortazavi, S., & Saberinasab, F. (2017). Heavy metals assessment of surface sediments in Mighan Wetland using the sediment quality index. ECOPERSIA Journal., 5(2), 1761–1770. https://doi.org/10.18869/modares.Ecopersia.5.2.1761

    Article  Google Scholar 

  • Nahlik, A. M., Blocksom, K. A., Herlihy, A. T., Kentula, M. E., Magee, T. K., & Paulsen, S. G. (2019). Use of national-scale data to examine human-mediated additions of heavy metals to wetland soils of the US. Environmental Monitoring and Assessment, 191, 336. https://doi.org/10.1007/s10661-019-7315-5

    Article  CAS  Google Scholar 

  • Panahandeh, M., & Morovati, M. (2018). Risk of heavy metals (copper, zinc, lead, cadmium and chromium) on the life of fish in Anzali Wetland Ecosystem. Applied Biology Journal, 3(10), 23–39.

    Google Scholar 

  • Pirali Zefrehei, A., Fallah, M., & Hedayati, S. A. (2019). Spatial-temporal modeling of qualitative parameters and land use status in Anzali International Wetland using GIS technique. Journal of Advanced Environmental Research and Technology, 7(4), 223–231. http://ecopersia.modares.ac.ir/article-24-35497-en.html

    Google Scholar 

  • Pourimani, R., Fardad, R., & Khalili, H. (2020). Radiological hazard assessment of radionuclides in sediment and water samples of International Meighan Wetland in Arak, Iran. Medical Physics Journal., 17(2), 107–113.

    Google Scholar 

  • Qiao, Y., Yang, Y., Gu, J., & Zhao, J. (2013). Distribution and geochemical speciation of heavy metals in sediments from coastal area suffered rapid urbanization, a case study of Shantou Bay, China. Marine Pollution Bulletin Journal, 68(2), 140–146. https://doi.org/10.1016/j.marpolbul.2012.12.003.10.1016/j.marpolbul.2012.12.003

    Article  CAS  Google Scholar 

  • Qiu, Y. W., Yu, K. F., Zhang, G., & Wang, W. X. (2011). Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. Journal of Hazardous Materials, 190(1), 631–638. https://doi.org/10.1016/j.jhazmat.2011.03.091

    Article  CAS  Google Scholar 

  • Raj, D., & Maiti, S. K. (2021). Brassica Juncea (L.) Czern. (Indian Mustard): A potential candidate for the phytoremediation of mercury from soil. Sustainability in Environmental Engineering and Science, 93, 67–72. https://doi.org/10.1007/978-981-15-6887-9_7

    Article  Google Scholar 

  • Rezaee, K., Saion, E. B., Yap, C. K., Abdi, M. R., & Riyahi Bakhtiari, A. (2010). Vertical distribution of heavy metals and enrichment in the South China Sea sediment cores. International Journal of Environment Research, 4(4), 877–886.

    CAS  Google Scholar 

  • Rivera, C., Quiroga, E., & Meza, V. (2019). Evaluation of water quality and heavy metal concentrations in the RAMSAR Wetland El Yali (Central Chile, 33°45′S). MarinePollution Bulletin Journal., 45, 499–507. https://doi.org/10.1016/j.marpolbul.2019.06.054

    Article  CAS  Google Scholar 

  • Saberinasab, F., & Mortazavi, S. (2018). Evaluation of Pb, Zn, Cu and Ni concentration in Arak Mighan Wetland based on sediment pollution indices. Water and Soil Science Journal, 22(1), 15–27.

    Article  Google Scholar 

  • Sharma, R., Vymazal, J., & Malaviya, P. (2021). Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. Science of The Total Environment, 777, 146044. https://doi.org/10.1016/j.scitotenv.2021.146044

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Bihari Nayak, B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186(2–3), 1837–1846. https://doi.org/10.1016/j.jhazmat.2010.12.081

    Article  CAS  Google Scholar 

  • Tang, A., Lu, Y., Li, Q., Zhang, X., Cheng, N., Liu, H., & Liu, Y. (2021). Simultaneous leaching of multiple heavy metals from a soil column by extracellular polymeric substances of Aspergillus tubingensis F12. Chemosphere, 263, 127883. https://doi.org/10.1016/j.chemosphere.2020.127883

    Article  CAS  Google Scholar 

  • USEPA. (2011a). National wetland condition assessment: Field operations manual. EPA/843/R10/001. US Environmental Protection Agency.

  • USEPA. (2011b). National wetland condition assessment: Laboratory operations manual. EPA-843-R-10–002. US Environmental Protection Agency.

  • USEPA. (2016). National wetland condition assessment: 2011 technical report. EPA-843-R-15–006. US Environmental Protection Agency.

  • Yousefi, N., Abbasnia, A., Mahvi, A. M., Nabizadeh, R., Radfar, M., Yousefi, M., & Alimohammadi, M. (2018). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal, 25(4), 988–1005. https://doi.org/10.1080/10807039.2018.1458596

    Article  CAS  Google Scholar 

  • Zarkami, R., Hesami, H., & Sadeghi, P. R. (2020). Assessment, monitoring and modelling of the abundance of Dunaliella salina Teod in the Meighan wetland, Iran using decision tree model. Environmental Monitoring and Assessment Journal, 192(3), 172–187. https://doi.org/10.1007/s10661-020-8148-y

    Article  CAS  Google Scholar 

  • Zhang, J., Guo, Y., Fan, S., Wang, S., Shi, Q., Zhang, M., & Zhang, J. (2021). Detoxification of heavy metals attributed to biological and non–biological complexes in soils around copper producing areas throughout China. Journal of Cleaner Production, 292, 125999. https://doi.org/10.1016/j.jclepro.2021.125999

    Article  CAS  Google Scholar 

  • Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological Engineering, 35(4), 563–569. https://doi.org/10.1016/j.ecoleng.2008.05.012

    Article  CAS  Google Scholar 

  • Zheng, R., Feng, X., Zou, W., Wang, R., Yang, D., Wei, W., Li, S., & Chen, H. (2021). Converting loess into zeolite for heavy metal polluted soil remediation based on “soil for soil-remediation” strategy. Journal of Hazardous Materials, 412, 125199. https://doi.org/10.1016/j.jhazmat.2021.125199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourollah Abdi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, M., Abdi, N., Varvani, J. et al. Zoning of some physicochemical parameters in the sediments of Meighan wetland in Iran: response to urbanization, industrial, and agricultural activities. Environ Monit Assess 195, 894 (2023). https://doi.org/10.1007/s10661-023-11120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11120-0

Keywords

Navigation