Skip to main content

Advertisement

Log in

Evaluation of metal contamination in surface sediments and macroalgae in mangrove and port complex ecosystems on the Brazilian equatorial margin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study evaluated metal contamination in surface sediments and macroalgae of mangroves and port complexes on the Brazilian equatorial margin. Samples were collected between August 2020 and February 2021 at seven points in a mangrove swamp under the influence of port activity and at two points without port activity. Metal concentrations in the macroalgae and sediments were determined using inductively coupled plasma‒optical emission spectrometry. All macroalgal species bioaccumulated metals, as demonstrated by their bioaccumulation factors. The geochemical contamination indices indicated that the estuarine complex was influenced by port activity as moderately contaminated by Pb, Cr, Mn, and Fe and considerably contaminated by Zn and Cu. The enrichment factor confirmed significant mineral enrichment of Zn and Cu in this environment. The concentrations of the metals in the sediment followed the order Fe > Mn > Cr > Zn > Cu > Pb at most sampling points. Cladophoropsis membranacea recorded the highest bioaccumulation values for Pb (0.44), Rhizoclonium africanum for Zn (1.08), Cr (0.55), and Fe (0.30), and Bostrychia radicans for Mn (2.22). The bioaccumulation pattern of metals in the most abundant macroalgal species followed the order Bostrychia radicans (Mn > Zn > Cu > Cr > Pb > Fe) and Rhizoclonium africanum (Zn > Mn > Cr > Cu > Pb > Fe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Datasets generated during and/or analyzed during the current study are available in the Figshare repository, https://doi.org/10.6084/m9.figshare.21221576.v1.

References

  • Akcali, I., & Kucuksezgin, F. (2011). A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Marine Pollution Bulletin, 62(3), 637–645. https://doi.org/10.1016/j.marpolbul.2010.12.021

    Article  CAS  Google Scholar 

  • Amado Filho, G. M., Andrade, L. R., Karez, C. S., Farina, M., & Pfeiffer, W. C. (1999). Brown algal species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Marine Environmental Research, 48(3), 213–224. https://doi.org/10.1016/S0141-1136(99)00042-2

    Article  CAS  Google Scholar 

  • Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437. https://doi.org/10.1016/j.chemosphere.2007.04.068

    Article  CAS  Google Scholar 

  • Bakshi, M., Ghosh, S., Chakraborty, D., Hazra, S., & Chaudhuri, P. (2018). Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India. Marine Pollution Bulletin, 133, 157–172. https://doi.org/10.1016/j.marpolbul.2018.05.030

    Article  CAS  Google Scholar 

  • Baoli, W., & Congqiang, L. (2004). Factors controlling the distribution of trace metals in macroalgae. Chinese Journal of Geochemistry, 23(4), 366–372. https://doi.org/10.1007/BF02871309

    Article  Google Scholar 

  • Baumann, H. A., Morrison, L., & Stengel, D. B. (2009). Metal accumulation and toxicity measured by PAM—chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicology and Environmental Safety, 72(4), 1063–1075. https://doi.org/10.1016/j.ecoenv.2008.10.010

    Article  CAS  Google Scholar 

  • Billah, M. M., Kamal, A. H. M., Idris, M. H., & Ismail, J. (2017). Mangrove macroalgae as biomonitors of heavy metal contamination in a tropical estuary, Malaysia. Water, Air, & Soil Pollution, 228(9), 228–347. https://doi.org/10.1007/s11270-017-3500-8

    Article  CAS  Google Scholar 

  • Borgesen, F. (1905). Contributions à la connaissance du genre Siphonocladus Schmitz. Oversight Over Det Kgl Danske Videnskabernes Selskabs Forhandlingar, 3, 259–291.

  • Brito, G. B., De Souza, T. L., Bressy, F. C., Moura, C. W. N., & Korn, M. G. A. (2012). Levels and spatial distribution of trace elements in macroalgal species from the Todos os Santos Bay, Bahia, Brazil. Marine Pollution Bulletin, 64(10), 2238–2244. https://doi.org/10.1016/j.marpolbul.2012.06.022

    Article  CAS  Google Scholar 

  • Buruaem, L. M., Hortellani, M. A., Sarkis, J. E., Costa-Lotufo, L. V., & Abessa, D. M. S. (2012). Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil. Marine Pollution Bulletin, 64(3), 479–488. https://doi.org/10.1016/j.marpolbul.2012.01.017

    Article  CAS  Google Scholar 

  • Casado-Martínez, M. C., Buceta, J. L., Belzunce, M. J., & DelValls, T. A. (2006). Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environment International, 32, 388–396. https://doi.org/10.1016/j.envint.2005.09.003

    Article  Google Scholar 

  • Cavalcanti, L. F., & Cutrim, M. V. J. (2018). Structure of microphytoplankton community and environmental variables in a macrotidal estuarine complex, São Marcos Bay, Maranhão - Brazil. Brazilian Journal of Oceanography, 66(3), 283–300. https://doi.org/10.1590/S1679-87592018021906603

    Article  Google Scholar 

  • CCME. (1999). Canadian sediment quality guidelines for the protection of aquatic life – copper. Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment.

  • Chakraborty, S., Bhattacharya, T., Singh, G., & Maity, J. P. (2014). Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicology and Environmental Safety, 100, 61–68. https://doi.org/10.1016/j.ecoenv.2013.12.003

    Article  CAS  Google Scholar 

  • Conti, M. E., & Cecchetti, G. A. (2003). Biomonitoring study: Trace metals in algae and mollusks from Tyrrhenian coastal areas. Environmental Research, 93(1), 99–112. https://doi.org/10.1016/s0013-9351(03)00012-4

    Article  CAS  Google Scholar 

  • Costa, E. S., Grilo, C. F., Wolff, G. A., Thompson, A., Figueira, R. C. L., & Neto, R. R. (2015). Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil. Marine Pollution Bulletin, 92(1–2), 259–268. https://doi.org/10.1016/j.marpolbul.2014.11.028

    Article  CAS  Google Scholar 

  • CPRM. (2000). Programa Levantamentos Geológicos Básicos do Brasil - São Luís NE/SE, Folhas SA23-X e SA23-Z Estados do Maranhão e Piauí Brasília (in portuguese).

  • Dawes, C., Siar, K., & Marlett, D. (1999). Mangrove structure, litter and macroalgal productivity in a northern-most forest of Florida. Mangroves and Salt Marshes, 3, 259–267. https://doi.org/10.1023/A:1009976025000

    Article  Google Scholar 

  • De Paula Filho, F. J., Marins, R. V., Lacerda, L. D., Aguiar, J. E., & Peres, T. F. (2015). Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary NE/Brazil. Marine Pollution Bulletin, 91(2), 424–428. https://doi.org/10.1016/j.marpolbul.2014.08.022

    Article  CAS  Google Scholar 

  • De Paula Filho, F. J., Marins, R. V., Santos, V. D., Pereira-Junior, R. F., Menezes, J. M. C., Gastão, F. G. C., Guzzi, A., & Teixeira, R. N. P. (2021). Assessment of heavy metals in sediments of the Parnaíba River Delta in the semiarid coast of Brazil. Environmental Earth Science, 80, 167. https://doi.org/10.1016/j.scp.2020.100364

    Article  CAS  Google Scholar 

  • Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Sadeck, L., Adami, M., & Souza-Filho, P. W. M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), 2–19. https://doi.org/10.3390/rs11070808

    Article  Google Scholar 

  • Fernandes, M. E. B., & Alves, E. F. S. (2011). Occurrence and distribution of macroalgae (Rhodophyta) associated with mangroves on the Ajuruteua Peninsula, Bragança, Pará, Brasil. UAKARI, 7(2), 35–42. https://doi.org/10.31420/UAKARI.V7I2.97

  • Ferreira, A. C., & Lacerda, L. D. (2016). Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean & Coastal Management, 125, 38–46. https://doi.org/10.1016/j.ocecoaman.2016.03.011

    Article  Google Scholar 

  • Folk, R. L., & Ward, W. C. (1957). A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3–26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Gerringa, L. (1991). Mobility of Cu, Cd, Ni, Pb, Zn, Fe and Mn in marine sediment slurries under anaerobic conditions and at 20% air saturation. Netherlands Journal of Sea Research, 27(2), 145–156. https://doi.org/10.1016/0077-7579(91)90007-N

    Article  CAS  Google Scholar 

  • Ghosh, S., Bakshi, M., Mahanty, S., & Chaudhuri, P. (2021). Understanding potentially toxic metal (PTM) induced biotic response in two riparian mangrove species Sonneratia caseolaris and Avicennia officinalis along river Hooghly, India: Implications for sustainable sediment quality management. Marine Environmental Research, 172, 105486. https://doi.org/10.1016/j.marenvres.2021.105486

    Article  CAS  Google Scholar 

  • Gledhill, M., Nimmo, M., Hill, S. J., & Brown, M. T. (1997). The toxicity of copper (II) species to marine algae, with particular reference to macroalgae. Journal of Phycology, 33(1), 2–11. https://doi.org/10.1111/j.0022-3646.1997.00002.x

    Article  CAS  Google Scholar 

  • González-Gorbeña, E., Rosman, P. C. C., & Qassim, R. Y. (2015). Assessment of the tidal current energy resource in São Marcos Bay, Brazil. Journal of Ocean Engineering and Marine Energy, 1(4), 421–433. https://doi.org/10.1007/s40722-015-0031-5

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hall, M. J., & Brown, M. T. (2002). Copper and manganese influence the uptake of cadmium in marine macroalgae. Bulletin of Environmental Contamination and Toxicology, 68(1), 49–55. https://doi.org/10.1007/s00128-001-0218-4

    Article  CAS  Google Scholar 

  • Huang, Y., Zhang, D., Xu, Z., Yuan, S., Li, Y., & Wang, L. (2017). Effect of overlying water pH, dissolved oxygen and temperature on heavy metal release from river sediments under laboratory conditions. Archives of Environmental Protection, 43, 28–36. https://doi.org/10.1515/aep-2017-0014

    Article  Google Scholar 

  • Jahan, S., & Strezov, V. (2019). Assessment of trace elements pollution in the sea ports of New South Wales (NSW), Australia using oysters as bioindicators. Scientific Report, 9, 1416. https://doi.org/10.1038/s41598-018-38196-w

    Article  CAS  Google Scholar 

  • Jha, B., Reddy, C. R. K., Thakur, M. C., & Rao, U. M. (2009). Seaweeds of India: The diversity and distribution of seaweeds of the Gujarat coast. Dordrecht: Springer.

    Book  Google Scholar 

  • Kang, M., Tian, Y., Peng, S., & Wang, M. (2019). Effect of dissolved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments. Science Total Environmental, 648, 861–870. https://doi.org/10.1016/j.scitotenv.2018.08.201

    Article  CAS  Google Scholar 

  • Karbassi, A. R., & Heidari, M. (2015). An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture. Global Journal of Environmental Science and Management, 1(1), 41–46. https://doi.org/10.7508/gjesm.2015.01.004

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Fakhraee, M., Heidari, M., Vaezi, A. R., & Samani, A. V. (2015). Dissolved and particulate trace metal geochemistry during mixing of Karganrud River with Caspian Sea water. Arabian Journal of Geosciences, 8(4), 2143–2151. https://doi.org/10.1007/s12517-014-1267-4

    Article  CAS  Google Scholar 

  • Karez, C. S., Magalhaes, V. F., Pfeiffer, W. C., & Amado Filho, G. M. (1994). Trace metal accumulation by algae in Sepetiba Bay. Brazil. Environmental Pollution, 83(3), 351–356. https://doi.org/10.1016/0269-7491(94)90157-0

    Article  CAS  Google Scholar 

  • Kutzing, F. T. (1845). Phycologia germanica, d. i. Deutschlands Algen in bündigen Beschreibungen. Nebst einer Anleitung zum Untersuchen und Bestimmen dieser Gewächse für Anfänger. pp. [i]-x, [1]-340 ['240']. Nordhausen: zu finden bei Wilh. Köhne.

  • Kutzing, F. T. (1853). Tabulae phycologicae; oder, Abbildungen der Tange. Vol. III pp. 1-28, 100 pls. Nordhausen: Gedruckt auf kosten des Verfassers (in commission bei W. Köhne).

  • Lacerda, L. D., Ribeiro, J., & Gueiros, B. B. (1999). Manganese dynamics in a mangrove mud flat tidal creek in SE Brazil. Mangroves and Salt Marshes, 3(2), 105–115.

    Article  Google Scholar 

  • Lacerda, L. D., Teixeira, V. L., & Guimarães, J. R. D. (1985). Seasonal variation of heavy metals in seaweeds from Conceição de Jacareí (RJ), Brazil. Botanica Marina, 28(8), 339–343. https://doi.org/10.1515/botm.1985.28.8.339

    Article  Google Scholar 

  • Li, H., Shi, A., Li, M., & Zhang, X. (2013). Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry, 2013, 1–11. https://doi.org/10.1155/2013/434012

    Article  CAS  Google Scholar 

  • Linnaeus, C. von, Salvius, L. (1753) Caroli Linnaei ... Species plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas... Holmiae, Impensis Laurentii Salvii. pp. 572. https://doi.org/10.5962/bhl.title.669

  • Liu, J. J., Diao, Z. H., Xu, X. R., & Xie, Q. (2019). Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Science of the Total Environment, 666, 894–901. https://doi.org/10.1016/j.scitotenv.2019.02.288

    Article  CAS  Google Scholar 

  • Lombardi, A. T., & Vieira, A. A. H. (1998). Copper and lead complexation by high molecular weight compounds produced by Synura sp (Chrysophyceae). Phycologia, 37, 34–39. https://doi.org/10.2216/i0031-8884-37-1-34.1

    Article  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/BF02472006

    Article  Google Scholar 

  • Luoma, S. N. (1983). Bioavailability of trace metals to aquatic organisms − a review. The Science of the Total Environment, 28, 1–22. https://doi.org/10.1016/s0048-9697(83)80004-7

    Article  CAS  Google Scholar 

  • Luoma, S. N., Bryan, G. W., & Langstone, W. T. (1982). Scavenging heavy metals from particles by brown seaweed. Marine Pollution Bulletin, 13(11), 394–396. https://doi.org/10.1016/0025-326X(82)90116-3

    Article  CAS  Google Scholar 

  • MacDonald, D. D. (1994). Approach to the assessment of sediment quality in Florida coastal waters. vol. 1 - development and evaluation of sediment quality assessment guidelines. Florida Department of Environmental Protection Office of Water Policy.

  • Macdonald, D. D., Carr, R. S., Calder, F. D., et al. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278. https://doi.org/10.1007/BF00118995

    Article  CAS  Google Scholar 

  • Macedo, S. J., Calado, S. C. S., Koening, M. L., Silva, V. L., & Neumann-Leitão, S. (2009). Concentrations of heavy metals in macroalgae in the tropical western Atlantic. Water Resource Management V, 125, 209–218. https://doi.org/10.2495/WRM090191

    Article  CAS  Google Scholar 

  • Mamboya, F. A., Pratap, H. B., Mtolera, M., & Bjork, M. (1999). The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergensenii. In: Richmond MD, Francis J (Eds.) Proceedings of the Conference on Advances on Marine Sciences in Tanzania, pp. 185–192.

  • Ministério dos Transportes, Portos e Aviação Civil - MTPA. (2018). Plano Mestre Complexo Portuário do Itaqui. (in portuguese).

  • Montagne, C. (1842). Bostrychia. Dictionnaire Universel d'Histoire Naturelle [Orbigny], 2, 660–661.

  • Muller, G. (1979). Schwermetalle in den sediment des Rheins: Veranderungem Seit 1971. Umschau, 79, 778–783.

    Google Scholar 

  • Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS ONE, 10(3), e0118571.

    Article  Google Scholar 

  • Nittrouer, C. A., Brunskill, G. L., & Figueiredo, A. G. (1995). Importance of tropical coastal environments. Geo-Marine Letters, 15, 121–126. https://doi.org/10.1007/BF01204452

    Article  Google Scholar 

  • Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chemical Speciation & Bioavailability, 26, 99–105. https://doi.org/10.3184/095422914X13951584546986

    Article  CAS  Google Scholar 

  • Oliveira-Filho, E. C. (1984). Brazilian mangal vegetation with special emphasis on the seaweeds. In: Por FD, Dor I (Eds.). Hydrobiology of the Mangal. Dr W Junk Publishers, Boston.

  • Online document Climate-Data. (2021, January 20). São Luís Clima. https://pt.climate-data.org/america-do-sul/brasil/maranhao/sao-luis-1671/

  • Ozkan, E. Y. (2012). A new assessment of heavy metal contaminations in an Eutrophicated Bay (Inner Izmir Bay, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 12, 135–147. https://doi.org/10.4194/1303-2712-v12_1_16

    Article  Google Scholar 

  • Parke, M., & Dixon, P. S. (1976). Check-list of British marine algae - third revision. Journal of the Marine Biological Association of the United Kingdom, 56, 527–594. https://doi.org/10.1017/S002531540002066X

  • Pejrup, M. 1988. The triangular diagram used for classification of estuarine sediments: a new approach. In: Boer, P.L., van Gelder, A., & Nio, S.D. (Ed.). Tide-influenced sedimentary environments and facies. D. Reidel, Dordrecht. p. 289–300.

  • Phillips, A., Lambert, G., Granger, J. E., & Steinke, T. D. (1994). Horizontal zonation of epiphytic algae associated with Avicennia marina (Forsk) Vierh pneumatophores at beach woods mangroves nature reserve, Durban, South Africa. Botanica Marina, 37, 567–576. https://doi.org/10.1515/botm.1994.37.6.567

    Article  Google Scholar 

  • Phillips, A., Lambert, G., Granger, J. E., & Steinke, T. D. (1996). Vertical zonation of epiphytic algae associated with Avicennia marina (Forssk) Vierh pneumatophore at Beachwood Mangrove Nature Reserve, Durban, South Africa. Botanica Marina, 39, 167–175. https://doi.org/10.1515/botm.1996.39.1-6.167

    Article  Google Scholar 

  • Pinto, E., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x

  • Rebelo-Mochel, F. (1997). Mangroves on São Luís Island, Maranhão, Brazil. In B. Kjerfve, L. D. Lacerda, & E. H. S. Diop (Eds.), Mangrove ecosystem studies in Latin America and Africa (pp. 145–154). UNESCO.

    Google Scholar 

  • Reimann, C., & De Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology, 34, 5084–5091. https://doi.org/10.1021/ES001339O

    Article  CAS  Google Scholar 

  • Reis, P. A., Gonçalves, J., Abreu, H., Pereira, R., Benoit, M., O’Mahony, F., Connellan, I., Maguire, J., & Ozório, R. (2016). Seaweed Alaria esculenta as a biomonitor species of metal contamination in Aughinish Bay (Ireland). Ecological Indicators, 69, 19–25. https://doi.org/10.1016/j.ecolind.2016.03.041

    Article  CAS  Google Scholar 

  • Samani, A. R. V., Karbassi, A. R., Fakhraee, M., Heidari, M., Vaezi, A. R., & Valikhani, Z. (2014). Effect of dissolved organic carbon and salinity on flocculation process of heavy metals during mixing of the Navrud River water with Caspian Seawater. Desalination Water Treatment, 55(4), 926–934. https://doi.org/10.1080/19443994.2014.920730

    Article  CAS  Google Scholar 

  • Santos, T. T. L., Marins, R. V., & Da Silva Dias, F. J. (2019). Carbon influence on metal distribution in sediment of Amazonian macrotidal estuaries of northeastern Brazil. Environmental Monitoring and Assessment, 191(9), 552. https://doi.org/10.1007/s10661-019-7626-6

    Article  CAS  Google Scholar 

  • Sari, E., Unlu, S., Apak, R., Balci, N., & Koldemir, B. (2014). Distribution and contamination of heavy metals in the surface sediments of Ambarli Port Area (Istanbul, Turkey). Ekoloji, 23, 1–9. https://doi.org/10.5053/ekoloji.2014.901

  • Schintu, M., Marras, B., Durante, L., Meloni, P., & Contu, A. (2010). Macroalgae and DGT as indicators of available trace metals in marine coastal waters near a lead–zinc smelter. Environmental Monitoring and Assessment, 167, 653–661.

    Article  CAS  Google Scholar 

  • Schuhmacher, M., Domingo, J. L., Llobet, J. M., & Corbella, J. (1995). Variations of heavy metals in water, sediments, and biota from the delta of Ebro River, Spain. Journal of Environmental Science and Health. Part a, Toxic/hazardous Substances & Environmental Engineering, 30(6), 1361–1372. https://doi.org/10.1080/10934529509376269

    Article  Google Scholar 

  • Serejo, J. H. F., Santos, T. T. L., & Lima, H. P. (2020). Fortnightly variability of total suspended solids and bottom sediments in a macrotidal estuarine complex on the Brazilian northern coast. Journal of Sedimentary Environments, 5, 101–115. https://doi.org/10.1007/s43217-020-00005-8

    Article  Google Scholar 

  • Shafie, N. A., Aris, A. Z., Zakaria, M. P., Haris, H., Lim, W. Y., & Isa, N. M. (2013). Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. Journal of Environmental Science and Health. Part a, Toxic/hazardous Substances & Environmental Engineering, 48(2), 182–190. https://doi.org/10.1080/10934529.2012.717810

    Article  CAS  Google Scholar 

  • Stearn, W. T. (1958). Botanical Exploration to the time of Linnaeus. Proceedings Linnean Society London, 169(3), 173–196. https://doi.org/10.1111/j.1095-8312.1958.tb01472.x

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–637. https://doi.org/10.1007/s002540050473

    Article  CAS  Google Scholar 

  • Taylor, A. M., Edge, K. J., Ubrihien, R. P., & Maher, W. A. (2017). The freshwater bivalve Corbicula australis as a sentinel species for metal toxicity assessment: An in situ case study integrating chemical and biomarker analyses. Environmental Toxicology and Chemistry, 36(3), 709–719. https://doi.org/10.1002/etc.3582

    Article  CAS  Google Scholar 

  • Trifan, A., et al. (2015). Heavy metal content in macroalgae from the Roumanian Black Sea. Revue Roumaine De Chimie, 60(9), 915–920.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Article  CAS  Google Scholar 

  • Udechukwu, B. E., Ismail, A., Zulkifli, S. Z., & Omar, H. (2014). Distribution, mobility, and pollution assessment of Cd, Cu, Ni, Pb, Zn, and Fe in intertidal surface sediments of Sg Puloh mangrove estuary, Malaysia. Environmental Science and Pollution Research International, 22(6), 4242–4255. https://doi.org/10.1007/s11356-014-3663-4

    Article  CAS  Google Scholar 

  • Valentin, Y. Y., Dalto, A. G., & Gestinari, L. D. S. (2010). Benthic macroalgae diversity in Admiralty Bay (King George Island, South Shetland Islands, Antarctic Peninsula). Annual Activity Report of National Institute of Science and Technology Antarctic Environmental Research (INCT-APA), Cubo, São Carlos, 62–64. https://doi.org/10.4322/apa.2014.013

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

    Article  CAS  Google Scholar 

  • Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: A review. Hidrometal, 44, 301–316. https://doi.org/10.1016/S0304-386X(96)00059-X

    Article  CAS  Google Scholar 

  • Wentworth, C. K. A. (1922). Scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392. https://doi.org/10.1086/622910

    Article  Google Scholar 

  • Williams, J. A., & Antoine, J. (2020). Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2020.111288

    Article  Google Scholar 

  • Yahya, A. N., Mohamed, S. K., & Mohamed, A. G. (2018). Environmental pollution by heavy metals in the aquatic ecosystems of Egypt. Open Access Journal of Toxicology, 3(1), 001–009. https://doi.org/10.19080/OAJT.2018.03.555603

  • Yap, C. K., & Al-Mutairi, K. A. (2023). The ecological-health risks of potentially toxic metals in the surface sediments and leaves of salt-secreting Avicennia officinalis as potential phytoremediators: A field-based biomonitoring study from Klang Mangrove Area. Biology, 12(1), 43. https://doi.org/10.3390/biology12010043

    Article  CAS  Google Scholar 

  • Yokoya, N. S., Plastino, E. M., Braga, M. R. A., Fujii, M. T., Cordeiro-Marino, M., Eston, V. R., & Harari, J. (1999). Temporal and spatial variations in the structure of macroalgal communities associated with mangrove trees of Ilha do Cardoso, São Paulo state, Brazil. Brazilian Journal of Botany, 22(2), 195–204. https://doi.org/10.1590/S0100-84041999000200010

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China - weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal Shelf ScieNce, 54, 1051–1070. https://doi.org/10.1006/ecss.2001.0879

    Article  CAS  Google Scholar 

  • Zhao, P., Sanganyado, E., Wang, T., Sun, Z., Jiang, Z., Zeng, M., Huang, Z., Li, Y., Li, P., Bi, R., & Liu, W. (2022). Accumulation of nutrients and potentially toxic elements in plants and fishes in restored mangrove ecosystems in South China. Science of the Total Environment, 838(Part 1), 155964. https://doi.org/10.1016/j.scitotenv.2022.155964

    Article  CAS  Google Scholar 

  • Zhao, S., Shi, X., Li, C., Zhang, H., & Wu, Y. (2013). Seasonal variation of heavy metals in sediment of Lake Ulansuhai, China. Chemistry and Ecology, 30(1), 1–14. https://doi.org/10.1080/02757540.2013.841894

    Article  CAS  Google Scholar 

  • Zhiyuan, W., Wang, D., Zhou, H., & Qi, Z. (2011). Assessment of soil heavy metal pollution with principal component analysis and Geoaccumulation Index. Procedia Environmental Sciences, 10, 1946–1952. https://doi.org/10.1016/j.proenv.2011.09.305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Postgraduate Program in Oceanography (PPGOceano-UFMA) as well as the Laboratory of Phytoplankton of the Federal University of Maranhão (UFMA) and the Laboratory of Environmental Science (UENF) for technical and structural support.

Funding

This research was supported by a grant from the Foundation for Research and Scientific and Technological Development of Maranhão—Brazil (FAPEMA) through the concession of a Master’s scholarship (BM-00061/20) to the first author.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by James J.M. Corrêa, Marco V.J. Cutrim, and Quedyane Silva da Cruz. The first draft of the manuscript was written by Marco V.J. Cutrim, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marco Valério Jansen Cutrim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2854 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, J.J.M., Cutrim, M.V.J. & da Cruz, Q.S. Evaluation of metal contamination in surface sediments and macroalgae in mangrove and port complex ecosystems on the Brazilian equatorial margin. Environ Monit Assess 195, 432 (2023). https://doi.org/10.1007/s10661-023-11024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11024-z

Keywords

Navigation