Skip to main content

Advertisement

Log in

Cotton cultivated area detection and yield monitoring combining remote sensing with field data in lower Indus River basin, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As the Earth’s population continuously increase with the passage of time, the demand for agricultural raw material for human need increases. It is critical to maintaining updated and accurate information about the dynamics and properties of the world agricultural systems. As cash crop, the updated information of the spatial distribution of cotton field is necessary to monitor the crop area and growth changes at regional level. We used 8-day enhanced vegetation index (EVI) time series to detect cotton crop area and binomial probabilistic approach to obtain the probability distribution of cotton crop occurrence. We used Gaussian kriging to derive cotton yield inside the detected cotton crop areas through crop reporting data. We also used field data from farmers to validate the cotton yield results. A strong correlation between the MODIS-derived cotton cultivated area and statistical data at the tehsil level were achieved (R2 = 0.84) for all study years (2004–2019). The total accuracy for the cotton crop area detection was 84.6% and yield prediction was 92.1%. Our study presents new approaches to map cotton area and yield, which are applicable to other regions through machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used in this study during the analysis are available from the corresponding author on the reasonable request.

References

  • Ahmad, A., Khan, M. R., Shah, S. H., Kamran, M. A., Wajid, S. A., & Amin, M., et al. (2019). Agro-ecological Zoning.

  • Allard, D. (2013). J.-P. Chilès, P. Delfiner: Geostatistics: Modeling spatial uncertainty. Mathematical Geosciences, 45(3), 377–380. https://doi.org/10.1007/s11004-012-9429-y

  • Arvor, D., Jonathan, M., Meirelles, M. S. P., Dubreuil, V., & Durieux, L. (2011). Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso. Brazil. International Journal of Remote Sensing, 32(22), 7847–7871. https://doi.org/10.1080/01431161.2010.531783

    Article  Google Scholar 

  • Arvor, D., Meirelles, M., Dubreuil, V., Bégué, A., & Shimabukuro, Y. E. (2012). Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Applied Geography, 32(2), 702–713. https://doi.org/10.1016/j.apgeog.2011.08.007

    Article  Google Scholar 

  • Baise, L. G., Higgins, R. B., & Brankman, C. M. (2006). Liquefaction hazard mapping—Statistical and spatial characterization of susceptible units. Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 705–715. https://doi.org/10.1061/(asce)1090-0241(2006)132:6(705)

    Article  Google Scholar 

  • Brown, J. C., Kastens, J. H., Coutinho, A. C., de Victoria, D., & C., & Bishop, C. R. (2013). Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sensing of Environment, 130, 39–50. https://doi.org/10.1016/j.rse.2012.11.009

    Article  Google Scholar 

  • Chaves, M. E. D., de Alves, M., & C., de Oliveira, M. S., & Sáfadi, T. (2018). A geostatistical approach for modeling soybean crop area and yield based on census and remote sensing data. Remote Sensing, 10(5), 1–29. https://doi.org/10.3390/rs10050680

    Article  Google Scholar 

  • Chen, Y., Song, X., Wang, S., Huang, J., & Mansaray, L. R. (2016). Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 451–461. https://doi.org/10.1016/j.isprsjprs.2016.07.007

    Article  Google Scholar 

  • Conrad, C., Colditz, R. R., Dech, S., Klein, D., & Vlek, P. L. G. (2011). Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. International Journal of Remote Sensing, 32(23), 8763–8778. https://doi.org/10.1080/01431161.2010.550647

    Article  Google Scholar 

  • de Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sensing, 10(2), 1–21. https://doi.org/10.3390/rs10020285

    Article  Google Scholar 

  • de Souza, C. H. W., Mercante, E., Johann, J. A., Lamparelli, R. A. C., & Uribe-Opazo, M. A. (2015). Mapping and discrimination of soya bean and corn crops using spectro-temporal profiles of vegetation indices. International Journal of Remote Sensing, 36(7), 1809–1824. https://doi.org/10.1080/01431161.2015.1026956

    Article  Google Scholar 

  • de Victoria, D., & C., da Paz, A. R., Coutinho, A. C., Kastens, J., & Brown, J. C. (2012). Cropland area estimates using Modis NDVI time series in the state of Mato Grosso. Brazil. Pesquisa Agropecuaria Brasileira, 47(9), 1270–1278. https://doi.org/10.1590/S0100-204X2012000900012

    Article  Google Scholar 

  • Dormann, F., C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x

    Article  Google Scholar 

  • Dubreuil, V., Laques, A. É., Nédélec, V., Arvor, D., & Gurgel, H. (2008). Amazonian landscapes and pioneer fronts monitored by remote sensing: The case of Mato Grosso. Espace Geographique, 37(1), 57–74. https://doi.org/10.3917/eg.371.0057

    Article  Google Scholar 

  • Emily, W., P, M., D, R., & Nicolas, B. (2008). Kriging of the latent probability of a binomial variable: Application to fish statistics. Geostatistics, (Santiago), 981–990.

  • Garioud, A., Valero, S., Giordano, S., & Mallet, C. (2021). Recurrent-based regression of Sentinel time series for continuous vegetation monitoring. Remote Sensing of Environment, 263(March). https://doi.org/10.1016/j.rse.2021.112419

  • Ghilani, C. D., & Wolf, P. R. (2012). Elementary surveying. Pearson Education UK.

  • Goovaerts, P. (2010). Combining areal and point data in geostatistical interpolation: Applications to soil science and medical geography. Mathematical Geosciences, 42(5), 535–554. https://doi.org/10.1007/s11004-010-9286-5

    Article  Google Scholar 

  • Gotway, C. A., & Young, L. J. (2007). A geostatistical approach to linking geographically aggregated data from different sources. Journal of Computational and Graphical Statistics, 16(1), 115–135. https://doi.org/10.1198/106186007X179257

    Article  Google Scholar 

  • Hertel, T. W., Burke, M. B., & Lobell, D. B. (2010). The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 20(4), 577–585. https://doi.org/10.1016/j.gloenvcha.2010.07.001

    Article  Google Scholar 

  • Heupel, K., Spengler, D., & Itzerott, S. (2018). A progressive crop-type classification using multitemporal remote sensing data and phenological information. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 86(2), 53–69. https://doi.org/10.1007/s41064-018-0050-7

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213.

    Article  Google Scholar 

  • Javid, K., Akram, M. A. N., Mumtaz, M., & Siddiqui, R. (2019). Modeling and mapping of climatic classification of Pakistan by using remote sensing climate compound index (2000 to 2018). Applied Water Science, 9(7), 1–9. https://doi.org/10.1007/s13201-019-1028-3

    Article  CAS  Google Scholar 

  • Jiang, H., Hu, H., Zhong, R., Xu, J., Xu, J., Huang, J., et al. (2020). A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US Corn Belt at the county level. Global Change Biology, 26(3), 1754–1766. https://doi.org/10.1111/gcb.14885

    Article  Google Scholar 

  • Li, M., Zhao, G. X., & Qin, Y. W. (2011). Extraction and monitoring of cotton area and growth information using remote sensing at small scale - A case study in Dingzhuang Town of Guangrao County, China. Proceedings - International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, CDCIEM, 2011, 816–823. https://doi.org/10.1109/CDCIEM.2011.569

    Article  Google Scholar 

  • Mingwei, Z., Qingbo, Z., Zhongxin, C., Jia, L., Yong, Z., & Chongfa, C. (2008). Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. International Journal of Applied Earth Observation and Geoinformation, 10(4), 476–485. https://doi.org/10.1016/j.jag.2007.11.002

    Article  Google Scholar 

  • Pullan, R. L., Sturrock, H. J. W., Soares Magalhães, R. J., Clements, A. C. A., & Brooker, S. J. (2012). Spatial parasite ecology and epidemiology: A review of methods and applications. Parasitology, 139(14), 1870–1887. https://doi.org/10.1017/S0031182012000698

    Article  Google Scholar 

  • Razzaq, A., Zafar, M. M., Ali, A., Hafeez, A., Batool, W., Shi, Y., et al. (2021). Cotton germplasm improvement and progress in Pakistan. Journal of Cotton Research, 4(1), 1–14. https://doi.org/10.1186/s42397-020-00077-x

    Article  Google Scholar 

  • Sattar, M., Zafar, M., Khalid, L., Mehmood, T., & Ali, M. (2018). Trend of crop area shifting and profitability analysis of cotton and maize in agro-ecological zone of Vehari. Int. J. Adv. Multidiscip. Res, 5(6), 45–55. https://doi.org/10.22192/ijamr

  • Schut, A. G. T., Stephens, D. J., Stovold, R. G. H., Adams, M., & Craig, R. L. (2009). Improved wheat yield and production forecasting with a moisture stress index, AVHRR and MODIS data. Crop and Pasture Science, 60(1), 60–70. https://doi.org/10.1071/CP08182

    Article  Google Scholar 

  • Solano, R., Didan, K., Jacobson, A., & Huete, A. R. (2010). MODIS vegetation index (MOD13) C5 user’s guide version 2. The University of Arizona.

    Google Scholar 

  • Statistics, P. B. of. (2019). Crop reporting service, Annual reports. www.pbs.gov.pk

  • Sun, C., Bian, Y., Zhou, T., & Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors (switzerland), 19(10), 1–23. https://doi.org/10.3390/s19102401

    Article  Google Scholar 

  • Teluguntla, P., Thenkabail, P. S., Xiong, J., Gumma, M. K., Congalton, R. G., Oliphant, A., et al. (2017). Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. International Journal of Digital Earth, 10(9), 944–977. https://doi.org/10.1080/17538947.2016.1267269

    Article  Google Scholar 

  • Wang, H., Wu, L., Cheng, M., Fan, J., Zhang, F., & Zou, Y., et al. (2018). Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Research, 219(December 2017), 169–179. https://doi.org/10.1016/j.fcr.2018.02.002

  • Wardlow, B. D., Kastens, J. H., & Egbert, S. L. (2006). Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data. Photogrammetric Engineering and Remote Sensing, 72(11), 1225–1234. https://doi.org/10.14358/PERS.72.11.1225

  • Webster, R., & Oliver, M. A. (1994). Kriging the local risk of a rare disease from a register of diagnoses. Geographical, 26(2).

  • Werner, J. P. S., Oliveira, S. R. D. M., & Esquerdo, J. C. D. M. (2020). Mapping cotton fields using data mining and MODIS time-series. International Journal of Remote Sensing, 41(7), 2457–2476. https://doi.org/10.1080/01431161.2019.1693072

    Article  Google Scholar 

  • Xu, X., Conrad, C., & Doktor, D. (2017). Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging Spectrometer (MODIS). Remote Sensing, 9(3). https://doi.org/10.3390/rs9030254

  • Xun, L., Zhang, J., Cao, D., Wang, J., Zhang, S., & Yao, F. (2021). Mapping cotton cultivated area combining remote sensing with a fused representation-based classification algorithm. Computers and Electronics in Agriculture, 181(January), 105940. https://doi.org/10.1016/j.compag.2020.105940

  • Yan, H., Xiao, X., Huang, H., Liu, J., Chen, J., & Bai, X. (2014). Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data. Chinese Geographical Science, 24(2), 205–219. https://doi.org/10.1007/s11769-013-0637-2

    Article  Google Scholar 

  • Zhang, J., Feng, L., & Yao, F. (2014). Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information. ISPRS Journal of Photogrammetry and Remote Sensing, 94, 102–113. https://doi.org/10.1016/j.isprsjprs.2014.04.023

    Article  Google Scholar 

  • Zhong, L., Hu, L., Yu, L., Gong, P., & Biging, G. S. (2016). Automated mapping of soybean and corn using phenology. ISPRS Journal of Photogrammetry and Remote Sensing, 119(September), 151–164. https://doi.org/10.1016/j.isprsjprs.2016.05.014

    Article  Google Scholar 

  • Zhu, C., Lu, D., Victoria, D., & Dutra, L. V. (2016). Mapping fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index and Landsat Thematic Mapper data. Remote Sensing, 8(1). https://doi.org/10.3390/rs8010022

Download references

Acknowledgements

We are very thankful to Mr. Muhammad Mateen Tahir who helped us to collect the field data for this study during the pandemic period; it was really hard work. The crop data that is used in this study was obtained from crop reporting service of Statistical Bureau of Pakistan (SBP) Islamabad, Pakistan.

Funding

This work was completed with supported by the National Key Research and Development Program of China, grant number 2017YFA0604403-3 and 2016YFA0602301, the Joint Fund of National Natural Science Foundation of China, grant number U19A2023, the National Natural Science Foundation of China (41971124), and the Natural Science Foundation of Jilin Scientific Institute of China (YDZJ202201ZYTS470).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed intellectual input and assistance to this study and manuscript preparation. M. Naveed and Hong S. He developed the original idea. M. Naveed, S Zong, and H. Du designed the methodology. M. Naveed, Z. Satti, and Shuai C. investigate the data collection. M. Naveed and Hang Sun perform statistical and spatial analysis. M. Naveed and S Zong: writing — original draft. Hong S. He supervised this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hong S. He or Shengwei Zong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, M., He, H.S., Zong, S. et al. Cotton cultivated area detection and yield monitoring combining remote sensing with field data in lower Indus River basin, Pakistan. Environ Monit Assess 195, 401 (2023). https://doi.org/10.1007/s10661-023-11004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11004-3

Keywords

Navigation