Skip to main content
Log in

Variability of biochemical compounds in surface sediments along the eastern margin of the Arabian Sea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Different fractions of organic matter in surface sediments from three transects along the eastern margin of the Arabian Sea (AS) were quantified to determine the sources of organic matter, and also to study its impact on microbial community structure. From the extensive analyses of different biochemical parameters, it was evident that the distribution of total carbohydrate (TCHO), total neutral carbohydrate (TNCHO), proteins, lipids, and uronic acids (URA) concentrations and yield (% TCHO-C/TOC) are affected by organic matter (OM) sources and microbial degradation of sedimentary OM. Monosaccharide compositions from surface sediment was quantified to assess the sources and diagenetic fate of carbohydrates, suggesting that the deoxysugars (rhamnose plus fucose) had significant inverse relationship (r = 0.928, n = 13, p < 0.001) with hexoses (mannose plus galactose plus glucose) and positive relationship (r = 0.828, n = 13, p < 0.001) with pentoses (ribose plus arabinose plus xylose). This shows that marine microorganisms are the source of carbohydrates and there is no influence of terrestrial OM along the eastern margin of AS. During the degradation of algal material, the hexoses seem to be preferentially used by heterotrophic organisms in this region. Arabinose plus galactose (glucose free wt %) values between 28 and 64 wt% indicate that OM was derived from phytoplankton, zooplankton, and non-woody tissues. In the principal component analysis, rhamnose, fucose, and ribose form one cluster of positive loadings while glucose, galactose, and mannose form another cluster of negative loadings which suggest that during OM sinking process, hexoses were removed resulting in increase in bacterial biomass and microbial sugars. Results indicate sediment OM to be derived from marine microbial source along the eastern margin of AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abad, M. J., Bedoya, L. M., & Bermejo, A. P. (2011). Marine compounds and their antimicrobial activities. Science against Microbial Pathogens: Communicating Current Research and Technological Advances, 51, 1293–1306.

    Google Scholar 

  • Agnihotri, R., & Kurian, S. (2008). Recently sedimentary records from eastern Arabian Sea: Implications to Holocene monsoonal variability. Earth Science India, 1, 258–287.

    Google Scholar 

  • Alagarsamy, R. (2003). Organic matter cycling in sediments of the Oman Margin. Chemistry and Ecology, 19, 419–429.

    Article  CAS  Google Scholar 

  • Amon, R. M., & Benner, R. (2003). Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(1), 151–169.

    Article  CAS  Google Scholar 

  • Aspinall, G. O. (1970). Polysaccharides. Pergamon Press.

    Google Scholar 

  • Benner, R., & Opsahl, S. (2001). Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Organic Geochemistry, 32(4), 597–611.

    Article  CAS  Google Scholar 

  • Bernaerts, T. M., Gheysen, L., Kyomugasho, C., Kermani, Z. J., Vandionant, S., Foubert, I., & Van Loey, A. M. (2018). Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. Algal Research, 32, 150–161.

  • Bergamaschi, B. A., Walters, J. S., & Hedges, J. (1999). Distributions of uronic acids and 0-methyl sugars in sinking and sedimentary particles in two coastal marine environments. Geochimica Cosmochimica Acta, 63, 413–425.

    Article  CAS  Google Scholar 

  • Bhosle, N. B., & Dhople, V. M. (1988). Distribution of some biochemical compounds in the sediments of the Bay of Bengal. Chemical Geology, 67, 341–352.

    Article  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  • Burdige, D. J., Skoog, A., & Gardner, K. (2000). Dissolved and particulate carbohydrates in contrasting marine sediments. Geochimica Cosmochimica Acta, 64, 1029–1041.

    Article  CAS  Google Scholar 

  • Corinaldesi, C., Dell’Anno, A., & Danovaro, R. (2007). Early diagenesis and trophic role of extracellular DNA in different benthic ecosystems. Limnology and Oceanography, 52(4), 1710–1717.

    Article  CAS  Google Scholar 

  • Cowie, G. L., & Hedges, J. I. (1984). Carbohydrate sources in a coastal marine environment. Geochimica Cosmochimica Acta, 48, 2075–2087.

    Article  CAS  Google Scholar 

  • Cowie, G. L., & Hedges, J. I. (1994). Biochemical indicators of diagenetic alteration in natural organic-matter mixtures. Nature, 369, 304–307.

    Article  CAS  Google Scholar 

  • Cowie, G. L., & Hedges, J. I. (1996). Digestion and alteration of the biochemical constituents of a diatom (Thalassiosira weisflogii) ingested by an herbivorous zooplankton (Calanus pacificus). Limnology and Oceanography, 41(4), 581–594.

    Article  CAS  Google Scholar 

  • da Cunha, L. C., Serve, L., & Blazi, J. L. (2002). Neutral sugars as biomarkers in the particulate organic matter of a French Mediterranean river. Organic Geochemistry, 33, 953–964.

    Article  Google Scholar 

  • Danovaro, R., Dell, A., Martorano, D., Parodi, P., Marrale, N. D., & Fabiano, M. (1999). Seasonal variation in the biochemical composition of deep-sea nematodes: bioenergetic and methodological considerations. Marine Ecology Progress Series, 179, 273–283.

    Article  CAS  Google Scholar 

  • Danovaro, R., Dell’Anno, A., & Fabiano, M. (2001). Bioavailability of organic matter in the sediments of the Porcupine Abyssal Plain, northeastern Atlantic. Marine Ecology Progress Series, 220, 25–32.

    Article  CAS  Google Scholar 

  • Decho, A. W. (1990). Microbial exopolymer secretion in ocean environments: Their roles in food webs and Marine processes. Oceanography and Marine Biology Annual Review, 28, 73–153.

    Google Scholar 

  • D’souza, F., & Bhosle, N. B. (2001). Variation in the composition of carbohydrates in the Dona Paula Bay (west of India) during May/June 1998. Oceanologica Acta, 24, 221–237.

    Article  CAS  Google Scholar 

  • D’Souza, F., Garg, A., & Bhosle, N. B. (2005). Seasonal variation in the chemical composition and carbohydrates signature compounds of biofilm. Aquatic Microbial Ecology, 41, 199–207.

    Article  Google Scholar 

  • Duan, D., Zhang, D., Yang, Y., Wang, J., Chen, J. A., & Ran, Y. (2017). Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs. South China. Biogeosciences, 14(18), 4009–4022.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric methods for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Elser, J. J., Fagan, W., Denno, F., Dobberfuhl, R. F., Folarin, D. R., Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., & Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater food web. Nature, 408, 578–580.

    Article  CAS  Google Scholar 

  • Fabiano, M., & Danovaro, R. (1999). Meiofauna distribution and mesoscale variability in two sites of the Ross Sea (Antarctica) with contrasting food supply. Polar Biology, 22(2), 115–123.

    Article  Google Scholar 

  • Fernandes, L., Garg, A., & Borole, D. V. (2014). Amino acid biogeochemistry and Bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal. Deep Sea Research I, 83, 81–92.

    Article  CAS  Google Scholar 

  • Filisctti-Cozzi, T. M. C. C., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197, 157–162.

    Article  Google Scholar 

  • Fontana, C., Grenz, C., & Pinazo, C. (2010). Sequential assimilation of a year-long time-series of SeaWiFS chlorophyll data into a 3D biogeochemical model on the French Mediterranean coast. Continental Shelf Research, 30(16), 1761–1771.

    Article  Google Scholar 

  • Garcia-Rodriguez, F., Puerto, L. D., Venturini, N., Pita, A. L., Brugnoli, E., Burone, L., & Muniz, P. (2011). Diatoms, protein and carbohydrate sediment content as proxies for coastal eutrophication in Montevideo, Rio de la Plata Estuary, Uruguay. Brazilian Journal of Oceanography, 59, 293–310.

    Article  Google Scholar 

  • Grémare, A., Medernach, L., DeBovée, F., Amouroux, J., Vétion, G., & Albert, P. (2002). Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Marine Ecology Progress Series, 234, 85–94.

    Article  Google Scholar 

  • Goni, M. A., Teixeira, M. J., & Perkey, D. W. (2003). Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science, 57, 1023–1048.

    Article  CAS  Google Scholar 

  • Guggenberger, G., Christensen, B. T., & Zech, W. (1994). Land-use effects on the composition of organic matter in particle-size separate of soil: I. Lignin and carbohydrate signature. European Journal of Soil Science, 45, 449–458.

    Article  CAS  Google Scholar 

  • Guo, Q., Wang, C., Wei, R., Zhu, G., Cui, M., & Okolic, C. P. (2020). Qualitative and quantitative analysis of source for organic carbon and nitrogen in sediments of rivers and lakes based on stable isotopes. Ecotoxicology and Environmental Safety, 195, 110436

  • Handa, N. (1969). Carbohydrate metabolism in the marine diatom Skeletonema costatum. Marine Biology, 4, 208–214.

    Article  CAS  Google Scholar 

  • Harji, R. R., Bhosle, N. B., Garg, A., Sawant, S. S., & Venkat, K. (2010). Sources of OM and microbial community structure in the sediments of Visakhapatnam harbour, east coast of India. Chemical Geology, 276, 309–317.

    Article  CAS  Google Scholar 

  • Harji, R. R., Yvenat, A., & Bhosle, N. B. (2008). Sources of hydrocarbons in sediments of the Mandovi estuary and the Marmugoa harbour, west coast of India. Environment International, 34, 959–965.

    Article  Google Scholar 

  • Hartati, W., & Sudarmadji, T. (2016). Relationship between soil texture and soil organic matter content on mined-out lands in Berau, East Kalimantan, Indonesia. Nusantara Bioscience, 8(1).

  • Harvey, H. R., Tuttle, J. H., & Bell, J. T. (1995). Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochimica Et Cosmochimica Acta, 59, 3367–3377.

    Article  CAS  Google Scholar 

  • He, B., Dai, M., Huang, W., Liu, Q., Chen, H., & Xu, L. (2010). Sources and accumulation of organic carbon in the Pearl river estuary sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions. Biogeosciences Discuss, 7, 2889–2926.

    Google Scholar 

  • Hedges, J. I., Keil, R., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean? Organic Geochemistry, 27, 195–2012.

    Article  CAS  Google Scholar 

  • Hedges, J. I., Clark, W. A., Quay, P. D., Rickey, J. E., Devol, A. H., & Satos, U. M. (1986). Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography, 31, 717–738.

    Article  CAS  Google Scholar 

  • Hedges, J. I., Hu, F. S., Devol, A. H., Hartnett, H. E., Tsamakis, E., & Keil, R. G. (1999). Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. American Journal of Science, 299, 529–555.

    Article  CAS  Google Scholar 

  • Henderson. R. J., Olsen, R. E. & Eilertsen, H. C. (1991). Lipid composition of phytoplankton from the Barents Sea and environmental influences on the distribution pattern of fixed carbon among photosynthetic end products. pp. 229–237 in Sakshaug, E., Hopkins, C. C. E. and (dritsland. N. A. (eds.): Proceedings of the Pro Mare Symposium on Polar Marine Ecology, Trondheim. 12–16 May 1990.

  • Hernes, P. J., Hedges, J. I., Peterson, M. L., Wakeham, S. G., & Lee, C. (1996). Neutral carbohydrates of particulate material in the central equatorial Pacific. Deep Sea Research I, 43, 1181–1204.

    Article  CAS  Google Scholar 

  • Hicks, R. E., Owen, C. J., & Aas, P. (1994). Deposition, resuspension and decomposition of particulate organic matter in the sediment of Lake Itasca, Minnesota, USA. Hydrobiologia, 284, 79–91.

    Article  CAS  Google Scholar 

  • Isla, E., Rossi, S., Palanques, A., Gili, J.-M., Gerdes, D., & Arntz, W. (2006). Biochemical composition of marine sediment from the eastern Weddell Sea (Antarctica): High nutritive value in a high benthic-biomass environment. Journal of Marine System, 60, 255–267.

    Article  Google Scholar 

  • Ittekkot, V., & Arain, R. (1986). Nature of particulate matter in the river Indus, Pakistan. Geochimica et Cosmochimica Acta, 50, 1643–1653.

    Article  CAS  Google Scholar 

  • Ingalls, A. E., Lee, C., Wakeham, S. G., & Hedges, J. I. (2003). The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170 oW. Deep-Sea Research II, 50, 713–738.

    Article  CAS  Google Scholar 

  • Ittekkot, V., Deuser, W. G., & Degens, E. T. (1984). Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama Basin. Deep-Sea Research, 31, 1071–1083.

    Article  CAS  Google Scholar 

  • Johnson, J. L., & Cummins, C. S. (1972). Cell wall composition and deoxyribonucleic acid similarities among the anaerobic coryneforms, classical propionibacteria, and strains of Arachnia propionica. Journal of Bacteriology, 1047–1066.

  • Jyothibabu, R., Madhu, N. V., Habeebrehman, H., Jayalakshmy, K. V., Nair, K. K. C., & Achuthankutty, C. T. (2010). Re-evaluation of ‘paradox of mesozooplankton’ in the eastern Arabian Sea based on ship and satellite observations. Journal of Marine Systems, 81, 235–251.

    Article  Google Scholar 

  • Kaiser, K., & Benner, R. (2009). Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Marine Chemistry, 113, 63–77.

    Article  CAS  Google Scholar 

  • Kappelmann, L., Krüger, K., Hehemann, J. H., Harder, J., Markert, S., Unfried, F., & Teeling, H. (2019). Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. The ISME Journal, 13(1), 76–91.

  • Kerhervé, P., Buscail, R., Gadel, F., & Serve, L. (2002). Neutral monosaccharides in surface sediments of the northwestern Mediterranean Sea. Organic Geochemistry, 33(4), 421–435.

    Article  Google Scholar 

  • Khodse, V. B., & Bhosle, N. B. (2012). Nature and sources of suspended particulate organic matter in a tropical estuary during the monsoon and pre-monsoon: Insights from stable isotopes (δ13CPOC, δ15NTPN) and carbohydrate signature compounds. Marine Chemistry, 145–147, 16–28.

    Article  Google Scholar 

  • Khodse, V. B., & Bhosle, N. B. (2010). Differences in carbohydrate profiles in batch culture grown planktonic and biofilm cells of Amphora rostrata Wm. Sm. Biofouling, 26, 527–537.

    Article  CAS  Google Scholar 

  • Khodse, V. B., & Bhosle, N. B. (2011). Bacterial utilization of size fractionated dissolved organic matter. Aquatic Microbial Ecology, 64, 299–309.

    Article  Google Scholar 

  • Khodse, V. B., Fernandes, L., Bhosle, N. B., & Sardessai, S. (2008). Carbohydrates, uronic acids and alkali extractable carbohydrates in contrasting marine sediments: Distribution, size fractionation and partial chemical characterization. Organic Geochemistry, 39, 265–283.

    Article  CAS  Google Scholar 

  • Kim, J. H., Schouten, S., Buscail, R., Ludwig, W., Bonnin, J., Sinninghe Damsté, J. S., & Bourrin, F. (2006). Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions): Exploring the newly developed BIT index. Geochemistry, Geophysics, Geosystems, 7(11).

  • Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2), 139–162.

    Article  Google Scholar 

  • Krishna, M. S., Naidu, S. A., Subbaiah, Ch. V., Sarma, V. V. S. S., & Reddy, N. P. C. (2013). Distribution and sources of organic matter in surface sediments of the eastern continental margin of India. Journal of Geophysical Research. Biogeosciences, 118, 1484–1494. https://doi.org/10.1002/2013JG002424

    Article  Google Scholar 

  • Kristensen, E., Ahmed, S. I., & Devol, A. H. (1995). Aerobic versus anaerobic decomposition of organic matter in marine sediments: Which is faster? Limnology and Oceanography, 40, 1430–1437.

  • Kumar, M. D., Rajendran, A., Somasundar, K., Haake, B., Jenisch, A., Shuo, Z., Ittekkot, V., & Desai, B. N. (1990). Dynamics of dissolved organic carbon in the northwestern Indian Ocean. Marine Chemistry, 31, 299–316.

    Article  CAS  Google Scholar 

  • Lazareva, E. V., & Romankevich, E. A. (2012). Carbohydrates as indicators of biogeochemical processes. Okeanologiya, 2012(52), 362–371.

    Google Scholar 

  • Lobbes, J. M., Fitznar, H. P., & Kattner, G. (2000). Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica Et Cosmochimica Acta, 64(17), 2973–2983.

    Article  CAS  Google Scholar 

  • Madhupratap, M., Prasanna Kumar, S., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., & Ramaiah, N. (1996). Mechanism of the biological response of winter cooling in the NE Arabian Sea. Nature, 384, 549–552.

    Article  CAS  Google Scholar 

  • Madhupratap, M., Gauns, M., Ramaiah, N., Kumar, S. P., Muraleedharan, P. M., De Sousa, S. N., & Muraleedharan, U. (2003). Biogeochemistry of the Bay of Bengal: Physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Research Part II: Topical Studies in Oceanography, 50(5), 881–896.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L. A. (1983). Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight: II. Analysis of benthic bacterial populations. Marine Biology, 77, 247–256.

    Article  CAS  Google Scholar 

  • Muhlebach, A., & Weber, K. (1998). Origin and fate of dissolved sterols in the Weddell Sea, Antarctica. Organic Geochemistry, 29, 1595–1607.

    Article  CAS  Google Scholar 

  • Musale, A. S., & Desai, D. V. (2011). Distribution and abundance of macrobenthic polychaetes along the South Indian coast. Environmental Monitoring and Assessment, 178, 423–436.

    Article  CAS  Google Scholar 

  • Myklestad, S. (1977). Production of carbohydrates by marine planktonic diatoms. II. Influence of N/P ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis and Skeletonema costatum. Journal of Experimental Marine Biology and Ecology, 29, 161–179.

    Article  CAS  Google Scholar 

  • Nair Manju, P., Akhil, P. S., & Sujatha, C. H. (2013). Geochemistry of core sediment from Antarctic region.

  • Naqvi, S. W. A, Naik, H., Jayakumar, D. A., Shailaja, M. S. and Narvekar, P. V. (2006) Seasonal oxygen deficiency over the western continental shelf of India. In: Neretin, l., (ed.), Past and Present Water Column Anoxia, NATO Science Series, IV. Earth and Environmental Sciences, 64, Springer, 195–224.

  • Neira, C., Sellanes, J., Levin, L. A., & Arntz, W. E. (2001). Meiofaunal distributions on the Peru margin: Relationship to oxygen and organic matter availability. Deep Sea Research Part I: Oceanographic Research Papers, 48(11), 2453–2472.

    Article  CAS  Google Scholar 

  • Nouara, A., Panagiotopoulos, C., & Sempéré, R. (2019). Simultaneous determination of neutral sugars, alditols and anhydrosugars using anion-exchange chromatography with pulsed amperometric detection: Application for marine and atmospheric samples. Marine Chemistry, 213, 24–32.

    Article  CAS  Google Scholar 

  • Ogier, S., Dissnar, J. R., Alberic, P., & Bourdier, G. (2001). Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic lake (Aydat, France). Organic Geochemistry, 32, 151–162.

    Article  CAS  Google Scholar 

  • Opsahl, S., & Benner, R. (1999). Characterization of carbohydrates during early diagenesis of five vascular plant tissues. Organic Geochemistry, 30, 83–94.

    Article  CAS  Google Scholar 

  • Pan, Z., Gao, Q. F., Dong, S. L., Wang, F., Li, H. D., Zhao, K., & Jiang, X. Y. (2019). Effects of abalone (Haliotis discus hannai Ino) and kelp (Saccharina japonica) mariculture on sources, distribution, and preservation of sedimentary organic carbon in Ailian Bay, China: Identified by coupling stable isotopes (δ13C and δ15N) with C/N ratio analyses. Marine Pollution Bulletin, 141, 387–397.

    Article  CAS  Google Scholar 

  • Panagiotopoulos, C., & Sempere, R. (2005a). Molecular distribution of carbohydrates in large marine particles. Marine Chemistry, 95, 31–49.

    Article  CAS  Google Scholar 

  • Panagiotopoulos, C., & Sempere, R. (2005b). The molecular distribution of combined aldoses in sinking particles in various oceanic conditions. Marine Chemistry, 95, 31–49.

    Article  CAS  Google Scholar 

  • Paropkari, A. L., Babu, C. P., & Mascarenhas, A. (1992). A critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Marine Geology, 107, 213–226.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Takahashi, M., & Hargrave, B. (1984). Biological Oceanographic Processes (3rd ed.). Pergamon Press.

    Google Scholar 

  • Prakash, B. C., Brumsack, H.-J., & Schnetger, B. (1999). Distribution of organic carbon in surface sediments along the eastern Arabian Sea:A revisit. Marine Geology, 162, 91–103.

    Article  Google Scholar 

  • Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., de Souza, S. N., Sardessai, S., & Madhupratap, M. (2002). Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea. Geophysical Research Letters, 29, 2235. https://doi.org/10.1029/2002GL016013

    Article  Google Scholar 

  • Pusceddu, A., Cattaneo-Vietti, R., Albertelli, G., & Fabiano, M. (1999). Origin, biochemical composition and vertical flux of particulate organic matter under the pack ice in Terra Nova Bay (Ross Sea, Antarctica) during late summer 1995. Polar Biology, 2, 124–132.

    Article  Google Scholar 

  • Quijada, M., Riboulleau, A., Guerardel, Y., Monnet, C., & Tribovillard, N. (2015). Neutral aldoses derived from sequential acid hydrolysis of sediments as indicators of diagenesis over 120,000 years. Organic Geochemistry, 81, 53–63.

    Article  CAS  Google Scholar 

  • Ragusa, S. R., McNevin, D., Qasem, S., & Mitchell, C. (2004). Indicators of biofilm development and activity in constructed wetlands microcosms. Water Research, 38(12), 2865–2873.

    Article  CAS  Google Scholar 

  • Romankevich, E. A. (1984) Geochemistry of organic matter in the ocean. Springer Verlag, 334p.

  • Rossi, S., Grémare, A., Gili, J.-M., Amouroux, J. M., Jordana, E., & Vétion, G. (2003). Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: A seasonal comparison. Estuarine, Coastal and Shelf Science, 58, 423–434.

    Article  CAS  Google Scholar 

  • Sakhare, V. B. (2007). Advances in aquatic ecology (Vol. 1). Daya Publishing house.

    Google Scholar 

  • Sánchez, A., López-Ortiz, B. E., Aguíñiga-García, S., & Balart, E. (2013). Distribution and composition of organic matter in sediments of the oxygen minimum zone of the Northeastern Mexican Pacific: Paleoceanographic implications. Journal of Iberian Geology, 39(1), 111–120.

    Article  Google Scholar 

  • Sardessai, S. (1994). Organic carbon and humic acids in sediments of the Arabian Sea and factors governing their distribution. Oceanologica Acta, 17, 263–270.

    CAS  Google Scholar 

  • Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109(6), 661–686.

    Article  Google Scholar 

  • Shetye, S. R., & Gouveia, A. D. (1998) Coastal circulation in the North Indian Ocean. Coastal segment (14, SW). In: Robinson, A.R. and Brink, K.H.(eds.) The Sea, v.11, John Wiley & Sons, New York, pp.523- 556.

  • Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, C. K., Gocke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  • Smith, M. A., Kominoski, J. S., Gaiser, E. E., Price, R. M., & Troxler, T. G. (2021). Stormwater runoff and tidal flooding transform dissolved organic matter composition and increase bioavailability in urban coastal ecosystems. Journal of Geophysical Research: Biogeosciences, 126(7), e2020JG006146.

  • Tareq, S. M., & Ohta, K. (2011). Distribution of combined monosaccharides in sediments from the lake Rawa Danau, West Java, Indonesia: Sources and diagenetic fate of carbohydrates in a tropical wetland. Geochemical Journal, 45, 1–13.

    Article  CAS  Google Scholar 

  • Tselepides, A., Polychronaki, T., Marrale, D., Akoumianaki, I., Dell'Anno, A., Pusceddu, A., & Danovaro, R. (2000). Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean).

  • Ware, S. A., Hartman, B. E., Waggoner, D. C., Vaughn, D. R., Bianchi, T. S., & Hatcher, P. G. (2022). Molecular evidence for the export of terrigenous organic matter to the north Gulf of Mexico by solid-state 13C NMR and Fourier transform ion cyclotron resonance mass spectrometry of humic acids. Geochimica Et Cosmochimica Acta, 317, 39–52.

    Article  CAS  Google Scholar 

  • Wyrtki, K. (1971). Oceanographic Atlas of the international Indian Ocean Expedition (p. 531). National Science Foundation.

    Google Scholar 

  • Youssef, D. H., El-Said, G. F., & Shobier, A. H. (2014). Distribution of total carbohydrates in surface sediments of the Egyptian Mediterranean coast, in relation to some inorganic factors. Arabian Journal of Chemistry, 7(5), 823–832.

    Article  CAS  Google Scholar 

  • Zaghden, H., Kallel, M., Louati, A., Elleuch, B., Oudot, J., & Saliot, A. (2005). Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Marine Pollution Bulletin, 50(11), 1287–1294.

    Article  CAS  Google Scholar 

  • Zhang, Y., Kaiser, K., Li, L., Zhang, D., Ran, Y., & Benner, R. (2014). Sources, distributions, and early diagenesis of sedimentary organic matter in the Pearl River region of the South China Sea. Marine Chemistry, 158, 39–48.

    Article  CAS  Google Scholar 

  • Zhu, R., Tolu, J., Deng, L., Fiskal, A., Winkel, L. H., & Lever, M. A. (2020). Improving the extraction efficiency of sedimentary carbohydrates by sequential hydrolysis. Organic Geochemistry, 141, 103963.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director of the institute for his help and encouragements. All the scientific and crew members of the cruise SSK-046 of ORV Sindhu Sankalp are thanked for their cooperation during sampling. Financial supports from the CSIR funds under PSC0206 and OLP2005 are gratefully acknowledged. This is NIO contribution number is 7022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhee Khandeparker.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodse, V.B., Amberkar, U., Khandeparker, R. et al. Variability of biochemical compounds in surface sediments along the eastern margin of the Arabian Sea. Environ Monit Assess 195, 414 (2023). https://doi.org/10.1007/s10661-023-10991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10991-7

Keywords

Navigation