Skip to main content
Log in

Pixel level spatial variability modeling using SHAP reveals the relative importance of factors influencing LST

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As an important indicator of the regional thermal environment, land surface temperature (LST) is closely related to community health and regional sustainability in general, and is influenced by multiple factors. Previous studies have paid scant attention to spatial heterogeneity in the relative contribution of factors underlying LST. In this study of Zhejiang Province, we investigated the key factors affecting daytime and nighttime annual mean LST and the spatial distribution of their respective contributions. The eXtreme Gradient Boosting tree (XGBoost) and Shapley Additive exPlanations algorithm (SHAP) approach were used in combination with three sampling strategies (Province—Urban Agglomeration -Gradients within Urban Agglomeration) to detect spatial variation. The results reveal heterogenous LST spatial distribution with lower LST in the southwestern mountainous region and higher temperatures in the urban center. Spatially explicit SHAP maps indicate that latitude and longitude (geographical locations) are the most important factors at the provincial level. In urban agglomerations, factors associated with elevation and nightlight are shown to positively impact daytime LST in lower altitude regions. In the urban centers, EVI and MNDWI are the most notable influencing factors on LST at night. Under different sampling strategies, EVI, MNDWI, NL, and NDBI affect LST more prominently at smaller spatial scales as compared to AOD, latitude and TOP. The SHAP method proposed in this paper offers a useful means for management authorities in addressing LST in a warming climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

All data are incorporated into the article and its online supplementary material.

References

  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859

    Article  Google Scholar 

  • Bala, R., Prasad, R., & Pratap Yadav, V. (2020). A comparative analysis of day and night land surface temperature in two semi-arid cities using satellite images sampled in different seasons. Advances in Space Research, 66(2), 412–425. https://doi.org/10.1016/j.asr.2020.04.009

    Article  Google Scholar 

  • Cai, Z., Han, G., & Chen, M. (2018). Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustainable Cities and Society, 39, 487–498. https://doi.org/10.1016/j.scs.2018.02.033

    Article  Google Scholar 

  • Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9(1–2), 161–173. https://doi.org/10.1080/02757259409532220

    Article  Google Scholar 

  • Chakraborty, T., & Lee, X. (2019). Land cover regulates the spatial variability of temperature response to the direct radiative effect of aerosols. Geophysical Research Letters, 46(15), 8995–9003. https://doi.org/10.1029/2019GL083812

    Article  Google Scholar 

  • Chen, S., Yu, Z., Liu, M., Da, L., & Faiz ul Hassan, M. (2021). Trends of the contributions of biophysical (climate) and socioeconomic elements to regional heat islands. Scientific Reports, 11(1), 12696. https://doi.org/10.1038/s41598-021-92271-3

    Article  CAS  Google Scholar 

  • Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: Extreme gradient boosting. R package version 0.4–2, 1(4), 1–4.

  • Chen, Z., Gong, C., Wu, J., & Yu, S. (2012). The influence of socioeconomic and topographic factors on nocturnal urban heat islands: A case study in Shenzhen. China. International Journal of Remote Sensing, 33(12), 3834–3849. https://doi.org/10.1080/01431161.2011.635717

    Article  Google Scholar 

  • Cheng, M., & Duan, C. (2021). The changing trends of internal migration and urbanization in China: new evidence from the seventh National Population Census. China Population and Development Studies, 5(3), 275–295. https://doi.org/10.1007/s42379-021-00093-7

    Article  Google Scholar 

  • China Statistical Yearbook. (2015).  Beijing: China Statistical Publishing House.

  • Coutts, A. M., Beringer, J., & Tapper, N. J. (2007). Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology, 46(4), 477–493. https://doi.org/10.1175/JAM2462.1

    Article  Google Scholar 

  • Cui, Y., Xu, X., Dong, J., & Qin, Y. (2016). Influence of urbanization factors on surface urban heat island intensity: A comparison of countries at different developmental phases. Sustainability, 8(8), 706. https://doi.org/10.3390/su8080706

    Article  Google Scholar 

  • Deng, Y., Chen, R., Xie, Y., Xu, J., Yang, J., & Liao, W. (2021). Exploring the impacts and temporal variations of different building roof types on surface urban heat island. Remote Sensing, 13(14), 2840. MDPI AG. https://doi.org/10.3390/rs13142840

  • Deng, Y., Wang, S., Bai, X., Tian, Y., Wu, L., Xiao, J., & Qian, Q. (2018). Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific Reports, 8(1), 641. https://doi.org/10.1038/s41598-017-19088-x

  • Dheivasigamani, P. (2020). Relationship between nighttime lights and land surface temperature. Retrieved May 21, 2022, from Deqing, Zhejiang, China: https://a-a-r-s.org/proceeding/ACRS2020/ac2szp.pdf

  • Ezimand, K., Azadbakht, M., & Aghighi, H. (2021). Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustainable Cities and Society, 74, 103216. https://doi.org/10.1016/j.scs.2021.103216

  • Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., & Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management, 164, 102–111. https://doi.org/10.1016/j.enconman.2018.02.087

  • Geng, S., Yang, L., Sun, Z., Wang, Z., Qian, J., Jiang, C., & Wen, M. (2021). Spatiotemporal patterns and driving forces of remotely sensed urban agglomeration heat islands in South China. Science of The Total Environment, 800, 149499. https://doi.org/10.1016/j.scitotenv.2021.149499

  • Gillies, R. R., & Carlson, T. N. (1995). Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology and Climatology, 34(4), 745–756. https://doi.org/10.1175/1520-0450(1995)034%3c0745:TRSOSS%3e2.0.CO;2

    Article  Google Scholar 

  • Gillies, R. R., Kustas, W. P., & Humes, K. S. (1997). A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. International Journal of Remote Sensing, 18(15), 3145–3166. https://doi.org/10.1080/014311697217026

    Article  Google Scholar 

  • Gluch, R., Quattrochi, D. A., & Luvall, J. C. (2006). A multi-scale approach to urban thermal analysis. Remote Sensing of Environment, 104(2), 123–132. https://doi.org/10.1016/j.rse.2006.01.025

    Article  Google Scholar 

  • Gu, Q., Wang, H., Zheng, Y., Zhu, J., & Li, X. (2015). Ecological footprint analysis for urban agglomeration sustainability in the middle stream of the Yangtze River. Ecological Modelling, 318, 86–99. https://doi.org/10.1016/j.ecolmodel.2015.07.022

    Article  Google Scholar 

  • Hanhua, L., Zihan, Z., & Xiayun, P. (2016). Climatic characteristics of high temperatures in Zhejiang Province in 1951–2013. Bulletin of Science and Technology, 32(01), 59–64. https://doi.org/10.13774/j.cnki.kjtb.2016.01.012

    Article  Google Scholar 

  • Hou, H., & Estoque, R. C. (2020). Detecting cooling effect of landscape from composition and configuration: An urban heat island study on Hangzhou. Urban Forestry & Urban Greening, 53, 126719. https://doi.org/10.1016/j.ufug.2020.126719

  • Hu, L., & Brunsell, N. A. (2013). The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sensing of Environment, 134, 162–174. https://doi.org/10.1016/j.rse.2013.02.022

    Article  Google Scholar 

  • Hu, Y., Hou, M., Jia, G., Zhao, C., Zhen, X., & Xu, Y. (2019). Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS Journal of Photogrammetry and Remote Sensing, 156, 160–168. https://doi.org/10.1016/j.isprsjprs.2019.08.012

    Article  Google Scholar 

  • Huang, X., & Wang, Y. (2019). Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 119–131. https://doi.org/10.1016/j.isprsjprs.2019.04.010

    Article  Google Scholar 

  • Jin, M., Shepherd, J. M., & Zheng, W. (2010). Urban surface temperature reduction via the urban aerosol direct effect: A remote sensing and WRF model sensitivity study. Advances in Meteorology, 2010, 681587. https://doi.org/10.1155/2010/681587

  • Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23(3), 618–633. https://doi.org/10.1175/2009JCLI2900.1

  • Kim, J. -H., Gu, D., Sohn, W., Kil, S. -H., Kim, H., & Lee, D. -K. (2016). Neighborhood landscape spatial patterns and land surface temperature: An empirical study on single-family residential areas in Austin, Texas. International Journal of Environmental Research and Public Health, 13(9), 880. https://doi.org/10.3390/ijerph13090880

  • Kim, M. J. (2019). Changes in the relationship between particulate matter and surface temperature in Seoul from 2002–2017. Atmosphere, 10(5). https://doi.org/10.3390/atmos10050238

  • Kulcsár, L. J. (2013). Rural migration, Europe and North America 1945 to present. In I. Ness (Ed.), The encyclopedia of global human migration. https://doi.org/10.1002/9781444351071.wbeghm463

  • Lai, J., Zhan, W., Quan, J., Liu, Z., Li, L., Huang, F., & Liao, W. (2021). Reconciling debates on the controls on surface urban heat island intensity: effects of scale and sampling. Geophysical Research Letters, 48(19), e2021GL094485. https://doi.org/10.1029/2021GL094485

  • Li, J., Carlson, B. E., Yung, Y. L., Lv, D., Hansen, J., Penner, J. E., & Dong, Y. (2022). Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment, 3(6), 363–379. https://doi.org/10.1038/s43017-022-00296-7

  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai. China. Remote Sensing of Environment, 115(12), 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008

    Article  Google Scholar 

  • Li, J., Wang, F., Fu, Y., Guo, B., Zhao, Y., & Yu, H. (2020a). A novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1416–1425. https://doi.org/10.1109/JSTARS.2020.2981285

    Article  Google Scholar 

  • Li, L., Huang, X., Li, J., & Wen, D. (2017). Quantifying the spatiotemporal trends of canopy layer heat island (CLHI) and its driving factors over Wuhan, China with satellite remote sensing. Remote Sensing, 9(6). https://doi.org/10.3390/rs9060536

  • Li, L., Yu, T., Zhao, L., Zhan, Y., Zheng, F., Zhang, Y., & Wang, C. (2019). Characteristics and trend analysis of the relationship between land surface temperature and nighttime light intensity levels over China. Infrared Physics & Technology, 97, 381–390. https://doi.org/10.1016/j.infrared.2019.01.018

  • Li, L., Zha, Y., & Zhang, J. (2020b). Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. International Journal of Applied Earth Observation and Geoinformation, 90, 102131. https://doi.org/10.1016/j.jag.2020.102131

  • Li, X., Wu, C., Meadows, M. E., Zhang, Z., Lin, X., Zhang, Z., & Hu, Y. (2021). Factors underlying spatiotemporal variations in atmospheric PM2.5 concentrations in Zhejiang Province, China. Remote Sensing, 13(15), 3011. https://doi.org/10.3390/rs13153011

  • Liu, W., Gong, A., Zhou, J., & Zhan, W. (2011). Investigation on relationships between urban building materials and land surface temperature through a multi-resource remote sensing approach. Remote Sensing Information, (04), 46–53.

  • Liu, W., Meng, Q., Allam, M., Zhang, L., Hu, D., & Menenti, M. (2021). Driving factors of land surface temperature in urban agglomerations: A case study in the pearl river delta, china. Remote Sensing, 13(15), 2858. https://doi.org/10.3390/rs13152858

    Article  Google Scholar 

  • Local Records Office of Zhejiang Provincial People’s Government. Retrieved May 21, 2022, from http://www.zjdfz.cn/tiptai.web/BookRead.aspx?bookid=201212082676

  • Logan, T. M., Zaitchik, B., Guikema, S., & Nisbet, A. (2020). Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sensing of Environment, 247, 111861. https://doi.org/10.1016/j.rse.2020.111861

  • Lundberg, S. M., Erion, G. G., & Lee, S. -I. (2018). Consistent individualized feature attribution for tree ensembles. Methods, 5, 25. https://doi.org/10.48550/arXiv.1802.03888

  • Lundberg, S. M., & Lee, S. -I. (2017). A unified approach to interpreting model predictions. Proceedings of the Advances in Neural Information Processing Systems, 4765–4774.

  • Ma, Q., Wu, J., & He, C. (2016). A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation. Landscape Ecology, 31(5), 1139–1153. https://doi.org/10.1007/s10980-016-0356-z

    Article  Google Scholar 

  • Maishella, A., Dewantoro, B. E., & Aji, M. (2020). Correlation analysis of urban development and land surface temperature using Google Earth Engine in Sleman Regency, Indonesia. IOP Conference Series: Earth and Environmental Science, 540, 012018. https://doi.org/10.1088/1755-1315/540/1/012018

  • Mathew, A., Sarwesh, P., & Khandelwal, S. (2022). Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India. Energy Nexus, 5, 100044. https://doi.org/10.1016/j.nexus.2022.100044

  • Nations, U. (2018). Revision of world urbanization prospects. United Nations: New York, NY, USA, 799. Retrieved May 21, 2022, from https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html

  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  • Peng, J., Qiao, R., Liu, Y., Blaschke, T., Li, S., Wu, J., & Liu, Q. (2020). A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales. Remote Sensing of Environment, 246, 111866. https://doi.org/10.1016/j.rse.2020.111866

  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.-M., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438

  • Pouyan, S., Rahmanian, S., Amindin, A., & Pourghasemi, H. R. (2022). Chapter 15 - spatial and seasonal modeling of the land surface temperature using random forest. In H. R. Pourghasemi (Ed.), Computers in Earth and Environmental Sciences (pp. 221–234). Elsevier.

    Chapter  Google Scholar 

  • Rongping, L., Xinhua, Q., & Shilin, Y. (2017). Spatial-temporal characteristics of urban heat islands and drivng mechanisms in a coastal valley-basin city:A case study of Fuzhou City. Acta Ecologica Sinica, 37(01), 294–304.

    Google Scholar 

  • Sharma, I., Tongkumchum, P., & Ueranantasun, A. (2018). Modeling of land surface temperatures to determine temperature patterns and detect their association with altitude in the Kathmandu Valley of Nepal. Chiang Mai University Journal of Natural Sciences, 17(4), 275–288. https://doi.org/10.12982/CMUJNS.2018.0020

  • Shenglong, W. E. I., Zhibiao, C., Zhiqiang, C., Qiuyun, W., Xiuli, M. A., & Xinyu, Y. A. N. (2017). Simulation of the total solar radiation over micro-landform and correlation between the solar radiation and the land surface temperature. Remote Sensing for Land & Resources, 1(1), 129–135. https://doi.org/10.6046/gtzyyg.2017.01.20

    Article  Google Scholar 

  • Siddiqui, A., Kushwaha, G., Nikam, B., Srivastav, S. K., Shelar, A., & Kumar, P. (2021). Analysing the day/night seasonal and annual changes and trends in land surface temperature and surface urban heat island intensity (SUHII) for Indian cities. Sustainable Cities and Society, 75, 103374. https://doi.org/10.1016/j.scs.2021.103374

  • Sobrino, J. A., & Irakulis, I. (2020). A methodology for comparing the surface urban heat island in selected urban agglomerations around the world from sentinel-3 SLSTR data. 12(12), 2052. https://doi.org/10.3390/rs12122052

  • Soydan, O. (2020). Effects of landscape composition and patterns on land surface temperature: Urban heat island case study for Nigde, Turkey. Urban Climate, 34, 100688. https://doi.org/10.1016/j.uclim.2020.100688

  • Stirnberg, R., Cermak, J., Kotthaus, S., Haeffelin, M., Andersen, H., Fuchs, J., & Favez, O. (2021). Meteorology-driven variability of air pollution (PM1) revealed with explainable machine learning. Atmospheric Chemistry and Physics, 21(5), 3919–3948.

  • Taripanah, F., & Ranjbar, A. (2021). Quantitative analysis of spatial distribution of land surface temperature (LST) in relation ecohydrological, terrain and socio- economic factors based on Landsat data in mountainous area. Advances in Space Research, 68(9), 3622–3640. https://doi.org/10.1016/j.asr.2021.07.008

    Article  Google Scholar 

  • Tayyebi, A., Shafizadeh-Moghadam, H., & Tayyebi, A. H. (2018). Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Policy, 71, 459–469. https://doi.org/10.1016/j.landusepol.2017.11.023

    Article  Google Scholar 

  • Venter, Z. S., Chakraborty, T., & Lee, X. (2021). Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Science Advances, 7(22), eabb9569. https://doi.org/10.1126/sciadv.abb9569

  • Wang, Q., Wang, X., Zhou, Y., Liu, D., & Wang, H. (2022). The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustainable Cities and Society, 79, 103722. https://doi.org/10.1016/j.scs.2022.103722

  • Wang, Y., Yi, G., Zhou, X., Zhang, T., Bie, X., Li, J., & Ji, B. (2021a). Spatial distribution and influencing factors on urban land surface temperature of twelve megacities in China from 2000 to 2017. Ecological Indicators, 125, 107533. https://doi.org/10.1016/j.ecolind.2021.107533

  • Wang, Z., Meng, Q., Allam, M., Hu, D., Zhang, L., & Menenti, M. (2021b). Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecological Indicators, 128, 107845. https://doi.org/10.1016/j.ecolind.2021.107845

  • Wolf, K. L., Ahn, C., & Noe, G. B. (2011). Microtopography enhances nitrogen cycling and removal in created mitigation wetlands. Ecological Engineering, 37(9), 1398–1406. https://doi.org/10.1016/j.ecoleng.2011.03.013

    Article  Google Scholar 

  • Xiali, L., Sheng, W., Shanrui, H., Xiaoting, L., Wenyu, Y., Maosong, L., & Chi, X. (2018). A multi-scale study on the formation mechanism and main controlling factors of urban thermal field based on urban big data. Chinese Journal of Applied Ecology, 29(09), 2861–2868.

    Google Scholar 

  • Xiang, Y., Huang, C., Huang, X., Zhou, Z., & Wang, X. (2021). Seasonal variations of the dominant factors for spatial heterogeneity and time inconsistency of land surface temperature in an urban agglomeration of central China. Sustainable Cities and Society, 75, 103285. https://doi.org/10.1016/j.scs.2021.103285

  • Xiang, Y., Ye, Y., Peng, C., Teng, M., & Zhou, Z. (2022). Seasonal variations for combined effects of landscape metrics on land surface temperature (LST) and aerosol optical depth (AOD). Ecological Indicators, 138, 108810. https://doi.org/10.1016/j.ecolind.2022.108810

  • Xin, W., Bin, L., Min, L., & Ruina, S. (2021). Combination of LightGBM and SHAP for diabetes prediction and feature analysis. Journal of Chinese Computer Systems, 1–11. Retrieved Retrieved May 21, 2022, from https://kns.cnki.net/kcms/detail/21.1106.tp.20210906.1452.031.html

  • Yang, L., Yu, K., Ai, J., Liu, Y., Yang, W., & Liu, J. (2022). Dominant factors and spatial heterogeneity of land surface temperatures in urban areas: A case study in Fuzhou, China. Remote Sensing, 14(5), 1266. MDPI AG. https://doi.org/10.3390/rs14051266

  • Yang, Z., Fuhao, Z., & Cai, c., Guanqi, J., Agen, Q., & Geli, O. (2021). Analysis of characteristics and influencing factors of atmospheric visibility in Beijing-Tianjin-Hebei region. Science of Surveying and Mapping, 46(07), 196–204. https://doi.org/10.16251/j.cnki.1009-2307.2021.07.027

    Article  Google Scholar 

  • Yiman, L., Chunliang, X., Ye, W., & Pingjun, S. (2016). Spatial evolution of organization and structure of three major urban agglomerations in Zhejiang Province. Economic Geography, 36(11), 47–53. https://doi.org/10.15957/j.cnki.jjdl.2016.11.007

    Article  Google Scholar 

  • Yu, S., Chen, Z., Yu, B., Wang, L., Wu, B., Wu, J., & Zhao, F. (2020). Exploring the relationship between 2D/3D landscape pattern and land surface temperature based on explainable eXtreme Gradient Boosting tree: A case study of Shanghai, China. Science of The Total Environment, 725, 138229. https://doi.org/10.1016/j.scitotenv.2020.138229

  • Yu, Y., Shang, G., Duan, S., Yu, W., Labed, J., & Li, Z. (2022). Quantifying the influences of driving factors on land surface temperature during 2003–2018 in China using convergent cross mapping method. Remote Sensing, 14(14), 3280. MDPI AG. https://doi.org/10.3390/rs14143280

  • Yu, Z., Yao, Y., Yang, G., Wang, X., & Vejre, H. (2019). Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. Forest Ecology and Management, 446, 214–225. https://doi.org/10.1016/j.foreco.2019.05.046

    Article  Google Scholar 

  • Yundong, G., & Hao, L. (2021). Load forecasting based on optimal feature combination improved XGBoost. Application Research of Computers, 38(09), 2767–2772. https://doi.org/10.19734/j.issn.1001-3695.2020.12.0552

    Article  Google Scholar 

  • Yunfang, J., Cong, Y., Tiemao, S., & Danran, S. (2018). Spatial analysis of the cooling effect of urban small rivers on residential districts. Paper presented at the 2018 China Urban Planning Annual Conference Hangzhou, Zhejiang, China.

  • Zheng, Z., Zeng, Y., Li, S., & Huang, W. (2016). A new burn severity index based on land surface temperature and enhanced vegetation index. International Journal of Applied Earth Observation and Geoinformation, 45, 84–94. https://doi.org/10.1016/j.jag.2015.11.002

    Article  Google Scholar 

  • Zhi, Y., Shan, L., Ke, L., & Yang, R. (2020). Analysis of land surface temperature driving factors and spatial heterogeneity research based on geographically weighted regression model. Complexity, 2020, 2862917. https://doi.org/10.1155/2020/2862917

    Article  Google Scholar 

  • Zhiyu, F., Qingming, Z., Huimin, L., Chen, Y., & Yu, X. (2019). Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan. Journal of Geo-Information Science, 21(02), 226–235.

    Google Scholar 

  • Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51–61. https://doi.org/10.1016/j.rse.2014.05.017

    Article  Google Scholar 

  • Zhou, L., Hu, F., Wang, B., Wei, C., Sun, D., & Wang, S. (2022). Relationship between urban landscape structure and land surface temperature: Spatial hierarchy and interaction effects. Sustainable Cities and Society, 80, 103795. https://doi.org/10.1016/j.scs.2022.103795

Download references

Acknowledgements

We sincerely thank the editor and anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper.

Funding

This research was funded by the Natural Science Foundation of Zhejiang Province (NO. LQ19D010007), Jinhua Science and Technology Research Program (NO. 2021–4-341) and Independent Design Scientific Research Project of Zhejiang Normal University (NO. 2021ZS0702).

Author information

Authors and Affiliations

Authors

Contributions

Hu Yuhong: conceptualization, methodology, validation, writing—original draft preparation, and software. Wu Chaofan: conceptualization, writing—original draft preparation, writing—review and editing, and funding acquisition. Michael E. Meadows: writing—review and editing. Feng Meili: writing—review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chaofan Wu.

Ethics declarations

Ethics approval and consent to participate

No medical or animal experiments have been conducted, so ethics approval is not applicable. We affirm that all authors have participated in the research work and are fully aware of ethical responsibilities.

Consent for publication

We affirm that all authors have agreed for the submission of the paper to EMAS and are fully aware of ethical responsibilities.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 939 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wu, C., Meadows, M.E. et al. Pixel level spatial variability modeling using SHAP reveals the relative importance of factors influencing LST. Environ Monit Assess 195, 407 (2023). https://doi.org/10.1007/s10661-023-10950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10950-2

Keywords

Navigation