Skip to main content
Log in

Determination of trace cobalt ions in bottled drinking water samples from Fiji Island by spray-assisted fine droplet formation-liquid phase microextraction based on simultaneous complexation and extraction before flame atomic absorption spectrometer measurement

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, a green, simple and effective preconcentration method named as spray-assisted fine droplet formation-liquid phase microextraction (SAFDF-LPME) before the flame atomic absorption spectrophotometry (FAAS) measurement for cobalt determination was developed. The method reduces the external dispersive solvent usage by using a simple spraying apparatus to obtain fine droplets of the extraction solvent. SAFDF-LPME method also consists of simultaneous complexation and extraction which indicates the environmental benevolence of the developed method. This method minimized the relative errors with high repeatability and accuracy by reducing the experimental steps. The influential parameters such as buffer type, buffer solution volume, extraction solvent/ligand solution volume (spraying cycle), and mixing period were systematically optimized by the univariate optimization procedure. With the optimum parameters applied, the detection power of the FAAS system was enhanced to about 110-folds with respect to 2.2 ng mL−1 detection limit calculated for the proposed method. Bottled drinking water samples from Fiji Islands were used to demonstrate the applicability of the developed method for the accurate determination of trace cobalt in real sample matrices. Percent recovery results obtained between 95.5 and 88.5% showed the suitability of the developed method in the determination of cobalt at trace levels even in complex sample matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be provided on reasonable request from the corresponding author.

References

  • Al-Saidi, H. M., & Emara, A. A. A. (2014). The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes. Journal of Saudi Chemical Society, 18(6), 745–761. https://doi.org/10.1016/j.jscs.2011.11.005

  • Arpa, Ç., & Arıdaşır, I. (2019). Ultrasound assisted ion pair based surfactant-enhanced liquid–liquid microextraction with solidification of floating organic drop combined with flame atomic absorption spectrometry for preconcentration and determination of nickel and cobalt ions in vegeta. Food Chemistry, 284, 16–22.

    Article  CAS  Google Scholar 

  • Bakaraki Turan, N., Zaman, B. T., Arvas, B., Yolaçan, Ç., & Bakirdere, S. (2021). Implementation of a spraying-assisted fine droplet formation-based simultaneous liquid-phase microextraction method for the determination of copper in clove extract samples. Chemical Papers. https://doi.org/10.1007/s11696-021-01538-6

    Article  Google Scholar 

  • Baliza, P. X., Teixeira, L. S. G., & Lemos, V. A. (2009). A procedure for determination of cobalt in water samples after dispersive liquid-liquid microextraction. Microchemical Journal. https://doi.org/10.1016/j.microc.2009.07.009

    Article  Google Scholar 

  • Barrett, C. A., Orban, D. A., Seebeck, S. E., Lowe, L. E., & Owens, J. E. (2015). Development of a low-density-solvent dispersive liquid–liquid microextraction with gas chromatography and mass spectrometry method for the quantitation of tetrabromobisphenol-A from dust. Journal of Separation Science, 38(14), 2503–2509. https://doi.org/10.1002/jssc.201500205

  • Bartosiak, M., Jankowski, K., & Giersz, J. (2018). Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction. Journal of Pharmaceutical and Biomedical Analysis, 155, 135–140. https://doi.org/10.1016/j.jpba.2018.03.058

  • Bilouk, S., Broussous, L., Nogueira, R. P., Ivanova, V., & Pernel, C. (2009). Electrochemical behavior of copper and cobalt in post-etch cleaning solutions. Microelectronic Engineering, 86, 2038–2044. https://doi.org/10.1016/j.mee.2009.01.035

    Article  CAS  Google Scholar 

  • Connell, J. (2006). ‘The taste of paradise’: Selling Fiji and Fiji water. Asia Pacific Viewpoint, 47(3), 342–350.

    Article  Google Scholar 

  • Damo, R., & Icka, P. (2013). Evaluation of Water Quality Index for Drinking Water. Polish Journal of Environmental Studies, 22(4).

  • De Jesus, H. C., Grinberg, P., & Sturgeon, R. E. (2016). System optimization for determination of cobalt in biological samples by ICP-OES using photochemical vapor generation. Journal of Analytical Atomic Spectrometry, 31(8), 1590–1604. https://doi.org/10.1039/c6ja00069j

    Article  Google Scholar 

  • Dikmen, Y., Güleryüz, A., Metin, B., Bodur, S., Öner, M., & Bakırdere, S. (2020). A novel and rapid extraction protocol for sensitive and accurate determination of prochloraz in orange juice samples: Vortex-assisted spraying-based fine droplet formation liquid-phase microextraction before gas chromatography–mass spectrometry. Journal of Mass Spectrometry. https://doi.org/10.1002/jms.4622

  • Elci, S. G. (2021). Determination of cobalt in food by magnetic solid-phase extraction (MSPE) preconcentration by polyaniline (PANI) and polythiophene (PTH) coated magnetic nanoparticles (MNPs) and microsample injection system–flame atomic absorption spectrometry (MIS-FAAS). Instrumentation Science & Technology, 49(3), 258–275.

    Article  CAS  Google Scholar 

  • Elik, A., Bingöl, D., & Altunay, N. (2021). Ionic hydrophobic deep eutectic solvents in developing air-assisted liquid-phase microextraction based on experimental design: Application to flame atomic absorption spectrometry determination of cobalt in liquid and solid samples. Food Chemistry, 350, 129237. https://doi.org/10.1016/j.foodchem.2021.129237

  • Erulaş, A. F., Şaylan, M., Topal, S., Zaman, B. T., Bakırdere, E. G., & Bakırdere, S. (2020). A new microextraction method for trace nickel determination in green tea samples: Solventless dispersion based dispersive liquid-liquid microextraction combined with slotted quartz tube-flame atomic absorption spectrophotometry. Journal of Food Composition and Analysis, 94, 103623.

    Article  Google Scholar 

  • Farajzadeh, M. A., & Mogaddam, M. R. A. (2012). Air-assisted liquid–liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography–flame ionization detection. Analytica Chimica Acta, 728, 31–38.

    Article  CAS  Google Scholar 

  • Gil, R. A., Gásquez, J. A., Olsina, R., Martinez, L. D., & Cerutti, S. (2008). Cloud point extraction for cobalt preconcentration with on-line phase separation in a knotted reactor followed by ETAAS determination in drinking waters. Talanta, 76(3), 669–673.

    Article  CAS  Google Scholar 

  • Hassanien, M. M. (2009). FAAS determination of palladium after its selective recovery by silica modified with hydrazone derivative. Microchimica Acta, 167(1), 81. https://doi.org/10.1007/s00604-009-0219-2

    Article  CAS  Google Scholar 

  • Kaplan, M. (2007). Fijian water in Fiji and New York: Local politics and a global commodity. Cultural Anthropology, 22(4), 685–706.

    Article  Google Scholar 

  • Keegan, G. M., Learmonth, I. D., & Case, C. (2008). A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from ındustry and surgical ımplants. Critical Reviews in Toxicology, 38(8), 645–674. https://doi.org/10.1080/10408440701845534

    Article  CAS  Google Scholar 

  • Knoop, A., Planitz, P., Wüst, B., & Thevis, M. (2020). Analysis of cobalt for human sports drug testing purposes using ICP-and LC-ICP-MS. Drug Testing and Analysis, 12(11–12), 1666–1672.

    Article  CAS  Google Scholar 

  • Korolczuk, M., Tyszczuk, K., & Grabarczyk, M. (2005). Adsorptive stripping voltammetry of nickel and cobalt at in situ plated lead film electrode. Electrochemistry Communications, 7(12), 1185–1189.

    Article  CAS  Google Scholar 

  • Kulkarni, A., Patil, S. A., & Badami, P. S. (2009). Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. European Journal of Medicinal Chemistry, 44(7), 2904–2912. https://doi.org/10.1016/j.ejmech.2008.12.012

    Article  CAS  Google Scholar 

  • Kumar, P., & Shim, Y. -B. (2009). A novel cobalt(II)-selective potentiometric sensor based on p-(4-n-butylphenylazo)calix[4]arene. Talanta, 77(3), 1057–1062. https://doi.org/10.1016/j.talanta.2008.08.003

  • Lison, D. (2022). Chapter 9 - Cobalt (G. F. Nordberg & M. B. T.-H. on the T. of M. (Fifth E. Costa (eds.); pp. 221–242). Academic Press. https://doi.org/10.1016/B978-0-12-822946-0.00008-8

  • Memon, Z. M., Yilmaz, E., & Soylak, M. (2017). Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. Journal of Molecular Liquids, 229, 459–464.

    Article  CAS  Google Scholar 

  • Pabby, A. K., & Sastre, A. M. (2019). Extraction | Solvent Extraction Principles☆ (P. Worsfold, C. Poole, A. Townshend, & M. B. T.-E. of A. S. (Third E. Miró (eds.); pp. 109–119). Academic Press. https://doi.org/10.1016/B978-0-12-409547-2.14359-8

  • Payán, M. R., López, M. Á. B., Fernández-Torres, R., Mochón, M. C., & Ariza, J. L. G. (2010). Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters. Talanta, 82(2), 854–858.

    Article  Google Scholar 

  • Pourret, O., & Faucon, M. -P. (2018). Cobalt.

  • Quigley, A., Cummins, W., & Connolly, D. (2016). Dispersive Liquid-Liquid Microextraction in the Analysis of Milk and Dairy Products: A Review. Journal of Chemistry, 2016, 4040165. https://doi.org/10.1155/2016/4040165

    Article  CAS  Google Scholar 

  • Rickwood, C. J., & Carr, G. M. (2008). Development and sensitivity analysis of a global drinking water quality index. Environmental Monitoring and Assessment, 156(1), 73. https://doi.org/10.1007/s10661-008-0464-6

    Article  CAS  Google Scholar 

  • Saçmacı, Ş, & Saçmacı, M. (2017). A new procedure for determination of nickel in some fake jewelry and cosmetics samples after dispersive liquid–liquid microextraction by FAAS. Applied Organometallic Chemistry, 31(11), 2381–2388. https://doi.org/10.1002/aoc.4081

    Article  CAS  Google Scholar 

  • Santos, L. B., de Assis, R. D. S., Silva, U. N., & Lemos, V. A. (2022). Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: Cobalt determination in food and water samples. Talanta, 238, 123038. https://doi.org/10.1016/j.talanta.2021.123038

  • Shirani, M., Salari, F., Habibollahi, S., & Akbari, A. (2020). Needle hub in-syringe solid phase extraction based a novel functionalized biopolyamide for simultaneous green separation/preconcentration and determination of cobalt, nickel, and chromium (III) in food and environmental samples with micro sampling flame a. Microchemical Journal, 152, 104340. https://doi.org/10.1016/j.microc.2019.104340

  • Simonsen, L. O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology—A brief update. Science of The Total Environment, 432, 210–215. https://doi.org/10.1016/j.scitotenv.2012.06.009

  • Singh, S., & Mosley, L. M. (2003). Trace metal levels in drinking water on Viti Levu, Fiji Islands. The South Pacific Journal of Natural and Applied Sciences, 21(1), 31–34.

    Article  Google Scholar 

  • Sixto, A., Mollo, A., & Knochen, M. (2019). Fast and simple method using DLLME and FAAS for the determination of trace cadmium in honey. Journal of Food Composition and Analysis, 82, 103229. https://doi.org/10.1016/j.jfca.2019.06.001

  • Stoica, A. I., Peltea, M., Baiulescu, G. E., & Ionica, M. (2004). Determination of cobalt in pharmaceutical products. Journal of Pharmaceutical and Biomedical Analysis, 36(3), 653–656. https://doi.org/10.1016/j.jpba.2004.07.030

    Article  CAS  Google Scholar 

  • Tang, S., Qi, T., Ansah, P. D., Nalouzebi Fouemina, J. C., Shen, W., Basheer, C., & Lee, H. K. (2018). Single-drop microextraction. TrAC Trends in Analytical Chemistry, 108, 306–313. https://doi.org/10.1016/j.trac.2018.09.016

  • Timonen, J. M., Nieminen, R. M., Sareila, O., Goulas, A., Moilanen, L. J., Haukka, M., Vainiotalo, P., Moilanen, E., & Aulaskari, P. H. (2011). Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives. European Journal of Medicinal Chemistry, 46(9), 3845–3850. https://doi.org/10.1016/j.ejmech.2011.05.052

    Article  CAS  Google Scholar 

  • Viñas, P., Campillo, N., & Andruch, V. (2015). Recent achievements in solidified floating organic drop microextraction. TrAC Trends in Analytical Chemistry, 68, 48–77. https://doi.org/10.1016/j.trac.2015.02.005

  • Vonau, W. (2019). pH☆ (P. Worsfold, C. Poole, A. Townshend, & M. B. T.-E. of A. S. (Third E. Miró (eds.); pp. 173–181). Academic Press. https://doi.org/10.1016/B978-0-12-409547-2.14038-7

  • Witek, Z., & Jarosiewicz, A. (2009). Long-term changes in nutrient status of river water. Polish Journal of Environmental Studies, 18(6), 1177–1184. http://www.pjoes.com/Long-Term-Changes-in-Nutrient-Status-r-nof-River-Water,88342,0,2.html

  • World Health Organisation, W. (2004). Guidelines for drinking-water quality (Vol. 1). World health organization. ISBN: 9241546387

  • Yamini, Y., Rezazadeh, M., & Seidi, S. (2019). Liquid-phase microextraction – The different principles and configurations. TrAC Trends in Analytical Chemistry, 112, 264–272. https://doi.org/10.1016/J.TRAC.2018.06.010

    Article  CAS  Google Scholar 

  • Zak, J., Ron, D., Riva, E., Harding, H. P., Cross, B. C. S., & Baxendale, I. R. (2012). Establishing a flow process to coumarin-8-carbaldehydes as ımportant synthetic scaffolds. Chemistry – A European Journal, 18(32), 9901–9910. https://doi.org/10.1002/chem.201201039

Download references

Author information

Authors and Affiliations

Authors

Contributions

Oğuzhan SAĞSÖZ: formal analysis, ınvestigation, methodology, validation, and roles/writing—original draft. Büşra ARVAS: formal analysis, investigation, methodology, validation, and roles/writing—original draft. Buse Tuğba ZAMAN: methodology, validation, roles/writing—original draft, and visualization. Çiğdem YOLAÇAN: methodology, ınvestigation, methodology, and roles/writing—original draft. Sezgin Bakırdere: conceptualization, investigation, methodology, supervision, validation, and writing—review and editing.

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sağsöz, O., Arvas, B., Zaman, B.T. et al. Determination of trace cobalt ions in bottled drinking water samples from Fiji Island by spray-assisted fine droplet formation-liquid phase microextraction based on simultaneous complexation and extraction before flame atomic absorption spectrometer measurement. Environ Monit Assess 195, 313 (2023). https://doi.org/10.1007/s10661-023-10943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10943-1

Keywords

Navigation