Skip to main content

Advertisement

Log in

Evaluating heavy metal pollution risks and enzyme activity in soils with intensive hazelnut cultivation under humid ecological conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to promote sustainable agriculture and ensure food security, it has become more vital to identify the causes of soil pollution in agricultural areas. This study was carried out in order to determine the danger of heavy metal contamination in hazelnut production areas and to take the appropriate actions in accordance with the study's findings. In this context, the main objectives of this study were to (i) determine some physical, chemical, and biological properties and heavy metal concentrations of different soils in intensive hazelnut cultivation areas under humid ecological conditions; (ii) reveal the heavy metal pollution risks of these areas by their enrichment factor, contamination factor, geo-accumulation index, degree of contamination, pollution load index, and potential ecological risk index; (iii) analyze the quality of soils contaminated with heavy metals by their total enzyme activity index and the geometric mean of enzymatic activities; and (iv) explore the correlation between heavy metals and soil enzyme activity indices. According to our results, the average concentrations of heavy metals in the study area ranked as Fe > Mn > Zn > Cr > Ni > Cu > Co > Pb > Cd. Based on EF, the area was evaluated as between deficiency to low enrichment and moderate enrichment for all elements except for Cd. When the parameters used to assess the risk of heavy metal contamination were evaluated, it was determined that the risk of contamination of other elements in the study area, except Cd, was low. Finally, analyzing the heavy metals and soil enzyme activity indices shows that there is a negative correlation between Ni and GMea and TEI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  • Adimalla, N., Qian, H., & Wang, H. (2019). Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environmental Monitoring and Assessment, 191(4), 1–15. https://doi.org/10.1007/s10661-019-7408-1

    Article  CAS  Google Scholar 

  • Ahmad, J. U., & Goni, M. (2010). Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka. Bangladesh. Environmental Monitoring and Assessment, 166(1), 347–357. https://doi.org/10.1007/s10661-009-1006-6

    Article  CAS  Google Scholar 

  • Ahmed, F., Fakhruddin, A. N. M., Imam, M. D., Khan, N., Khan, T. A., Rahman, M., & Abdullah, A. T. M. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil: A study of Dhaka Aricha highway, Bangladesh. Ecological Processes, 5(1), 1–16. https://doi.org/10.1186/s13717-016-0045-5

    Article  Google Scholar 

  • Akçin, H., & Çakır, A. (2011). Temporal analise of mining environmental effects by internet-based GIS. Jeodezi ve Jeoinformasyon Dergisi, (104.1), 97–103.

  • Alharbi, T., & El-Sorogy, A. S. (2021). Spatial distribution and risk assessment of heavy metals pollution in soils of marine origin in central Saudi Arabia. Marine Pollution Bulletin170, 112605. https://doi.org/10.1016/j.marpolbul.2021.112605

  • Alloway, B. J. (Ed.) (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media.

  • Andrade, M., & Martínez, E. (2014). Soil fertility and its defining parameters. University of Rioja.

    Google Scholar 

  • Andrea, M. M. E., Carolina, T. E. A., José, C. B. T., Luis, M. N. J., & Carlos, G. M. L. (2019). Evaluation of contaminants in agricultural soils in an Irrigation District in Colombia. Heliyon5(8), e02217. https://doi.org/10.1016/j.heliyon.2019.e02217

  • Angelovičová, L., Lodenius, M., Tulisalo, E., & Fazekašová, D. (2014). Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia). Bulletin of Environmental Contamination and Toxicology, 93(6), 670–675. https://doi.org/10.1007/s00128-014-1397-0

    Article  CAS  Google Scholar 

  • Arao, T., Ishikawa, S., Murakami, M., Abe, K., Maejima, Y., & Makino, T. (2010). Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment, 8(3), 247–257. https://doi.org/10.1007/s10333-010-0205-7

    Article  Google Scholar 

  • Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1), 83–89. https://doi.org/10.1007/s10661-008-0659-x

    Article  CAS  Google Scholar 

  • Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere241, 125015. https://doi.org/10.1016/j.chemosphere.2019.125015

  • Bayraklı, B., & Dengiz, O. (2020). An evaluation of heavy metal pollution risk in tea cultivation soils of micro-catchments using various pollution indexes under humid environmental condition. Rendiconti Lincei. Scienze Fisiche e Naturali, 31, 393–409. https://doi.org/10.1007/s12210-020-00901-1

    Article  Google Scholar 

  • Besser, J. M., Brumbaugh, W. G., May, T. W., & Ingersoll, C. G. (2003). Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments. Environmental Toxicology and Chemistry: An International Journal, 22(4), 805–815. https://doi.org/10.1002/etc.5620220419

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

    Article  Google Scholar 

  • Bungau, S., Behl, T., Aleya, L., Bourgeade, P., Aloui-Sossé, B., Purza, A. L., & Samuel, A. D. (2021). Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environmental Science and Pollution Research, 28(24), 30528–30550. https://doi.org/10.1007/s11356-021-14127-7

    Article  CAS  Google Scholar 

  • Corine. (2018). Corine Land Use Land Cover Map of Turkey. Accessed September 15, 2021.

  • Demková, L., Árvay, J., Bobuľská, L., Hauptvogl, M., & Michalko, M. (2019). Activity of the soil enzymes and moss and lichen biomonitoring method used for the evaluation of soil and air pollution from tailing pond in Nižná Slaná (Slovakia). Journal of Environmental Science and Health, Part A, 54(6), 495–507. https://doi.org/10.1080/10934529.2019.1567158

    Article  CAS  Google Scholar 

  • Dengiz, O. (2020). Soil quality index for paddy fields based on standard scoring functions and weight allocation method. Archives of Agronomy and Soil Science, 66(3), 301–315. https://doi.org/10.1080/03650340.2019.1610880

  • Di Toro, D. M., McGrath, J. A., Hansen, D. J., Berry, W. J., Paquin, P. R., Mathew, R., & Santore, R. C. (2005). Predicting sediment metal toxicity using a sediment biotic ligand model: Methodology and initial application. Environmental Toxicology and Chemistry: An International Journal, 24(10), 2410–2427. https://doi.org/10.1897/04-413R.1

    Article  Google Scholar 

  • Enya, O., Heaney, N., Iniama, G., & Lin, C. (2020). Effects of heavy metals on organic matter decomposition in inundated soils: Microcosm experiment and field examination. Science of The Total Environment724, 138223. https://doi.org/10.1016/j.scitotenv.2020.138223

  • Evans, L. J., & Barabash, S. J. (2010). Molybdenum, silver, thallium and vanadium. In, P. S. Hooda (Eds.), Trace Elem. Soils (pp. 515–549).

  • Fang, L., Liu, Y., Tian, H., Chen, H., Wang, Y., & Huang, M. (2017). Proper land use for heavy metal-polluted soil based on enzyme activity analysis around a Pb-Zn mine in Feng County, China. Environmental Science and Pollution Research, 24(36), 28152–28164. https://doi.org/10.1007/s11356-017-0308-4

    Article  CAS  Google Scholar 

  • FAO. (2022). Food and agriculture data. Rome, Italy. Retrieved October 21, 2022, from https://www.fao.org/faostat/en/#data/QCL/visualize

  • Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., & Mishra, S. (2020). Effect of heavy metals on plant growth: an overview. Contaminants in Agriculture, 79–101. https://doi.org/10.1007/978-3-030-41552-5_4

  • Gao, Y., Zhou, P., Mao, L., Zhi, Y., Zhang, C., & Shi, W. (2010). Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution. Journal of Environmental Sciences, 22(7), 1040–1048. https://doi.org/10.1016/S1001-0742(09)60215-1

    Article  CAS  Google Scholar 

  • García-Ruiz, R., Ochoa, V., Hinojosa, M. B., & Carreira, J. A. (2008). Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40, 2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023

    Article  CAS  Google Scholar 

  • Ghosh, A., Singh, A. B., Kumar, R. V., Manna, M. C., Bhattacharyya, R., Rahman, M. M., & Misra, S. (2020). Soil enzymes and microbial elemental stoichiometry as bio-indicators of soil quality in diverse cropping systems and nutrient management practices of Indian Vertisols. Applied Soil Ecology145, 103304. https://doi.org/10.1016/j.apsoil.2019.06.007

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

  • Hanfi, M. Y., Mostafa, M. Y., & Zhukovsky, M. V. (2020). Heavy metal contamination in urban surface sediments: Sources, distribution, contamination control, and remediation. Environmental Monitoring and Assessment, 192(1), 1–21. https://doi.org/10.1007/s10661-019-7947-5

    Article  CAS  Google Scholar 

  • Hangül, E. G. (2020). Climatic Features of Zonguldak and Devrek. Marmara University, Institute of Social Sciences, Department of Geography, Department of Geography, Master Science thesis, İstanbul.

  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176(1), 677–691. https://doi.org/10.1007/s10661-010-1612-3

    Article  CAS  Google Scholar 

  • Hasan, A. B., Reza, A. H. M., Kabir, S., Siddique, M., Bakar, A., Ahsan, M., & Akbor, M. (2020). Accumulation and distribution of heavy metals in soil and food crops around the ship breaking area in southern Bangladesh and associated health risk assessment. SN Applied Sciences, 2(2), 1–18. https://doi.org/10.1007/s42452-019-1933-y

    Article  CAS  Google Scholar 

  • Heidari, A., Kumar, V., & Keshavarzi, A. (2021). Appraisal of metallic pollution and ecological risks in agricultural soils of Alborz province, Iran, employing contamination indices and multivariate statistical analyses. International Journal of Environmental Health Research31(6), 607–625. https://doi.org/10.1080/09603123.2019.1677864

  • Hinojosa, M. B., García-Ruíz, R., Viñegla, B., & Carreira, J. A. (2004). Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biology and Biochemistry, 36(10), 1637–1644. https://doi.org/10.1016/j.soilbio.2004.07.006

    Article  CAS  Google Scholar 

  • Hoffmann, G. G., & Teicher, K. (1961). Ein Kolorimetrisches Verfahren zur Bestimmung der Urease Aktivitat in Bo¨den. Z. Pflanzenerna¨hr. Bodenk, 91, 55–63. https://doi.org/10.1002/jpln.19610950107

    Article  Google Scholar 

  • Hu, X. F., Jiang, Y., Shu, Y., Hu, X., Liu, L., & Luo, F. (2014). Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration, 147, 139–150. https://doi.org/10.1016/j.gexplo.2014.08.001

    Article  CAS  Google Scholar 

  • Huang, Y., Wang, L., Wang, W., Li, T., He, Z., & Yang, X. (2019). Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Science of the Total Environment, 651, 3034–3042. https://doi.org/10.1016/j.scitotenv.2018.10.185

    Article  CAS  Google Scholar 

  • Ikenaka, Y., Nakayama, S. M., Muzandu, K., Choongo, K., Teraoka, H., Mizuno, N., & Ishizuka, M. (2010). Heavy metal contamination of soil and sediment in Zambia. African Journal of Environmental Science and Technology, 4(11), 729–739.

    CAS  Google Scholar 

  • Jeyasundar, P. G. S. A., Ali, A., Azeem, M., Li, Y., Guo, D., Sikdar, A., & Zhang, Z, (2021). Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. Environmental Pollution, 277, 116789. https://doi.org/10.1016/j.envpol.2021.116789

  • Jia, X., Fu, T., Hu, B., Shi, Z., Zhou, L., & Zhu, Y. (2020). Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. Journal of Hazardous Materials393, 122424. https://doi.org/10.1016/j.jhazmat.2020.122424

  • Joksimović, D., Perošević, A., Castelli, A., Pestorić, B., Šuković, D., & Đurović, D. (2020). Assessment of heavy metal pollution in surface sediments of the Montenegrin coast: A 10-year review. Journal of Soils and Sediments, 20(6), 2598–2607. https://doi.org/10.1007/s11368-019-02480-7

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements of group 12 (Previously group IIb). Trace Elements from Soil to Human, 283–319. https://doi.org/10.1007/978-3-540-32714-1_19

  • Karaca, A., Cetin, S. C., Turgay, O. C., & Kizilkaya, R. (2010). Soil enzymes as indication of soil quality. In A. Karaca (Eds.), Soil enzymology (pp. 119–148). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_7

  • Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T. D., & Skoulikidis, N. (2021). Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere263, 128192. https://doi.org/10.1016/j.chemosphere.2020.128192

  • Kars, N., & Dengiz, O. (2020). Assessment of potential ecological risk index based on heavy metal elements for organic farming in micro catchments under humid ecological condition. Eurasian Journal of Soil Science9(3), 194–201. https://doi.org/10.18393/ejss.719167

  • Kassambara, A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra (Vol. 2). Sthda.

  • Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221, 82–90. https://doi.org/10.1016/j.geoderma.2014.01.007

    Article  CAS  Google Scholar 

  • Khan, S., Hesham, E. L. A., Qiao, M., Rehman, S., & He, J. Z. (2010). Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 17, 288–296. https://doi.org/10.1007/s11356-009-0134-4

    Article  CAS  Google Scholar 

  • Kılıç, O., Eryılmaz, G. A., & Çakır, S. (2021). Environmental sensitivity of fruit producers toward chemical fertilizer and pesticide use in Zonguldak province. Anadolu Journal of Agricultural Sciences, 36(1), 113–121. https://doi.org/10.7161/omuanajas.812575

    Article  Google Scholar 

  • Kızılkaya, R. (2004). Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil. Ecological Engineering22(2), 141–151. https://doi.org/10.1016/j.ecoleng.2004.04.002

  • Kızılkaya, R., Dengiz, O., Özyazıcı, M. A., Aşkın, T., Mikayilsoy, F., & Shein, E. (2011). Spatial distribution of heavy metals status in Bafra plain soils. Eurasian Soil Science, 44(12), 1343–1351. https://doi.org/10.1134/S1064229311100073

    Article  CAS  Google Scholar 

  • Kloke, A. (1980). Orientierungsdaten für tolerierbare gesamtgehalte einiger elemente in kulturboden, Richtwerte. Mitteilungen des VDLUFA, Sonderdruck, 1, 9–11.

    Google Scholar 

  • Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502. https://doi.org/10.1016/j.jhazmat.2019.121502

  • Kumar, A., Cabral-Pinto, M., Kumar, A., Kumar, M., & Dinis, P. A. (2020). Estimation of risk to the eco-environment and human health of using heavy metals in the Uttarakhand Himalaya, India. Applied Sciences, 10(20), 7078. https://doi.org/10.3390/app10207078

    Article  CAS  Google Scholar 

  • Kumar, V., Pandita, S., & Setia, R. (2021). A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Research. https://doi.org/10.1016/j.gr.2021.10.028

    Article  Google Scholar 

  • Lankinen, P., Kähkönen, M. A., Rajasärkkä, J., Virta, M., & Hatakka, A. (2011). The effect of nickel contamination on the growth of litter-decomposing fungi, extracellular enzyme activities and toxicity in soil.

  • Lessard, I., Sauvé, S., & Deschênes, L. (2014). Toxicity response of a new enzyme-based functional diversity methodology for Zn-contaminated field-collected soils. Soil Biology & Biochemistry, 71, 87–94. https://doi.org/10.1016/j.soilbio.2014.01.002

    Article  CAS  Google Scholar 

  • Li, C., Quan, Q., Gan, Y., Dong, J., Fang, J., Wang, L., & Liu, J. (2020a). Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Science of the Total Environment749, 141555. https://doi.org/10.1016/j.scitotenv.2020.141555

  • Li, H., Yang, Z., Dai, M., Diao, X., Dai, S., Fang, T., & Dong, X. (2020b). Input of Cd from agriculture phosphate fertilizer application in China during 2006–2016. Science of the Total Environment698, 134149. https://doi.org/10.1016/j.scitotenv.2019.134149

  • Li, Y., Zhou, H., Gao, B., & Xu, D. (2021). Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. Science of The Total Environment755, 142437. https://doi.org/10.1016/j.scitotenv.2020.142437

  • Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., & Hu, W. (2021). Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of the Total Environment767, 144879. https://doi.org/10.1016/j.scitotenv.2020.144879

  • Liu, K., Li, C., Tang, S., Shang, G., Yu, F., & Li, Y. (2020). Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere251, 126415. https://doi.org/10.1016/j.chemosphere.2020.126415

  • Liu, Z., Rong, Q., Zhou, W., & Liang, G. (2017). Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PloS One12(3), e0172767. https://doi.org/10.1371/journal.pone.0172767

  • Lu, A., Wang, J., Qin, X., Wang, K., Han, P., & Zhang, S. (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 425, 66–74. https://doi.org/10.1016/j.scitotenv.2012.03.003

    Article  CAS  Google Scholar 

  • Ma, J., Wu, S., Shekhar, N. V., Biswas. S., & Sahu, A. K. (2020). Determination of physicochemical parameters and levels of heavy metals in food waste water with environmental effects. Bioinorganic Chemistry and Applications2020. https://doi.org/10.1155/2020/8886093

  • Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., & Morel, J. L. (2006). Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136(1–2), 28–37. https://doi.org/10.1016/j.geoderma.2006.01.008

    Article  CAS  Google Scholar 

  • Mokarram, M., Saber, A., & Sheykhi, V. (2020). Effects of heavy metal contamination on river water quality due to release of industrial effluents. Journal of Cleaner Production277, 123380. https://doi.org/10.1016/j.jclepro.2020.123380

  • Mulla, D. J., & Mc Bratney, A. B. (2000). Soil Spatial Variability. Handbook of Soil Science CRS Pres., pp. 321–352.

  • Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geology Journal, 2, 109–118.

    Google Scholar 

  • Munir, N., Jahangeer, M., Bouyahya, A., El Omari, N., Ghchime, R., Balahbib, A., & Shariati, M. A. (2021). Heavy metal contamination of natural foods is a serious health issue: A review. Sustainability, 14(1), 161. https://doi.org/10.3390/su14010161

    Article  CAS  Google Scholar 

  • Nawrot, N., Wojciechowska, E., Matej-Łukowicz, K., Walkusz-Miotk, J., & Pazdro, K. (2020). Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: A case study of Strzyza Stream. Environmental Geochemistry and Health, 42(5), 1469–1485. https://doi.org/10.1007/s10653-019-00439-8

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In: Page AL,Miller RH, Keeney DR (Eds), Methods of Soil Analysis, Part 2, 2nd ed. Chemical and Microbiological Properties, 539–579. Agron, Madison, WI. https://doi.org/10.2136/sssabookser5.3.c34

  • Obiora, S. C., Chukwu, A., & Davies, T. C. (2016). Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. Journal of African Earth Sciences, 116, 182–189. https://doi.org/10.1016/j.jafrearsci.2015.12.025

    Article  CAS  Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture, Washington D.C., USA.

  • Omran, E. S. E. (2016). Environmental modelling of heavy metals using pollution indices and multivariate techniques in the soils of Bahr El Baqar, Egypt. Modeling Earth Systems and Environment, 2(3), 1–17. https://doi.org/10.1007/s40808-016-0178-7

    Article  Google Scholar 

  • Oumenskou, H., El Baghdadi, M., Barakat, A., Aquit, M., Ennaji, W., Karroum, L. A., & Aadraoui, M. (2018). Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arabian Journal of Geosciences, 11(22), 692. https://doi.org/10.1007/s12517-018-4021-5

    Article  CAS  Google Scholar 

  • Öztürk, E., & Dengiz, O. (2020). Assessment and selection of suitable microbasins for organic agriculture under subhumid ecosystem conditions: A case study from Trabzon Province, Turkey. Arabian Journal of Geosciences, 3, 1222. https://doi.org/10.1007/s12517-020-06200-1

    Article  Google Scholar 

  • Özyazıcı, M. A., Özyazıcı, G., & Dengiz, O. (2011). Determination of micronutrients in tea plantations in the eastern Black Sea Region, Turkey. African Journal of Agricultural Research, 6(22), 5174–5180. https://doi.org/10.5897/AJAR11.1246

    Article  Google Scholar 

  • Pehlivan, E., & Aslantaş, R. (2020). Detection and evaluation of some heavy metals (Cr, Ni, Pb) in hazelnut orchards located between Trabzon and Giresun. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1). https://doi.org/10.17341/gazimmfd.474527

  • Pan, J., & Yu, L. (2011). Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering, 37(11), 1889–1894. https://doi.org/10.1016/j.ecoleng.2011.07.002

    Article  Google Scholar 

  • Paz-Ferreiro, J., & Fu, S. (2016). Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development, 27(1), 14–25. https://doi.org/10.1002/ldr.2262

    Article  Google Scholar 

  • Paz-Ferreiro, J., Gasco, G., Gutiérrez, B., & Mendez, A. (2012). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48(5), 511–517. https://doi.org/10.1007/s00374-011-0644-3

    Article  Google Scholar 

  • Peng, S., Chen, A., Fang, H., Wu, J., & Liu, G. (2013). Effects of vegetation restoration types on soil quality in Yuanmou dry-hot valley, China. Soil Science and Plant Nutrition, 59(3), 347–360. https://doi.org/10.1080/00380768.2013.785918

    Article  CAS  Google Scholar 

  • Proshad, R., Kormoker, T., & Islam, S. (2019). Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River. Toxin Reviews. https://doi.org/10.1080/15569543.2018.1564143

  • Proshad, R., Islam, M. S., Kormoker, T., Sayeed, A., Khadka, S., & Idris, A. M. (2021). Potential toxic metals (PTMs) contamination in agricultural soils and foodstuffs with associated source identification and model uncertainty. Science of The Total Environment789, 147962. https://doi.org/10.1016/j.scitotenv.2021.147962

  • Qaswar, M., Yiren, L., Jing, H., Kaillou, L., Mudasir, M., Zhenzhen, L., & Huimin, Z. (2020). Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. Journal of Soils and Sediments20(4), 2093–2106. https://doi.org/10.1007/s11368-020-02576-5

  • Qin, X., Liu, Y., Huang, Q., Zhao, L., & Xu, Y. (2020). Effects of sepiolite and biochar on enzyme activity of soil contaminated by Cd and atrazine. Bulletin of Environmental Contamination and Toxicology, 104(5), 642–648. https://doi.org/10.1007/s00128-020-02833-w

    Article  CAS  Google Scholar 

  • Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere267, 129205. https://doi.org/10.1016/j.chemosphere.2020.129205

  • Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23(4), 767–787. https://doi.org/10.1080/10807039.2016.1278519

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of the Total Environment, 350(1–3), 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047

    Article  CAS  Google Scholar 

  • Reza, S. K., Baruah, U., Singh, S. K., & Das, T. H. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India. Environmental Earth Sciences, 73(9), 5425–5433. https://doi.org/10.1007/s12665-014-3797-1

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., Karbassi, A. R., & Zanjani, A. J. (2013). Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environmental Monitoring and Assessment, 185(2), 1737–1754. https://doi.org/10.1007/s10661-012-2664-3

    Article  CAS  Google Scholar 

  • Said, I., Salman, S. A., & Elnazer, A. A. (2019). Multivariate statistics and contamination factor to identify trace elements pollution in soil around Gerga City, Egypt. Bulletin of the National Research Centre, 43(1), 1–6. https://doi.org/10.1186/s42269-019-0081-2

    Article  Google Scholar 

  • Saglam, M., Dengiz, O., Özyazıcı, M. A., & Kızılkaya, R. (2011). Application of geostatistical methods to heavy metals status in Çarsamba plain soils. Asian Journal of Chemistry, 23(8), 3454–3460.

    CAS  Google Scholar 

  • Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., & Santa-Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37(8), 1123–1131. https://doi.org/10.1016/j.ecoleng.2011.02.007

    Article  Google Scholar 

  • Salmanzadeh, M., Hartland, A., Stirling, C. H., Balks, M. R., Schipper, L. A., Joshi, C., & George, E. (2017). Isotope tracing of long-term cadmium fluxes in an agricultural soil. Environmental Science & Technology, 51(13), 7369–7377. https://doi.org/10.1021/acs.est.7b00858

    Article  CAS  Google Scholar 

  • Schloter, M., Nannipieri, P., Sørensen, S. J., & Elsas, J. D. V. (2017). Microbial indicators for soil quality. Biology and Fertility of Soils, 54, 1–10.

    Article  Google Scholar 

  • Shahmoradi, B., Hajimirzaei, S., Amanollahi, J., Wantalla, K., Maleki, A., Lee, S. M., & Shim, M. J. (2020). Influence of iron mining activity on heavy metal contamination in the sediments of the Aqyazi River, Iran. Environmental Monitoring and Assessment, 192(8), 1–10. https://doi.org/10.1007/s10661-020-08466-0

    Article  CAS  Google Scholar 

  • Shan, Y., Tysklind, M., Hao, F., Ouyang, W., Chen, S., & Lin, C. (2013). Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soils and Sediments, 13(4), 720–729. https://doi.org/10.1007/s11368-012-0637-3

    Article  CAS  Google Scholar 

  • Skordas, K., Papastergios, G., & Filippidis, A. (2013). Major and trace element contents in apples from a cultivated area of Central Greece. Environmental Monitoring and Assessment, 185, 8465–8471. https://doi.org/10.1007/s10661-013-3188-1

    Article  CAS  Google Scholar 

  • Soil Survey Staff, (1992). Procedures for Collecting Soil Samples and Methods of Analysis For Soil Survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C.,USA.

  • Soliman, N. F., Nasr, S. M., & Okbah, M. A. (2015). Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. Journal of Environmental Health Science and Engineering, 13(1), 1–12. https://doi.org/10.1186/s40201-015-0223-x

    Article  CAS  Google Scholar 

  • Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M., & Woch, M. W. (2020). Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere240, 124922. https://doi.org/10.1016/j.chemosphere.2019.124922

  • Strom, D., Simpson, S. L., Batley, G. E., & Jolley, D. F. (2011). The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environmental Toxicology and Chemistry, 30(7), 1599–1610. https://doi.org/10.1002/etc.531

    Article  CAS  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui Northeast China. Chemosphere, 92(5), 517–523. https://doi.org/10.1016/j.chemosphere.2013.02.063

    Article  CAS  Google Scholar 

  • Sutherland, R. (2000). Bed sediment–associated trace metals in an urban stream Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry, 1, 301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulphatase activity of soils. Soil Science Society of America Proceedings, 34, 225–229. https://doi.org/10.2136/sssaj1970.03615995003400020016x

    Article  CAS  Google Scholar 

  • Tan, X., Xie, B., Wang, J., He, W., Wang, X., & Wei, G. (2014). County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment. The Scientific World Journal, 535768. https://doi.org/10.1155/2014/535768

  • Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., Luo, L., Yang, Y., Huang, H., & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751

  • Tian, K., Huang, B., Xing, Z., & Hu, W. (2017). Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecological Indicators, 72, 510–520. https://doi.org/10.1016/j.ecolind.2016.08.037

    Article  CAS  Google Scholar 

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffery, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575. https://doi.org/10.1007/BF02414780

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28(8), 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2

    Article  CAS  Google Scholar 

  • Tripathy, S., Bhattacharyya, P., Mohapatra, R., Som, A., & Chowdhury, D. (2014). Influence of different fractions of heavy metals on microbial ecophysiological indicators and enzyme activities in century old municipal solid waste amended soil. Ecological Engineering, 70, 25–34. https://doi.org/10.1016/j.ecoleng.2014.04.013

    Article  Google Scholar 

  • TSE ISO/DIS 11047, (1995). Turkish Standards Institute. Soil Quality - Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc Content - Flame and Electrothermal Atomic Absorption Spectrometric Methods, 26.

  • TUIK. (2022). Agricultural Production Statistics. Ankara, Turkey: Turkish statistical institute printing house. Retrieved October 21, 2022, from https://data.tuik.gov.tr/Kategori/GetKategor?p=tarim-111&dil=1

  • Wahsha, M., Nadimi-Goki, M., Fornasier, F., Al-Jawasreh, R., Hussein, E. I., & Bini, C. (2017). Microbial enzymes as an early warning management tool for monitoring mining site soils. Catena, 148, 40–45. https://doi.org/10.1016/j.catena.2016.02.021

    Article  CAS  Google Scholar 

  • Wang, K., Liu, Y., Song, Z., Khan, Z. H., & Qiu, W. (2019). Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils. Ecotoxicology and Environmental Safety, 182, 109399.1–109399.8. https://doi.org/10.1016/j.ecoenv.2019.109399

  • Wang, X., He, M., Xie, J., Xi, J., & Lu, X. (2010). Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). Journal of Soils and Sediments, 2010(10), 827–837. https://doi.org/10.1007/s11368-010-0196-4

    Article  CAS  Google Scholar 

  • Wang, X., Fu, R., Li, H., Zhang, Y., Lu, M., Xiao, K., Zhang, X., Zheng, C., & Xiong, Y. (2020). Heavy metal contamination in surface sediments: A comprehensive, large–scale evaluation for the Bohai Sea, China. Environmental Pollution, 260, 113986. https://doi.org/10.1016/j.envpol.2020.113986

  • Wang, Y., Guo, G., Zhang, D., & Lei, M. (2021). An integrated method for source apportionment of heavy metal (loid) s in agricultural soils and model uncertainty analysis. Environmental Pollution276, 116666. https://doi.org/10.1016/j.envpol.2021.116666

  • Wang, Y. P., Li, Q. B., Shi, J. Y., Lin, Q., Chen, X. C., Wu, W., & Chen, Y. X. (2008). Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biology & Biochemistry, 40, 1167–1177. https://doi.org/10.1016/j.soilbio.2007.12.010

    Article  CAS  Google Scholar 

  • Wilding, L. P. (1985). Spatial variability: It’s documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil spatial variability (pp. 166–194). The Netherlands.

    Google Scholar 

  • WRB Recommendations. (2014). Soil resources reports 106. Rome: FAO UN.

    Google Scholar 

  • Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608. https://doi.org/10.1016/j.chemosphere.2014.12.060

    Article  CAS  Google Scholar 

  • Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., & Cao, Y. (2021). Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution278, 116911. https://doi.org/10.1016/j.envpol.2021.116911

  • Xu, M., Cui, Y., Beiyuan, J., Wang, X., Duan, C., & Fang, L. (2021b). Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry. Soil Ecology Letters, 3(3), 230–241. https://doi.org/10.1007/s42832-021-0094-2

    Article  CAS  Google Scholar 

  • Xu, Z., Mi, W., Mi, N., Fan, X., Zhou, Y., & Tian, Y. (2020). Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environmental Science and Pollution Research, 27(31), 38835–38848. https://doi.org/10.1007/s11356-020-09877-9

    Article  CAS  Google Scholar 

  • Xu, Z., Yang, Z., Zhu, T., Shu, W., & Geng, L. (2021a). Ecological improvement of antimony and cadmium contaminated soil by earthworm Eisenia fetida: Soil enzyme and microorganism diversity. Chemosphere, 273, 129496. https://doi.org/10.1016/j.chemosphere.2020.129496

  • Yang, J., Yang, F., Yang, Y., Xing, G., Deng, C., Shen, Y., & Yuan, H. (2016a). A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environmental Pollution, 213, 760–769. https://doi.org/10.1016/j.envpol.2016.03.030

    Article  CAS  Google Scholar 

  • Yang, R., Wang, J., Zhu, L., Wang, J., Yang, L., Mao, S., & Kim, Y. M. (2021). Effects of interaction between enrofloxacin and copper on soil enzyme activity and evaluation of comprehensive toxicity. Chemosphere268, 129208. https://doi.org/10.1016/j.chemosphere.2020.129208

  • Yang, S., Qu, Y., Ma, J., Liu, L., Wu, H., Liu, Q., & Wu, Y. (2020). Comparison of the concentrations, sources, and distributions of heavy metal (loid) s in agricultural soils of two provinces in the Yangtze River Delta, China. Environmental Pollution264, 114688. https://doi.org/10.1016/j.envpol.2020.114688

  • Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., & Wang, H. (2016b). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974–984. https://doi.org/10.1007/s11356-015-4233-0

    Article  CAS  Google Scholar 

  • Yaylalı-Abanuz, G. (2011). Heavy metal contamination of surface soil around Gebze industrial area Turkey. Microchemical Journal, 99(1), 82–92. https://doi.org/10.1016/j.microc.2011.04.004

    Article  CAS  Google Scholar 

  • Ying, L., Shaogang, L., & Xiaoyang, C. (2016). Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Human and Ecological Risk Assessment: An International Journal, 22(6), 1359–1374. https://doi.org/10.1016/j.ecoenv.2015.06.019

    Article  CAS  Google Scholar 

  • Zhang, F. P., Li, C. F., Tong, L. G., Yue, L. X., Li, P., Ciren, Y. J., & Cao, C. G. (2010). Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet China. Applied Soil Ecology, 45(3), 144–151. https://doi.org/10.1016/j.apsoil.2010.03.006

    Article  Google Scholar 

  • Zhang, Y., Wu, C., Deng, S., Zhang, J., Hou, J., Wang, C., & Fu, Z. (2022). Effect of different washing solutions on soil enzyme activity and microbial community in agricultural soil severely contaminated with cadmium. Environmental Science and Pollution Research, 1–11. https://doi.org/10.21203/rs.3.rs-1063888/v1

  • Zhong, X., Chen, Z., Li, Y., Ding, K., Liu, W., Liu, Y., & Qiu, R. (2020). Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. Journal of Hazardous Materials400, 123289. https://doi.org/10.1016/j.jhazmat.2020.123289

  • Zonguldak. (2016). Environmental Status Report –Provincial Directorate of Food, Agriculture and Livestock. P. 93. Zonguldak-Turkey.

  • Zunaidi, A. A., Lim, L. H., & Metali, F. (2021). Assessments of heavy metals in commercially available fertilizers in Brunei Darussalam. Agricultural Research, 10(2), 234–242. https://doi.org/10.1007/s40003-020-00500-4

    Article  CAS  Google Scholar 

  • Žvab Rožič, P., Dolenec, T., Bazdaric, B., Karamarko, V., Kniewald, G., & Dolenec, M. (2012). Major, minor and trace element content derived from aquacultural activity of marine sediments (Central Adriatic, Croatia). Environmental Science and Pollution Research, 19, 2708–2721. https://doi.org/10.1007/s11356-012-0769-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was produced from projects codded as project no. TAGEM-TSKAD-17-A09-P02-02.General Directorate of Agricultural Research and Policies.

Author information

Authors and Affiliations

Authors

Contributions

Betül Bayraklı: conceptualization, methodology, formal analysis, writing, review and editing.

Corresponding author

Correspondence to Betül Bayrakli.

Ethics declarations

Ethical aproval

I hereby would like to warrant that the manuscript represents original work that is not being considered for publication, in whole or in part, in another journal, book, conference proceedings, or government publication with a substantial circulation. I would like to warrant that all previously published work cited in the manuscript has been fully acknowledged. In addition, our manuscript has not been submitted to a preprint server prior to submission on ESPR.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrakli, B. Evaluating heavy metal pollution risks and enzyme activity in soils with intensive hazelnut cultivation under humid ecological conditions. Environ Monit Assess 195, 331 (2023). https://doi.org/10.1007/s10661-023-10934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10934-2

Keywords

Navigation