Skip to main content

Advertisement

Log in

Accumulation of heavy metal(loid)s and polycyclic aromatic hydrocarbons in the sediment of the Prahovo Port (Danube) and associated risks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current study investigated the concentrations, possible sources, toxicity, and ecological risk of eight heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and sixteen priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the port of Prahovo (Danube, Serbia). Among the examined HMs, the most abundant was Cu (38.3 mg/kg), followed by Zn. The Σ16PAHs concentrations ranged from 25 to 112.5 µg/kg, with 4-ring PAHs (17.3 µg/kg) being the most dominant in the study area. The mean and maximum values of HMs and PAHs obtained in this study were below the national regulatory limits and within environmental criteria. Particularly significant correlations between As, Cd, Cr, Ni, Pb, Zn, 5-, 6-ring PAHs, as well as between Pb and Hg, indicated their similar anthropogenic sources, pathways, and adsorption mechanisms. These findings were confirmed by cluster analysis and principal component analysis. Diagnostic ratios demonstrated that contamination in inner port stations was characterized by pyrogenic sources, while PAHs of petrogenic origin prevailed in samples near the port entrance. The mean ERM quotient (mERMq), toxic risk index (TRI), and toxic equivalent quotient (TEQ) were also calculated to assess the toxicity of the investigated HMs and PAHs in sediments. Positive matrix factorization suggested four potential sources as the main components of sediment contamination, whereas the risk assessment indicated a low or relatively insignificant risk of adverse biological effects from the combined toxicity of HMs and PAHs for the entire study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation to any qualified researcher.

References

  • Alp, İ, Deveci, H., Yazıcı, E. Y., Türk, T., & Süngün, Y. H. (2009). Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations. Journal of Hazardous Materials, 166(1), 144–149. https://doi.org/10.1016/j.jhazmat.2008.10.129

    Article  CAS  Google Scholar 

  • Ashayeri, N. Y., Keshavarzi, B., Moore, F., Kersten, M., Yazdi, M., & Lahijanzadeh, A. R. (2018). Presence of polycyclic aromatic hydrocarbons in sediments and surface water from Shadegan wetland – Iran: A focus on source apportionment, human and ecological risk assessment and sediment-water exchange. Ecotoxicology and Environmental Safety, 148, 1054–1066. https://doi.org/10.1016/j.ecoenv.2017.11.055

    Article  CAS  Google Scholar 

  • Avramidis, P., Nikolaou, K., & Bekiari, V. (2015). Total organic carbon and total nitrogen in sediments and soils: A comparison of the wet oxidation – titration method with the combustion-infrared method. Agriculture and Agricultural Science Procedia, 4, 425–430. https://doi.org/10.1016/j.aaspro.2015.03.048

    Article  Google Scholar 

  • Baran, A., Tarnawski, M., Koniarz, T., & Szara, M. (2019). Content of nutrients, trace elements, and ecotoxicity of sediment cores from Rożnów reservoir (Southern Poland). Environmental Geochemistry and Health, 41, 2929–2948. https://doi.org/10.1007/s10653-019-00363-x

    Article  CAS  Google Scholar 

  • Brown, S. G., Eberly, S., Paatero, P., & Norris, G. A. (2015). Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 518–519, 626–635. https://doi.org/10.1016/j.scitotenv.2015.01.022

    Article  CAS  Google Scholar 

  • Buell, M. C., Johannessen, C., Drouillard, K., & Metcalfe, C. (2021). Concentrations and source identification of PAHs, alkyl-PAHs and other organic contaminants in sediments from a contaminated harbor in the Laurentian Great Lakes. Environmental Pollution, 270, 116058. https://doi.org/10.1016/j.envpol.2020.116058

  • Cempel, M., & Nikel, G. (2006). Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382.

    CAS  Google Scholar 

  • Christensen, E. R., Steinnes, E., & Eggen, O. A. (2018). Anthropogenic and geogenic mass input of trace elements to moss and natural surface soil in Norway. Science of the Total Environment, 613–614, 371–378. https://doi.org/10.1016/j.scitotenv.2017.09.094

    Article  CAS  Google Scholar 

  • Crnković, D., Sekulić, Z., Antonović, D., Marinković, A., Popović, S., Nikolić, J., & Drmanić, S. (2020). Origins of polycyclic aromatic hydrocarbons in sediments from the Danube and Sava Rivers and their tributaries in Serbia. Polish Journal of Environmental Studies, 29(3), 2101–110. https://doi.org/10.15244/pjoes/111319

    Article  CAS  Google Scholar 

  • Davis, E., Walker, T. R., Adams, M., Willis, R., Norris, G. A., & Henry, R. C. (2019). Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Science of the Total Environment, 691, 528–537. https://doi.org/10.1016/j.scitotenv.2019.07.114

    Article  CAS  Google Scholar 

  • Dong, Y., Yan, Z., Wu, H., Zhang, G., Zhang, H., & Yang, M. (2021). Polycyclic aromatic hydrocarbons in sediments from typical algae, macrophyte lake bay and adjoining river of Taihu Lake, China: Distribution, sources, and risk assessment. Water, 13(4), 470. https://doi.org/10.3390/w13040470

    Article  CAS  Google Scholar 

  • Duman, M., Kucuksezgin, F., Eronat, A. H., Talas, E., İlhan, T., & Aydın, Ş. (2022). Combining single and complex indices of pollution with grain size trend analysis of surficial sediments in Edremit Gulf, western Turkey. Environmental Science and Pollution Research, 29, 55609–55629. https://doi.org/10.1007/s11356-022-19355-z

    Article  CAS  Google Scholar 

  • Egorova, K. S., & Ananikov, V. P. (2017). Toxicity of metal compounds: Knowledge and myths. Organometallics, 36(21), 4071–4090. https://doi.org/10.1021/acs.organomet.7b00605

    Article  CAS  Google Scholar 

  • Fisher, T. T., Law, R. J., Rumney, H. S., Kirby, M. F., & Kelly, C. (2011). Towards a scheme of toxic equivalency factors (TEFs) for the acute toxicity of PAHs in sediment. Ecotoxicology and Environmental Safety, 74(8), 2245–2251. https://doi.org/10.1016/j.ecoenv.2011.07.023

    Article  CAS  Google Scholar 

  • Government of Republic of Serbia. (2012). Regulation on limit values for pollutants in surface and ground waters and sediments and the deadlines for their achievement. Off. Gaz. Rep. Serbia No 50/12. (In Serbian). Retrieved September 27, 2022, from https://faolex.fao.org/docs/pdf/srb195460.pdf

  • Greaves, D. (2019). Making sense of big data using cluster analysis. Impact, 2019(1), 25–29. https://doi.org/10.1080/2058802x.2019.1571299

    Article  Google Scholar 

  • Gu, Y.-G., Gao, Y.-P., Chen, F., Huang, H.-H., Yu, S.-H., Jordan, R. W., & Jiang, S.-J. (2022). Risk assessment of heavy metal and pesticide mixtures in aquatic biota using the DGT technique in sediments. Water Research, 224, 119108. https://doi.org/10.1016/j.watres.2022.119108

  • Gu, Y.-G., Ke, C.-L., Gao, Y.-P., Liu, Q., & Li, Y.-F. (2020). Nonmetric multidimensional scaling and adverse effects on aquatic biota of polycyclic aromatic hydrocarbons in sediments: A case study of a typical aquaculture wetland, China. Environmental Research, 182, 109119. https://doi.org/10.1016/j.envres.2020.109119

  • Huang, Z., Liu, C., Zhao, X., Dong, J., & Zheng, B. (2020). Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environmental Sciences Europe, 32, 23. https://doi.org/10.1186/s12302-020-00305-w

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC). (2016). IARC monographs on the evaluation of carcinogenic risks to humans. Retrieved September 14, 2022, from https://monographs.iarc.who.int/list-of-classifications

  • Keshavarzi, B., Mokhtarzadeh, Z., Moore, F., Rastegari Mehr, M., Lahijanzadeh, A., Rostami, S., & Kaabi, H. (2015). Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province. Iran. Environmental Science and Pollution Research, 22, 19077–19092. https://doi.org/10.1007/s11356-015-5080-8

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gasiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—a review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 104388. https://doi.org/10.1016/j.apgeochem.2019.104388

  • Li, W., Zhang, W., Shan, B., Sun, B., Guo, X., & Li, Z. (2022). Risk assessment of heavy metals in suspended particulate matter in a typical urban river. Environmental Science and Pollution Research, 29(31), 46649–46664. https://doi.org/10.1007/s11356-022-18966-w

    Article  CAS  Google Scholar 

  • Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17(4), 714–727. https://doi.org/10.1002/etc.5620170428

    Article  CAS  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. https://doi.org/10.1007/bf02472006

    Article  Google Scholar 

  • Lukić, J., Radulović, J., Lučić, M., Đurkić, T., & Onjia, A. (2022). Chemometric optimization of solid-phase extraction followed by liquid chromatography-tandem mass spectrometry and probabilistic risk assessment of ultraviolet filters in an urban recreational lake. Frontiers in Environmental Science, 10, 916916. https://doi.org/10.3389/fenvs.2022.916916

  • MacDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5(4), 253–278. https://doi.org/10.1007/bf00118995

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Makajic-Nikolic, D., Petrovic, N., Cirovic, M., Vujosevic, M., & Presburger-Ulnikovic, V. (2014). The model of risk assessment of greywater discharges from the Danube River ships. Journal of Risk Research, 19(4), 496–514. https://doi.org/10.1080/13669877.2014.988286

    Article  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11(1–2), 121–127. https://doi.org/10.1016/0883-2927(95)00076-3

    Article  Google Scholar 

  • Mehr, M. R., Keshavarzi, B., Moore, F., Fooladivanda, S., Sorooshian, A., & Biester, H. (2019). Spatial distribution, environmental risk and sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in surface sediments-Northwest of Persian Gulf. Continental Shelf Research, 193, 104036. https://doi.org/10.1016/j.csr.2019.104036

  • Miletić, A., Radomirović, M., Đorđević, Đ, Bogosavljević, J., Lučić, M., & Onjia, A. (2022). Geospatial mapping of ecological risk from potentially toxic elements in soil in the Pannonian-Carpathian border area south of the Danube. Carpathian Journal of Earth and Environmental Sciences, 17(2), 351–363. https://doi.org/10.26471/cjees/2022/017/227

    Article  Google Scholar 

  • Niu, L., Cai, H., Van Gelder, P. H. A. J. M., Luo, P., Liu, F., & Yang, Q. (2018). Dynamics of polycyclic aromatic hydrocarbons (PAHs) in water column of Pearl River estuary (China): Seasonal pattern, environmental fate and source implication. Applied Geochemistry, 90, 39–49. https://doi.org/10.1016/j.apgeochem.2017.12.014

    Article  CAS  Google Scholar 

  • Pejman, A., Bidhendia, G. N., Ardestania, M., Saeedib, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373. https://doi.org/10.1016/j.ecolind.2015.06.012

    Article  CAS  Google Scholar 

  • Radomirović, M., Ćirović, Ž., Maksin, D., Bakić, T., Lukić, J., Stanković, S., & Onjia, A. (2020). Ecological risk assessment of heavy metals in the soil at a former painting industry facility. Frontiers in Environmental Science, 8, 560415. https://doi.org/10.3389/fenvs.2020.560415

  • Radomirović, M., Mijatović, N., Vasić, M., Tanaskovski, B., Mandić, M., Pezo, L., & Onjia, A. (2021a). The characterization and pollution status of the surface sediment in the Boka Kotorska Bay, Montenegro. Environmental Science and Pollution Research, 28, 53629–53652. https://doi.org/10.1007/s11356-021-14382-8

    Article  CAS  Google Scholar 

  • Radomirović, M., Stanković, S., Mandić, M., Jović, M., Mandić, L. J., Dragović, S., & Onjia, A. (2021c). Spatial distribution, radiological risk assessment and positive matrix factorization of gamma-emitting radionuclides in the sediment of the Boka Kotorska Bay. Marine Pollution Bulletin, 169, 112491. https://doi.org/10.1016/j.marpolbul.2021c.112491

  • Radomirović, M., Tanaskovski, B., Pezo, L., Ceccotto, F., Cantaluppi, C., Onjia, A., & Stanković, S. (2021b). Spatial and temporal distribution of pollution indices in marine surface sediments—a chemometric approach. Environmental Science and Pollution Research, 28(31), 42496–42515. https://doi.org/10.1007/s11356-021-13644-9

    Article  CAS  Google Scholar 

  • Radu, C., Manoiu, V. M., Kubiak-Wójcicka, K., Avram, E., Beteringhe, A., & Craciun, A. I. (2022). Romanian Danube River hydrocarbon pollution in 2011–2021. Water, 14(19), 3156. https://doi.org/10.3390/w14193156

    Article  CAS  Google Scholar 

  • Raudonytė-Svirbutavičienė, E., Stakėnienė, R., Jokšas, K., Valiulis, D., Byčenkienė, S., & Žarkov, A. (2022). Distribution of polycyclic aromatic hydrocarbons and heavy metals in soil following a large tire fire incident: A case study. Chemosphere, 286, 131556. https://doi.org/10.1016/j.chemosphere.2021.131556

  • Rehman, M., Liu, L., Wang, Q., Saleem, M. H., Bashir, S., Ullah, S., & Peng, D. (2019). Copper environmental toxicology, recent advances, and future outlook: A review. Environmental Science and Pollution Research, 26, 18003–18016. https://doi.org/10.1007/s11356-019-05073-6

    Article  CAS  Google Scholar 

  • Rifkin, E., Gwinn, P., & Bouwer, E. (2004). Peer reviewed: Chromium and sediment toxicity. Environmental Science & Technology, 38(14), 267A-271A. https://doi.org/10.1021/es040575m

    Article  CAS  Google Scholar 

  • Sakan, S. M., Dević, G. J., Reić, D. J., Anđelković, I. B., Sakan, N. M., & Đorđević, D. S. (2015). Environmental assessment of heavy metal pollution in freshwater sediment, Serbia. CLEAN - Soil, Air, Water, 43(6), 838–845. https://doi.org/10.1002/clen.201400275

    Article  CAS  Google Scholar 

  • Sakan, S., Mihajlidi-Zelić, A., Škrivanj, S., Frančišković-Bilinski, S., & Đorđević, D. (2022). An integrated approach in the assessment of the Vlasina River system pollution by toxic elements. Frontiers in Environmental Science, 10, 909858. https://doi.org/10.3389/fenvs.2022.909858

  • Şimşek, A., Özkoç, H. B., & Bakan, G. (2022). Environmental, ecological and human health risk assessment of heavy metals in sediments at Samsun-Tekkeköy, North of Turkey. Environmental Science and Pollution Research, 29(2), 2009–2023. https://doi.org/10.1007/s11356-021-15746-w

    Article  CAS  Google Scholar 

  • Study on environmental impact assessment. (2021). Project: Construction of new port capacities of the port of Prahovo. Project holder Ministry of Construction, Transport and Infrastructure. Retrieved August 07, 2022, from https://www.ekologija.gov.rs/sites/default/files/inlinefiles/LUKA%20PRAHOVO%20NA%20ENGLESKOM%20El.%20potpisano.pdf

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

  • Tiberg, C., Bendz, D., Theorin, G., & Kleja, D. B. (2017). Evaluating solubility of Zn, Pb, Cu and Cd in pyrite cinder using leaching tests and geochemical modelling. Applied Geochemistry, 85, 106–117. https://doi.org/10.1016/j.apgeochem.2017.09.007

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  • Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237. https://doi.org/10.1016/j.ecolind.2020.106237

  • Ustaoğlu, F., Taş, B., Tepe, Y., & Topaldemir, H. (2021). Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environmental Science and Pollution Research, 28, 62736–62754. https://doi.org/10.1007/s11356-021-15135-3

    Article  CAS  Google Scholar 

  • Ustaoğlu, F., Tepe, Y., & Aydin, H. (2020). Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environmental Forensics, 21(2), 145–146. https://doi.org/10.1080/15275922.2020.1728433

    Article  CAS  Google Scholar 

  • Wang, Y. B., Liu, C. W., Kao, Y. H., & Jang, C. S. (2015). Characterization and risk assessment of PAH-contaminated river sediment by using advanced multivariate methods. Science of the Total Environment, 524–525, 63–73. https://doi.org/10.1016/j.scitotenv.2015.04.019

    Article  CAS  Google Scholar 

  • Wang, Y.-S., Wu, F.-X., Gu, Y.-G., Huang, H.-H., Gong, X.-Y., & Liao, X.-L. (2021). Polycyclic aromatic hydrocarbons (PAHs) in the intertidal sediments of Pearl River Estuary: Characterization, source diagnostics, and ecological risk assessment. Marine Pollution Bulletin, 173, 113140. https://doi.org/10.1016/j.marpolbul.2021.113140

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Xiao, H., Shahab, A., Ye, F., Wei, G., Li, J., & Deng, L. (2022). Source-specific ecological risk assessment and quantitative source apportionment of heavy metals in surface sediments of Pearl River estuary, China. Marine Pollution Bulletin, 179, 113726. https://doi.org/10.1016/j.marpolbul.2022.113726

  • Xu, Y., Wang, X., Cui, G., Li, K., Liu, Y., Li, B., & Yao, Z. (2022). Source apportionment and ecological and health risk mapping of soil heavy metals based on PMF, SOM, and GIS methods in Hulan River Watershed. Northeastern China. Environmental Monitoring and Assessment, 194, 181. https://doi.org/10.1007/s10661-022-09826-8

    Article  Google Scholar 

  • Yang, T., Diao, X., Cheng, H., Wang, H., Zhou, H., Zhao, H., & Chen, C. M. (2020). Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, sediments and seawater from coral reefs of Hainan, China. Environmental Pollution, 264, 114719. https://doi.org/10.1016/j.envpol.2020.114719

  • Yang, X., Yu, L., Chen, Z., & Xu, M. (2016). Bioavailability of polycyclic aromatic hydrocarbons and their potential application in eco-risk assessment and source apportionment in urban river sediment. Scientific Reports, 6, 23134. https://doi.org/10.1038/srep23134

    Article  CAS  Google Scholar 

  • Yu, W., Liu, R., Xu, F., & Shen, Z. (2015). Environmental risk assessments and spatial variations of polycyclic aromatic hydrocarbons in surface sediments in Yangtze River estuary. China. Marine Pollution Bulletin, 100(1), 507–515. https://doi.org/10.1016/j.marpolbul.2015.09.004

    Article  CAS  Google Scholar 

  • Yunginger, R., Bijaksana, S., Dahrin, D., Zulaikah, S., Hafidz, A., Kirana, K., Sudarningsih, S., Mariyanto, M., & Fajar, S. (2018). Lithogenic and anthropogenic components in surface sediments from Lake Limboto as shown by magnetic mineral characteristics, trace metals, and REE geochemistry. Geosciences, 8(4), 116. https://doi.org/10.3390/geosciences8040116

    Article  CAS  Google Scholar 

  • Zhang, M., He, P., Qiao, G., Huang, J., Yuan, X., & Li, Q. (2019). Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: Spatial distribution, source apportionment and ecological risk. Chemosphere, 223, 211–222. https://doi.org/10.1016/j.chemosphere.2019.02.058

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Grant 451–03-68/2022–14/200135).

Author information

Authors and Affiliations

Authors

Contributions

Milena Radomirović wrote the manuscript, designed the paper framework, organized the data, and was involved in data processing, validation, and interpretation of results. Andrijana Miletić performed the statistical analysis and was involved in data processing and visualization. Antonije Onjia defined the scope of the research, supervised the study, and was involved in data curation, review, and editing of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Milena Radomirović.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radomirović, M., Miletić, A. & Onjia, A. Accumulation of heavy metal(loid)s and polycyclic aromatic hydrocarbons in the sediment of the Prahovo Port (Danube) and associated risks. Environ Monit Assess 195, 323 (2023). https://doi.org/10.1007/s10661-023-10926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10926-2

Keywords

Navigation