Skip to main content

Advertisement

Log in

Isotopes of nitrate and gadolinium fingerprints to assay human inputs in Guarani Aquifer System

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The use of environmental tracers brings comprehensive benefits to the management of water resources since it helps to prevent their pollution, minimize public health risks, and thus reduce the impact of urbanization. In Brazil, the Guarani Aquifer System (GAS) has strategic and environmental importance, making its preservation and sustainable exploitation mandatory. The present study aimed at evaluating sources of contamination in the GAS using the combination of geochemical data and two environmental tracers: nitrate isotopes (15NNO3 and 18ONO3) and one rare earth element (Gadolinium—Gd). For that, five wells—four exploiting the GAS and one the Bauru Aquifer System (BAS)—were selected to discuss the human inputs in groundwater used for public supply in an urban area. Traditional physicochemical analyses were conducted for six campaign samplings and nitrate monitoring for this period was evaluated on a time scale, also considering the accumulated rainfall. Besides that, the double isotopic method (DIM), e.g., δ18ONO3 e δ15NNO3, was applied to identify the fractionation and enable the distinction of the nitrate contamination source. In addition, the determination of anomalies of Gd, a wastewater-derived contaminant, was also performed to verify recent human inputs in groundwater. The results show that the local existence of nitrate in the GAS and BAS—even at low concentrations (values from 0.26 to 6.68 mg L−1)—originated from anthropogenic inputs (septic waste), as indicates the typical isotopic signals ratio in the isotopic approach. Associated with that, the evaluation of Gd permitted the separation of groundwater samples into older or more recent leakages. The use of environmental tracers to assess anthropogenic inputs in groundwater reiterates the importance of adopting more effective protection strategies for water resources management systems, in order to prevent contamination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

I confirm I have included a data availability statement in my main manuscript file. The datasets generated during and/or analyzed during the current study are available from the authors on reasonable request.

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Comp. Stat, 2, 433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  • ANA - Agência Nacional de Águas e Saneamento Básico [Water National Agency]. (2020). Conjuntura dos recursos hídricos no Brasil: informe anual [Situation of water resources in Brazil: annual report]. Agência Nacional de Águas e Saneamento Básico. – Brasília : ANA.

  • APHA, AWWA, & WEF. (2012). Standard Methods for examination of water and wastewater (22nd ed., p. 1360). Washington: American Public Health Association. ISBN 978–087553–013–0.

  • Aravena, R., & Robertson, W. D. (1998). Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36, 975–982.

    Article  CAS  Google Scholar 

  • Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  • Banks, D., Hall, G., Reimanna, C., & Siewers, U. (1999). Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions. Norway. Applied Geochemistry, 14, 27–39.

    Article  CAS  Google Scholar 

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations. Transvaal Supergroup, South Africa, Precambrian Research, 79(1–2), 37–55. https://doi.org/10.1016/0301-9268(95)00087-9

    Article  CAS  Google Scholar 

  • Benini, R. M., & Mendiondo, E. M. (2015). Urbanização e Impactos no Ciclo Hidrológico na Bacia do Mineirinho. Floresta e Ambiente, 22(2), 211–222. https://doi.org/10.1590/2179-8087.103114

    Article  Google Scholar 

  • Bertolo, R., Hirata, R., & Sracek, O. (2006). Geochemistry and geochemical modeling of unsaturated zone in a tropical region in Urania, Sao Paulo state, Brazil. Journal of Hydrology, 329(1-2), 49-62. https://doi.org/10.1016/j.jhydrol.2006.02.001

  • Böttcher, J., Strebel, O., Voerkelius, S., & Schmidt, H. L. (1990). Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114(3–4), 413–424. https://doi.org/10.1016/0022-1694(90)90068-9

    Article  Google Scholar 

  • Brasil. (2021). PORTARIA GM/MS Nº 888. Consolidation Ord. Ministry of Health No. 888/2021. Standards on health actions and services of the Unified Health System. Annex XX: Procedures for control and surveillance of water quality for human consumption and drinking standards. Retrieved November, 2021, from https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562

  • Brünjes, R., Bichler, A., Hoehn, P., Lange, F. T., Brauch, H.-J., & Hofmann, T. (2016). Anthropogenic gadolinium as a transient tracer for investigating river bank filtration. Science of the Total Environment, 571, 1432–1440. https://doi.org/10.1016/j.scitotenv.2016.06.105

    Article  CAS  Google Scholar 

  • Cagnon, F., & Hirata, R. (2004). Source of nitrate in the groundwater of Adamantina aquifer in Urânia, SP Brazil. In: Proceedings of the 33th International Association of Hydrogeologists Congress, 4.

  • Campos, F. F., & Enzweiler, J. (2016). Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil. Environmental monitoring and assessment, 188, e281.

  • Cerozi, B. S., & Fitzsimmons, K. (2016). The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Biosource Technology, 219(2016), 778–781.

    Article  CAS  Google Scholar 

  • CETESB. (2019). Quality of the groundwater in the state of São Paulo 2016–2018 (in Portuguese). Environmental Company of the State of São Paulo (CETESB). Available at: https://cetesb.sp.gov.br/aguas-subterraneas/wp-content/uploads/sites/13/2019/10/Relat%C3%B3rio-de-Qualidade-das-%C3%81guas-Subterr%C3%A2neas-no-Estado-de-S%C3%A3o-Paulo-2016-2018.pdf

  • Close, M. (2010). Critical Review of Contaminant Transport Time through the Vadose Zone. (ESR Reports, R10/113, 46).

  • Cook, P. G., & Herczeg, A. L. (2000). Environmental tracers in subsurface hydrology. New York, Springer Science+Business Media.

  • CPRM – Serviço Geológico do Brasil. (2017). GeoSGB-CPRM – Lithostratigraphic database. Available at: https://geosgb.cprm.gov.br/

  • De Boer, J. L. M., Verweij, W., Van Der Velde-Koerts, T., & Mennes, W. (1996). Levels of rare earth elements in Dutch drinking water and its sources. Determination by inductively coupled plasma mass spectrometry and toxicological implications. A pilot study. Water Research, 30(1), 190-198.

  • de Haën, C. (2001). Conception of the first magnetic resonance imaging contrast agents: A brief history. Topics in Magnetic Resonance Imaging, 12(4), 221–230. https://doi.org/10.1097/00002142-200108000-00002. PMID: 11687712.

    Article  Google Scholar 

  • Departamento de Águas e Energia Elétrica (DAEE), Instituto Geológico (IG), Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT), Serviço Geológico do Brasil (CPRM). (2005). Mapa de águas subterrâneas do Estado de São Paulo: escala 1:1.000.000: Nota explicativa. São Paulo. Disponível em: https://www.infraestruturameioambiente.sp.gov.br/wp-content/uploads/sites/233/2012/03/Nota%20Explicativa%20Mapa%20Aguas%20Subterraneas.pdf Acesso em: 02/09/2019.

  • Deutsch, W. J. (1997). Groundwater geochemistry: Fundamentals and applications to contamination. Lewis Publishers.

  • Diédhiou, M., Cissé Faye, S., Diouf, O. C., Faye, S., Faye, A., Re, V., Wohnlich, S., Wisotzky, F., Schulte, U., & Maloszewski, P. (2012). Tracing groundwater nitrate sources in the Dakar suburban area: An isotopic multi-tracer approach. Hydrological Processes, 26(5), 760–770. https://doi.org/10.1002/hyp.8172

    Article  CAS  Google Scholar 

  • Ebrahimi, P., & Barbieri, M. (2019). Gadolinium as an emerging microcontaminant in water resources: Threats and opportunities. Geosciences, 9(93), 1–44. https://doi.org/10.3390/geosciences9020093

    Article  CAS  Google Scholar 

  • Elliot, T. (2014). Environmental tracers. Water, 6, 3264–3269. https://doi.org/10.3390/w6113264

    Article  Google Scholar 

  • Feth, J. H. (1966). Nitrogen compounds in natural waters – a review. Water Resources Research, 2(1), 41–58.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (2018). Boving, T, Kreamer. D. Contaminant Hydrogeology. Third Edition. Waveland Press Inc.

    Google Scholar 

  • Gaouzi, F. J. E., Sebilo, M., Ribstein, P., Plagnes, V., Boeckx, P., & Xue, D. M. (2013). Using δ15N and δ18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Applied Geochemistry, 35, 230–243.

    Article  Google Scholar 

  • Gastmans, D., Hutcheon, I., Menegario, A. A., & Chang, H. K. (2016). Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil). Journal of Hydrology, 535, 598–611.

    Article  CAS  Google Scholar 

  • Godoy, M. C. T. F., Boin, M. N., Sanaiotti, D. C., & Silva J. B. (2004). Contaminação das águas subterrâneas por nitrato em Presidente Prudente – SP. In: XIII Congresso Brasileiro de Águas Subterrâneas, Campinas. Anais. Campinas. Retrieved September, 2019, from https://aguassubterraneas.abas.org/asubterraneas/issue/view/1186

  • Goldstein, S. J., & Jacobsen, S. B. (1988). Rare earth elements in river waters. Earth and Planetary Science Letters, 89(1), 35–47.

    Article  CAS  Google Scholar 

  • Gutierrez, A., & Hirata, R. (2004). Modelo hidrogeoquímico do aquífero Adamantina em Urânia (São Paulo). In: Proceedings of the 33th International Association of Hydrogeologists Congress.

  • HACH. (1992). Water Analysis Handbook (2nd ed.). Hach Co.

    Google Scholar 

  • Heaton, T. H. E. (1986). Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review. Chemical Geology, 59, 87–102.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey.

  • Hirata, R., Cagnon, F., Bernice, A., Maldaner, C. H., Galvao, P., Marques, C., Terada, R., Varnier, C., Ryan, M. C., & Bertolo, R. (2020). Nitrate Contamination in Brazilian Urban Aquifers: A Tenacious Problem. Water, 12, 2709. https://doi.org/10.3390/w12102709

    Article  CAS  Google Scholar 

  • Hirata, R., Suhogusoff, A., Marcellini, S., Villar, P., & Marcellini, L. (2019). As águas subterrâneas e sua importância ambiental e socioeconômica para o Brasil. São Paulo: Instituto de Geociências, Universidade de São Paulo, Instituto Trata Brasil, CEPAS|USP.

  • Instituto de Pesquisas Tecnológicas (IPT). (2004) Diagnóstico da situação atual dos recursos hídricos e estabelecimento de diretrizes técnicas para a elaboração do Plano da Bacia Hidrográfica do Tietê/Jacaré, UGRHI 13. Retrieved October 20, 2015, from http://www.sigrh.sp.gov.br

  • Iritani, A., & Ezaki, S. (2012). Cadernos de Educação Ambiental: As águas subterrâneas do estado de São Paulo. Secretaria do Meio Ambiente (SMA), Instituto de Pesquisas Tecnológicas (IPT). 3a ed. Retrieved December 31, 2022, from http://arquivo.ambiente.sp.gov.br/cea/2014/11/01-aguas-subterraneas-estado-sao-paulo.pdf

  • Jaunat, J., Garel, E., Huneau, F., Erostate, M., Santoni, S., Robert, S., Fox, D., & Pasqualini, V. (2019). Combinations of geoenvironmental data underline coastal aquifer anthropogenic nitrate legacy through groundwater vulnerability mapping methods. Science of the Total Environment, 658, 1390–1403.

    Article  CAS  Google Scholar 

  • Jin, Z., Qin, X., Chen, L., Jin, M., & Li, F. (2015). Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China. Journal of Contaminant Hydrology, 177, 64–75. https://doi.org/10.1016/j.jconhyd.2015.02.008

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Farnham, I. M., Guo, C., & Stetzenbach, K. J. (1999). Rare earth element fractionation and concentration variations along a groundwater flow path within a shallow, basin-fill aquifer, southern Nevada, USA. Geochimica Et Cosmochimica Acta, 63(18), 2697–2708.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., & Lyons, W. B. (1994). The rare earth element geochemistry of Mono Lake water and the importance of carbon- ate complexing. Limnology and Oceanography, 39, 1141–1154.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Lyons, W. B., Fee, J. H., Gaudette, H. E., & McArthur, J. M. (1994). Geochemical processes affecting the acidic groundwaters of Lake Gilmore, Yilgarn Block, Western Australia: a preliminary study using neodymium, samarium, and dysprosium. Journal of Hydrology, 154, 271–289.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Lyons, W. B., Yelken, M. A., Gaudette, H. E., & Stetzenbach, K. J. (1996). Geochemical of rare earth elements in hypersaline and dilute acidic waters: Complexation behavior and middle rare-earth enrichments. Chemical Geology, 133(1–4), 125–144.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Palmore, C. D., Fackrell, J., Prouty, N. G., Swarzenski, P. W., Chevis, D. A., Telfeyan, K., White, C. D., & Burdige, D. J. (2017). Rare earth element behavior during groundwater – seawater mixing along the Kona Coast of Hawaii. Geochimica et Cosmochimica Actahttps://doi.org/10.1016/j.gca.2016.11.009

  • Johannesson, K. H., Stetzenbach, K. J., & Hodge, V. F. (1997). Rare earth elements as geochemical tracers of regional groundwater mixing. Geochimica Et Cosmochimica Acta, 61(17), 3605–3618.

    Article  CAS  Google Scholar 

  • Johannesson, K. H., Zhou, X., Guo, C., Stetzenbach, K. J., & Hodge, V. F. (2000). Origin of rare earth elements signatures in groundwater of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology, 164, 239–257.

    Article  CAS  Google Scholar 

  • Karr, J. D., Showers, W. J., Gilliam, J. W., Wendell, J., & Andres, A. S. (2001). Tracing nitrate transport and environmental impact from intensive swine farming using delta nitrogen-15. Journal of Environmental Quality, 30, 1163–1175.

    Article  CAS  Google Scholar 

  • Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. In R. Michener & K. Lajha (Eds.), Stable Isotopes in Ecology and Environmental Science (2nd ed.). Wiley Online Library. https://doi.org/10.1002/9780470691854.ch12

  • Kircheim, R. E., Gastmans, D., Chang, H. K., & Gilmore, T. E. (2019). The use of isotopes in evolving groundwater circulation models of regional continental aquifers: The case of the Guarani Aquifer System. Hydrological Processes, 33, 2266–2278.

    Article  Google Scholar 

  • Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzionc, 1st. Ital. Attuari. G., 4, 1–11.

    Google Scholar 

  • Kulaksız, S., & Bau, M. (2011). Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International, 37(5), 973–979. https://doi.org/10.1016/j.envint.2011.02.018

    Article  CAS  Google Scholar 

  • Lee, J. H., & Byrne, R. H. (1992). Complexation of trivalent rare earth element (Ce, Eu, Gd, Tb, Yb) by carbonates ions. Geochimica Et Cosmochimica Acta, 57, 295–302.

    Google Scholar 

  • Leite, C. M. C. (2019). Traçadores ambientais como ferramentas de identificação da origem e idade das águas subterrâneas do sistema de abastecimento público no município de São Carlos [Environmental tracers as tools to identify the origin and age of groundwater from the public supply system in the municipality of Sao Carlos]. Doctoral thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. https://doi.org/10.11606/T.18.2020.tde-13022020-171557

  • Leite, C. M. C., Wendland, E., & Gastmans, D. (2021). Hydrogeochemical characterization of groundwater for public supply in the Northeastern portion of the Guarani Aquifer System. Eng. Sanit. Ambient., 26(1), 2021. https://doi.org/10.1590/s1413-415220190087

    Article  Google Scholar 

  • Lima, A. P., & Amorim, M. C. C. T. (2014). Análise de episódios de alagamentos e inundações urbanas na cidade de São Carlos a partir de notícias de jornal. Revista Brasileira De Climatologia, 15, 182–204.

    Google Scholar 

  • Lima, G. D. P., Meyer, J. R., Khosla, K., Dunfield, K. E., & Parker, B. L. (2018). Spatial variability of microbial communities in a fractured sedimentary rock matrix impacted by a mixed organics plume. Journal of Contaminant Hydrology, 218, 110–119. https://doi.org/10.1016/j.jconhyd.2018.10.001

    Article  CAS  Google Scholar 

  • Lucas, M., Cantareira, G. D., & Wendland, E. (2019). Solute transport performance analysis of equivalent apertures in a single undisturbed basaltic. Hydrogeology Journal, 27, 1–12.

    Google Scholar 

  • Martínez, D., Moschione, E., Bocanegra, E., Glok Galli, M., & Aravena, R. (2014). Distribution and origin of nitrate in groundwater in an urban and suburban aquifer in Mar del Plata, Argentina. Environmental earth sciences, 72, 1877-1886. https://doi.org/10.1007/s12665-014-3096-x

  • McLennan, S. M. (1989). Rare Earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Reviews in Mineralogy, 21, 169–200.

    CAS  Google Scholar 

  • Mitchell, R. J., Babcock, R. S., Gelinas, S., Nanus, L., & Stasney, D. E. (2003). Nitrate Distributions and Source Identification in the Abbotsford-Sumas Aquifer, Northwestern Washington State. Journal of Environmental Quality, 32, 789–800.

    Article  CAS  Google Scholar 

  • Moeller, P., Dulski, P., Bau, M., Knappe, A., Pekdeger, A., & Sommer-von Jarmersted, C. (2000). Anthropogenic gadolinium as a conservative tracer in hydrology. Journal of Geochemical Exploration, 69–70, 409-414. https://doi.org/10.1016/S0375-6742(00)00083-2

  • Mortatti, B. C., & Enzweiler, J. (2019). Major ions and rare earth elements hydrogeochemistry of the Atibaia and Jaguari rivers subbasins (Southeast Brazil). Applied Geochemistry, 111, e104461.

    Article  Google Scholar 

  • Moura, C. C., Gastmans, D., Kiang, C. H., Modesto, R. P., Rodrigues, P. F., Ruby, E. C., & Borges, A. V. (2015). Concentrações de nitrato nas águas subterrâneas em áreas rurais do município de São José do Rio Preto (SP). Águas Subterrâneas, 29(3), 268–284. https://doi.org/10.14295/ras.v29i2.27980

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, Volumes, 470–471, 855–864. https://doi.org/10.1016/j.scitotenv.2013.10.043

    Article  CAS  Google Scholar 

  • Pearson, K. (1895). Notes on regression and inheritance in case of two parents. Proceedings of the Royal Society of London, 58, 240–242.

    Article  Google Scholar 

  • Perroni, J. C. A., & Wendland, E. (2008). Avaliação das condições de ocorrência e explotação do sistema aqüífero guarani em São Carlos - SP. Águas Subterrâneas, 22, 13–24.

    Article  Google Scholar 

  • Rabelo, J. L., & Wendland, E. (2009). Assessment of groundwater recharge and water fluxes of the Guarani Aquifer System, Brazil. Hydrogeology Journal, 17, 1733–1748.

    Article  Google Scholar 

  • Rabiet, M., Brissaud, F., Seidel, J.-L., Pistre, S., & Elbaz-Poulichet, F. (2005). Deciphering the presence of wastewater in a medium-sized Mediterranean catchment using a multitracer approach. Applied Geochemistry, 20(8), 1587–1596. https://doi.org/10.1016/j.apgeochem.2005.04.005

    Article  CAS  Google Scholar 

  • Ram, A., Tiwari, S. K., Pandey, H. K., Chaurasia, A. K., Singh, S., & Singh, Y. V. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11, 46. https://doi.org/10.1007/s13201-021-01376-7

    Article  CAS  Google Scholar 

  • Reiser, M., & Semmler, W. (Eds.). (2013). Magnetresonanztomographie. Springer-Verlag.

  • Rogowska, J., Olkowska, E., Ratajczyk, W., & Wolska, L. (2018). Gadolinium as a new emerging contaminant of aquatic environments. Environmental toxicology and chemistry, 37(6), 1523-1534.

  • Rudolph, D. L., Conant, B., Jr., Bekeris, L. E., Cole, J., Frey, S. K., Koch, J. T., & Sousa, M. R. (2010). Monitoring of Selected Hog Farms to Assess the Impacts of Implemented BMPs Resulting from the Nutrient Management Act: A Research Project Conducted for Ontario Pork. University of Waterloo, Waterloo, Canada, 80.

  • Serviço Autônomo de Água e Esgoto de São Carlos (SAAE São Carlos) (2017) Produção de água e esgoto tratado. Disponível em: https://www.saaesaocarlos.com.br/joomla4/index.php/dadossaneamentomenutop/producaoaguaeesgotomenu. Acesso em: 27 fev. 2019.

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.2307/2333709

    Article  Google Scholar 

  • Showers, W. J., Genna, B., Mcdade, T., Bolich, R., & Fountain, C. (2008). Nitrate contamination in groundwater on an urbanized dairy farm. Environmental Science and Technology, 42(13), 4683–4688.

    Article  CAS  Google Scholar 

  • Smirnov, N. V. (1939). Estimate of deviation between empirical distribution functions in two independent samples. (Russian). Bulletin Moscow University, 2(2), 3-16. (6.1, 6.2).

  • Spalding, R. F., Hirsh, A. J., Exner, M. E., Stange, M., & Aravena, R. (2018). Integrated deep soil n and groundwater isotope investigation of n sources captured by municipal wells. Groundwater Monitoring and Remediationhttps://doi.org/10.1111/gwmr.12311

  • Suchy, M., Wassenaar, L. I., Graham, G., & Zebarth, B. (2018). High-frequency NO3− isotope (δ15N, δ18O) patterns in groundwater recharge reveal that short-term changes in land use and precipitation influence nitrate contamination trends. Hydrology and Earth System Sciences, 22, 4267–4279. https://doi.org/10.5194/hess-22-4267-2018

    Article  CAS  Google Scholar 

  • Tang, J., & Johannesson, K. H. (2005). Adsorption of rare earth elements onto Carrizo sand: Experimental investigations and modeling with surface complexation. Geochimica Et Cosmochimica Acta, 69(22), 5247–5261.

    Article  CAS  Google Scholar 

  • Teglmann, L., Wehe, C. A., & Birka, M. (2012). Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environonmental Science Technology, 46, 11929–11936.

    Article  Google Scholar 

  • Tepe, N., Romero, M., & Bau, M. (2014). High-technology metals as emerging contaminants: Strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012. Applied Geochemistry, 45, 191–197. https://doi.org/10.1016/j.apgeochem.2014.04.006

    Article  CAS  Google Scholar 

  • Thomsen, H. S. (2017). Are the increasing amounts of gadolinium in surface and tap water dangerous? Acta Radiologica, 58(3), 259–263.

    Article  Google Scholar 

  • Varnier, C., & Hirata, R. (2000). Contaminação da água subterrânea por nitrato no parque ecologico do Tietê - São Paulo, Brasil. In: 1st Joint World Congress on Groundwater, 2000, Fortaleza. Anais. Águas Subterrâneas, Fortaleza, 2000.

  • Varnier, C., Hirata, R., & Aravena, R. (2008). Uso de isótopos estáveis e gases para avaliação de desnitrificação na zona não-saturada do aquífero Adamantina (Urânia, SP). In: XV Congresso Brasileiro de Águas Subterrâneas, 2008, Campinas. Anais. Águas Subterrâneas, Campinas, 2008.

  • Varnier, C., Hirata, R., & Aravena, R. (2017). Examining nitrogen dynamics in the unsaturated zone under an inactive cesspit using chemical tracers and environmental isotopes. Applied Geochemistry, 78, 129–138.

    Article  CAS  Google Scholar 

  • Varnier, C., Iritani, M. A., Viotti, M., Oda, G. H., & Ferreira, L. M. R. (2010). Nitrato nas águas subterrâneas do Sistema Aquífero Bauru, área urbana do Município de Marília (SP). Revista do Instituto Geologico, v. 31, n. 1–2. Available at: https://ppegeo.igc.usp.br/index.php/rig/article/view/8922. Accessed Dec 2021.

  • Verbovsek, T. (2011). A comparison of parameters below the limit of detection in geochemical analyses by substitution methods. RMZ – Materials and Geoenvironment, 58(4), 393–404.

    CAS  Google Scholar 

  • Weinmann, H. J., Brasch, R. C., Press, W. R., et al. (1984). Characteristics of Gadolinium DTPA complex: A potential NMR contrast agent. American Journal of Roentgenology, 142, 619–624.

    Article  CAS  Google Scholar 

  • Wendland, E., Barreto, C. E. A. G., & Gomes, L. H. (2007). Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. Journal of Hydrology (Amsterdam), 342, 261–269.

    Article  Google Scholar 

  • World Health Organization. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.

  • Zhang, H., Xu, Y., Li, C. S., & Q., Yu, H. (2018b). (2018) Application of the dual isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.137134

    Article  Google Scholar 

  • Zhang, Q., Wang, H., & Wang, L. (2018a). Tracing nitrate pollution sources and transformations in the over-exploited groundwater region of north China using stable isotopes. Journal of Contaminant Hydrology, 218, 1–9. https://doi.org/10.1016/j.jconhyd.2018.06.001

    Article  CAS  Google Scholar 

  • Zuquette, L. V., Palma, J. B., & Pejon, O. J. (2009). Methodology to assess groundwater pollution conditions (current and pre-disposition) in the São Carlos and Ribeirão Preto regions, Brazil. Bulletin of Engineering Geology and the Environment, 68, 117–136. https://doi.org/10.1007/s10064-008-0173-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of São Paulo (Laboratory of Sanitation of the São Carlos School of Engineering – EESC-USP); State University of Campinas (Department of Geology and Natural Resource – UNICAMP) and University of California (Isotope Facility in the Department of Plant Science) for the use of laboratories and facilities to conduct the chemical analysis and data processing. Special thanks are given to the Service of Water and Sewage in São Carlos (SAAE São Carlos) which authorized and monitored the groundwater samplings from public supply wells; Department of Water and Sewage of the state of São Paulo (DAEE) and professor Didier Gastmans for their support during the data collection phase providing complementary information of the constructive data of the supply wells.

Funding

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq, grant number 427579/2016–3) and the São Paulo Research Foundation (FAPESP, process 2015/03806–1) for the financial support that made the present study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila M. C. Leite.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Evaluation of human inputs in the Guarani Aquifer System.

• Association of geochemical data with nitrate isotopes and Gadolinium analysis.

• Local concentrations of nitrate, even low, originated from septic waste.

• Incorporation of Gadolinium analysis differentiated younger from older leakages.

• Tracers detect contamination before more considerable volumes of water are damaged.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6352 KB)

Supplementary file2 (DOCX 15970 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, C.M.C., Coutinho, J.V., Morita, A.K.M. et al. Isotopes of nitrate and gadolinium fingerprints to assay human inputs in Guarani Aquifer System. Environ Monit Assess 195, 329 (2023). https://doi.org/10.1007/s10661-022-10869-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10869-0

Keywords

Navigation