Skip to main content
Log in

Variation in phytoplankton diversity during phycoremediation in a polluted Colombian Caribbean swamp

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytoplankton composition and abundance are considered among the bioindicators of variations in water quality, due to its sensitivity and rapid responses to changes in environmental parameters. The selection and scaling of the Microalgal Predominant Microbial Consortium (MPMC) were based on live samples collected from the Santiago Apóstol Swamp (SAS) and the Arroyo Grande de Corozal (AGC). The inoculum was scaled in a phycoculture plant, and the inoculation process was performed in the AGC that flows into the SAS. The phytoplankton community monitoring was performed from May 2019 to September 2021. In the process, a total of 1,652,258 gallons were inoculated. Precisely, 103 and 124 species were found in the AGC and SAS, respectively. By evaluating the physical, chemical, and microbiological variables in SAS in a multitemporal way based on the inoculation of the MPMC, it is possible to identify the variables that presented the greatest reduction. The density of SAS presented associations with dissolved oxygen, thermotolerant coliforms, Enterococci, pH, phosphorus, nitrates, speed, and Secchi. The AGC and SAS presented high trophic levels (eutrophication). This contamination by organic matter is probably due to the discharges of the domestic tributaries. The diversity of microalgae and cyanobacteria found in this study allows us to know the anthropogenic impact. The density of microalgae showed the positive impact of the treatment with MCPM, where there was a decrease in the species that denote organic contamination. The phytoremediation treatment was effective in terms of the changes observed in the physicochemical variables, and these changes were directly due to the efficiency of the treatment and not the natural behavior of the water sources in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005

    Article  CAS  Google Scholar 

  • Amoros, C., & Roux, A. L. (1988). Interaction between water bodies within the floodplains of larger rivers: Functions and development of conectivity. Munstersche Geographische Arbeiten, 29, 125–130.

    Google Scholar 

  • Astocondor, M. M., Huatuco, E. M., Terreros, H. M., & Delgado, R. T. (2017). Crecimiento Poblacional y Productividad de la Microalga Nativa Chlorella peruviana bajo Diferentes Salinidades. Revista de Investigaciones Veterinarias del Perú, 28(4), 976–986.

    Article  Google Scholar 

  • Bayley, P., Castello, L., Batista, V., & y Fabré, N. (2018). Response of Prochilodus nigricans to flood pulse variation in the central Amazon. Royal Society Open Science, 5, 1–15.

    Article  Google Scholar 

  • Baylón Coritoma, M., Roa Castro, K., SLibio Sánchez, T., Tapia Ugaz, L., Jara Pena, E., Macedo Prada, D., Salvatierra Sevillano, A., & Dextre Rubina, A. (2018). Como Indicadores de la Calidad Del Agua En Lagunas Altoandinas Del Departamento De Pasco (Perú) Evaluation of the diversity of phytoplanktonic algae as water quality indicators in high Andean lakes of the Department of Pasco (Peru). Ecologia Aplicada, 17(1), 119–132. https://doi.org/10.21704/rea.v17i1.1180

  • Bellinger, E. G., & Sigee, D. C. (2010). Freshwater algae: Identification and use as bioindicators. John Wiley & Sons.

  • Bicudo, C. E., & Menezes, M. (2006). Gêneros de Algas de Águas Continentais do Brasil: chave para identificação e descrições (RiMa Editora (ed.); Segunda Ed).

  • Biggs, B. J. F. (2000). Eutrophication of streams and rivers: Dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society, 19(1), 17–31. https://doi.org/10.2307/1468279

    Article  Google Scholar 

  • Blanco Lanza, S., Álvarez Blanco, I., Cejudo-Figueiras, C., Bécares Mantecón, E., Ector, L., García Asenjo, C., Seisdedos Fidalgo, P., Hernández García, N., & Rodríguez Muñoz, I. (2011). Guía de las diatomeas de la cuenca del Duero (León: Confederación Hidrográfica del Duero (ed.)). https://doi.org/10.1093/ndt/gfr419

  • Blinn, D. W., & Bailey, P. C. E. (2001). Land-use influence on stream water quality and diatom communities in Victoria, Australia : A response to secondary salinization. Hidrobiologia, 466, 231–244.

    Article  CAS  Google Scholar 

  • Bonecker, C. C., & Lansac-Tôha, F. A. (1996). Community structure of rotifers in two environments of the upper river Parana floodplain-Brazil. Hydrobiologia, 325, 137–150.

    Article  CAS  Google Scholar 

  • Carrillo López, D., Carvajal Aguilar, S., Coto Campos, J., Salgado Silva, V., Herrera Núñez, J., Rojas Cantillano, D., & Benavidez, C. (2013). Variación del oxígeno disuelto en el Río Burío-Quebrada Seca, Heredia, Costa Rica, en el periodo 2005 - 2010. https://repositorio.una.ac.cr/handle/11056/7468

  • Cirés Gómez, S., & Quesada del Corral, A. (2011). Catálogo de cianobacterias planctónicas potencialmente tóxicas de las aguas continentales españolas (©Ministerio de Medio Ambiente y Medio Rural y Marino (ed.); Ma Dolores, Issue APRIL 2011).

  • Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports, 11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003

    Article  Google Scholar 

  • Dwivedi, S., Srivastava, S., Mishra, S., Kumar, A., Tripathi, R. D., Rai, U. N., Dave, R., Tripathi, P., Charkrabarty, D., & Trivedi, P. K. (2010). Characterization of native microalgal strains for their chromium bioaccumulation potential: Phytoplankton response in polluted habitats. Journal of Hazardous Materials, 173(1), 95–101. https://doi.org/10.1016/j.jhazmat.2009.08.053

  • Ekwu, A. O., & Sikoki, F. (2006). Phytoplankton diversity in the cross river estuary of Nigeria. Journal of Applied Sciences and Environmental Management, 10, 89–95. https://doi.org/10.4314/jasem.v10i1.17296

    Article  Google Scholar 

  • García, D., Posadas, E., Blanco, S., Acién, G., García-Encina, P., Bolado, S., & Muñoz, R. (2017). Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.06.079

    Article  Google Scholar 

  • Gómez Luna, L. M. (2007). Microalgas: Aspectos Ecológicos y Biotecnológicos. Revista Cubana de Química, XIX(2), 3–20.

  • Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415. https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  • Gopal, B. (1994). The role of ecotones (transition zones) in the conservation and management of tropical inland waters. MitteilungenMitteilungen Internationale Vereinigung Für Theoretische Und Angewandte Limnologie, 24, 17–25.

    Google Scholar 

  • Graco, M., Flores, G., Ledesma, J., Purca, S., Gutiérrez, D., & Girón, M. (2006). Biogeochemical variability in the oxygen minimum zone of the upwelling Humboldt system off central Perú. Extended Abstracts of the International Conference The Humboldt Current System Conference: Climate, Ocean Dynamics Ecosystem Processes and Fisheries, 32–33.

  • Gutiérrez, J. E., Gutiérrez-Hoyos, N., Gutiérrez, J. S., Vives, M. J., & Sivasubramanian, V. (2021). Bioremediation of a sewage-contaminated tropical swamp through bioaugmentation with a microalgae-predominant microbial consortium. Indian Journal of Microbiology. https://doi.org/10.1007/s12088-021-00990-y

    Article  Google Scholar 

  • Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  • Iannacone, J., Alvariño, L., Moreno, R., Reyes, M., & Chauca, J. (2000). Culícidos (Diptera) del río Chillón y sectores adyacentes de la provincia constitucional del Callao, Perú, durante el Niño 1997–1998. Acta Entomológica Chilena., 24, 51–60.

    Google Scholar 

  • Jaramillo, J., & Aguirre, N. (2012). Cambios espacio-temporales del plancton en la Ciénaga de Ayapel (Córdoba-Colombia) durante la época de menor nivel del agua. Caldasia, 34, 213–226.

    Google Scholar 

  • Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375.

    Article  Google Scholar 

  • Junk, W. J. (1997). General aspects of floodplain ecology with special reference to Amazonian floodplain. Ecological Studies, 126, 3–20.

    Article  Google Scholar 

  • Junk, W. J. & Wantzen, K. M. (2003). The flood pulse concept: New aspects, approaches and applications an updates. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, 117–149.

  • Junk, W. J., Piedade, M. T., Wittmann, F., Schöngart, J., & Parolin, P. (Eds.). (2010). Amazonian floodplain forests: Ecophysiology, biodiversity and sustainable management. 210. Springer Science & Business Media.

  • Kiran, M., Bhaskar, M., & Tiwari, A. (2016). Phycoremediation of eutrophic lakes using diatom algae. Lake Sciences and Climate Change, 103–116. https://doi.org/10.5772/711

  • Lepš, J., & Šmilauer, P. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press.

    Book  Google Scholar 

  • Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., Muñoz, R., & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127–1137. https://doi.org/10.1016/j.biortech.2017.06.054

    Article  CAS  Google Scholar 

  • Luo, S., Berges, J. A., He, Z., & Young, E. B. (2017a). Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. Algal Research, 24, 527–539. https://doi.org/10.1016/j.algal.2016.10.006

    Article  Google Scholar 

  • Luo, Y., Le-Clech, P., & Henderson, R. K. (2017b). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437. https://doi.org/10.1016/j.algal.2016.10.026

    Article  Google Scholar 

  • Ma, X., Zhou, W., Fu, Z., Cheng, Y., Min, M., Liu, Y., Zhang, Y., Chen, P., & Ruan, R. (2014). Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technology, 167, 8–13. https://doi.org/10.1016/j.biortech.2014.05.087

    Article  CAS  Google Scholar 

  • Margalef, R. (1983). Limnología (p. 1010). Ediciones Omega.

    Google Scholar 

  • Martínez-Silva, P. (2015). Variación espacio-temporal de microalgas acuáticas del embalse de Betania – Huila y su relación con la calidad del agua. Intropica, 10, 11–19.

    Article  Google Scholar 

  • Martinez-Silva, P., Delgado-Fonseca, J. F., & Muñoz-Yustres, J. L. (2016). Diversidad de Géneros del Fitoplancton del embalse de Betania–Huila y su importancia como bioindicadores - Diversity of Phytoplankton genera of the Betania-Huila reservoir and its importance as bioindicators. Revista Científica, 2(25), 241. https://doi.org/10.14483//udistrital.jour.rc.2016.25.a8

  • Meng, J., Li, J., Li, J., Antwi, P., Deng, K., Wang, C., & Buelna, G. (2015). Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Bioresource Technology, 198, 884–890. https://doi.org/10.1016/j.biortech.2015.09.023

    Article  CAS  Google Scholar 

  • Middleton, B. A. (1999). Wetland restoration, flood pulsing and disturbance dynamics (p. 389). John Wiley & Sons.

    Google Scholar 

  • Middleton, B. A. (2002). Flood pulsing in wetlands: Restoring the natural hydrological balance (p. 308). John Wiley & Sons.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (3rd ed., p. 920). John Wiley & Sons, Inc.

    Google Scholar 

  • Montoya-M, Y., Ramírez-Restrepo, J. J., & Segecin-Moro, R. (2008). Diatomeas perifíticas de la zona de ritral del río Medellín, Antioquia (Colombia). Revista Actualidades Biológicas, 30(89), 181–192.

    Google Scholar 

  • Montoya-Moreno, Y., & Aguirre, N. (2013). Dinámica Del Ensamblaje Algal Epifítico En El Sistema De Planos Inundables De Ayapel a Través Del Pulso De Inundación. Revista U.D.C. A Actualidad & Divulgación Científica, 16(2), 491–500.

  • Municipio de San Benito Abad. (2012). Plan para la Gestión del Riesgo de Desastre. Consejo Municipal para la Gestión de Riesgo de Desastres (CMGRD).

  • Neiff, J. J. (1999). El régimen de pulsos en ríos y grandes humedales de Sudamérica. En: Malvárez, A.I. (ed) Tópicos sobre humedales subtropicales y templados de Sudamérica. Oficina Regional de Ciencia y Tecnología de la Unesco para América Latina y el Caribe. Montevideo, 229.

  • Neiff, J. J., Iriondo, M. H., & Carignan, R. (1994). Large tropical South American wetlands: A overview. En: R.J. Naiman & H. Decamp (eds). The ecology and management of aquatic-terrestrial ecotones. Man and the biosphere series. The Parthenon Publ. Group Inc., Park Ridge, 4, 156–165.

  • Novelo, E. (2011). Fascículo 90. Cyanoprokaryota J. Komárek. In Flora del Valle de Tehuacán-Cuicatlán (p. 103). Universidad Nacional Autónoma de México.

  • Novelo, E. (2012a). Fascículo 102. Bacillariophyta Hustedt. In Flora del valle de Tehúacan-Cuicatlán (Universida, p. 237). Universidad Nacional Autónoma de México.

  • Novelo, E. (2012b). Fascículo 94. Chlorophyta Pascher. In Flora del valle de Tehúacan-Cuicatlán (p. 93). Universidad Nacional Autónoma de México.

  • Pinilla, G. A. (1998). Indicadores biológicos en ecosistemas acuáticos continentales de Colombia. Compilación bibliográfica. Fundación Universidad de Bogotá Jorge Tadeo Lozano.

    Google Scholar 

  • Pinilla, G., & Duarte, J. (2006). La importancia de las Ciénagas del Canal del Dique y la Determinación de su Estado Limnológico. Cormagdalena-Universidad Nacional de Colombia. 2006. Informe cm. Disponible en: http://www.bdigital.unal.edu.co/3489/. 2020-04-06.

  • Pinto-Coelho, R. M. (1987). Fluctuações sazonais e de curta duração na comunidade zooplancônica do lago Paranoá, BrasíliaDF, Brasil. Revista Brasilera De Biologia, 47, 17–29.

    Google Scholar 

  • R Development Core Team. (2017). R: A language and environment for sta- tistical computing. R Foundation for Statistical Computing.

  • Ramírez González, A., & Viña Vizcaíno, G. (1998). Limnología Colombiana: Aportes a su conocimiento y estadística de análisis (C. E. F. U. de B. J. T. Lozano (ed.)). Panamericana Editores.

  • Ramírez, J. (2000). Fitoplancton de Agua Dulce: Bases Ecológicas, Taxonómicas y Sanitarias (U. de Antioquia (ed.)).

  • Raven, J. A., Giordano, M., Beardall, J., & Maberly, S. C. (2012). Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1588), 493–507. https://doi.org/10.1098/rstb.2011.0212

  • Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge University Press.

    Book  Google Scholar 

  • Rice, E., Baird, R., & Eaton, A. (2017). Standard methods for the examination of water and wastewater (W. and A. American Water Works Association (AWWA (ed.); 23 ed). American Public Health Association.

  • Risser, P. G. (1990). The ecological importance of land-water ecotones. In: Naiman, R. J. & H. Decamps. (Eds.). The ecology and management of aquatic-terrestrial ecotones. Man and the biosphere series. The Parthenon Publ. Group Inc., Park Ridge, 4, 7–21.

  • Rivera González, M., & Gómez Gómez, L. (2010). Identificación De Cianobacterias Potencialmente Productoras De Cianotoxinas En La Curva De Salguero Del Río Cesar. Luna Azul, 31, 17–25. https://doi.org/10.17151/luaz.2010.31.3

  • Roldán Pérez, G., & Ramírez Restrepo, J. J. (2008). Fundamentos de limnología neotropical (Universidad de Antioquia (ed.); 2a ed.). Universidad de Antioquia.

  • Romero, M. D. B. (2010). Atlas de organismos planctónicos en los humedales de Andalucía (Consejería). Junta de Andalucía.

  • Sala, S. E., Ramírez, J. J., & Plata, Y. (2008). Diatoms from lentic and lotic systems in Antioquia, Chocó and Santander Departments in Colombia. Revista de Biologia Tropical, 56(3), 1159–1178. https://doi.org/10.15517/rbt.v56i3.5701

  • Sivasubramanian, V. (2016). Phycoremediation and business prospects. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802830-8.00017-4

    Book  Google Scholar 

  • Spaulding, S. A., Lubinski, D. J., & Potapova, M. (2010). Diatoms of the United States.

  • Stevenson, R. J., Bothwell, M., & Lowe, R. (1996). Algal ecology: Freshwater benthic ecosystem (R. J. Stevenson, M. Bothwell, R. Lowe, & J. Thorp (eds.)). Academic Press.

  • Streble, H., & Krauter, D. (1987). Atlas de los microorganismos de agua dulce: La vida en una gota de agua. OMEGA.

  • Sun, J. (2011). Marine phytoplankton and biological carbon sink. Acta Ecologica Sinica, 31, 5372–5378.

    CAS  Google Scholar 

  • Unnithan, V. V., Unc, A., & Smith, G. B. (2014). Mini-review: A priori consideration for microbial-algal interactions in biofuel algal systems receiving municipal wastewaters. Algal Research, 4, 35–40.

    Article  Google Scholar 

  • Taylor, J. C., Harding, W. R., & Archibald, C. G. M. (2007). An illustrated guide to some common diatom species from South Africa an illustrated guide to some common diatom. Water Research Commission.

  • Van Vuuren, S. J., Taylor, J., Gerber, A., & Van Ginkel, C. (2006). Easy identification of the most common freshwater algae. A guide for the identification of microscopic algae in South African freshwaters (S. J. Van Vuuren (ed.); Issue May). DWAF and NWU.

  • Vasquez, E., & Rey, J. (1993). Rotifer and cladoceran zooplankton assemblages in lakes on the Orinoco River floodplain (Venezuela). Verhandlungen Internationale Vereinigung Für Theoretischund Angewandte Limnologie., 25, 912–917.

    Google Scholar 

  • Vélez-Azañero, A., & Lizárraga-Travaglini, A. (2013). Diversidad de Carabidae (Coleoptera) asociados a la cuenca baja del río Lurín, Lima. Perú. the Biologist (lima), 11, 97–106.

    Google Scholar 

  • Vilardy, S., Jaramillo, Ú., Flórez, C., Cortés-Duque, J., Estupiñán, L., Rodríguez, J. & Aponte, C. (2014). Principios y criterios para la delimitación de humedales continentales: una herramienta para fortalecer la resiliencia y la adaptación al cambio climático en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, 100.

  • Vizcaíno Rodriguez, L., Juárez Carillo, E., Caro Becerra, J., Baltazar Díaz, T., Luján Godínez, R., & Lara González, M. (2017). Contaminación ambiental y biodiversidad de fitoplancton en el Lago Cajititlán. Revista De Salud Ambiental, 17(2), 130–138.

    Google Scholar 

  • Ward, J. V., & Stanford, J. A. (1995). Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management, 11, 105–119.

    Article  Google Scholar 

  • Wetzel, R. G. (1983). Periphyton of freshwater ecosystems (R. G. Wetzel (ed.)). Springer Netherlands. https://doi.org/10.1007/978-94-009-7293-3

  • Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371–378. https://doi.org/10.1016/j.watres.2015.12.054

    Article  CAS  Google Scholar 

  • Zapata Anzola, A. M., & Donato Rondon, J. C. (2005). Cambios diarios de las algas perifíticas y su relación con la velocidad de corriente en un río tropical de montaña (río Tota - Colombia). Limnetica, 24(3–4), 327–338.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Gobernación of Sucre for funding the study. The authors also thank the Universidad Simon Bolivar and Phycore for providing the resources used for the research.

Funding

This study was funded by the Gobernación de Sucre as part of a research project on the effectiveness and efficiency of phycoremediation for the recovery of the water ecosystem and its productive capacity in the Department of Sucre.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and design of the study. Materials preparation and analyses were performed by Nohora Gutiérrez-Hoyos; data collection was done by Nohora Gutiérrez-Hoyos and Camila Sánchez; supervision was done by Jaime E. Gutiérrez. The first draft of the manuscript was written by Nohora Gutiérrez-Hoyos. All authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nohora Gutiérrez-Hoyos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Hoyos, N., Sánchez, C. & Gutiérrez, J.E. Variation in phytoplankton diversity during phycoremediation in a polluted Colombian Caribbean swamp. Environ Monit Assess 195, 327 (2023). https://doi.org/10.1007/s10661-022-10843-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10843-w

Keywords

Navigation