Abstract
The Pampean plains in South America are well-known for their livestock and agricultural productivity. The peri-urban watershed of El Pescado Creek (Central-Eastern Argentina) has been significantly modified in the last few years due to local land-use changes. This work aims to analyze the dynamics of nutrient content associated with the surface water-groundwater relationship in this watershed and to define the trophic state of the watercourse. Sampling sites were selected for both surface water and groundwater analyses, and field surveys were carried out during the spring and summer of 2017. Handmade shallow groundwater wells were installed along the floodplain of the watercourse. Deep groundwater was analyzed in agricultural and livestock farms. In situ determinations included dissolved oxygen (DO), pH, electrical conductivity (EC), turbidity, transparency, and temperature measurements. Laboratory analyses included NO3−-N, total nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP), and phytobenthonic and phytoplanktonic chlorophyll-a. Results showed an increase in EC and nutrient concentration in the summer samples (both in surface water and shallow groundwater), along with higher turbidity of the surface water. Water flow was dissimilar between samplings (spring: 1.735 m3/s, summer: 0.065 m3/s), showing contrasting hydrological scenarios. Low wash-out conditions enhanced phytobenthonic algae biomass growth, turning most of the sites towards a eutrophic state in summer. Our results showed that the dynamics of nitrogen and phosphorus compounds in the watershed of El Pescado Creek depend on the hydrodynamic processes of the watershed, the different land-uses, and the chemical characteristics of these compounds. In order to develop sustainable management strategies, further understanding of nutrient concentrations effects, and the factors affecting them, must be done in this area of the Pampean region.






Data availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
References
APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). American Public Health Association.
Auge, M. (2000). Explotación sostenible de agua subterránea en La Plata-Argentina. (Sustainable groundwater exploitation in La Plata-Argentina). 1st Joint World Congress on Groundwater. Fortaleza. Retrieved December 20, 2021, from https://aguassubterraneas.abas.org/asubterraneas/article/view/24097/16126
Baker, B. J., King, K. W., & Torbert, H. A. (2007). Runoff losses of dissolved reactive phosphorous from organic fertilizer applied to sod. Transactions of the ASABE, 50(2), 449–454.
Biggs, B. J. F. (2000). Eutrophication of streams and rivers: Dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society, 19, 17–31.
Bowes, M. J., Gozzard, E., Johnson, A. C., Scarlett, P. M., Roberts, C., Read, D. S., Armstrong, L. K., Harman, S. A., & Wickham, H. D. (2012). Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: Are phosphorus concentrations beginning to limit phytoplankton biomass? Science of the Total Environment, 426, 45–55. https://doi.org/10.1016/j.scitotenv.2012.02.056
Cabrera, A. L. (1971). Fitogeografía de la República Argentina. Boletin de la Sociedad Argentina de la Botánica, 14(1–2), 1–42.
Canter, L. W. (2019). Nitrates in groundwater. Routledge.
Carol, E., Kruse, E., Laurencena, P., Rojo, A., & Deluchi, M. (2012). Ionic exchange in groundwater hydrochemical evolution. Study case: The drainage basin of El Pescado Creek (Buenos Aires province, Argentina). Environment and Earth Science, 65, 421–428.
Cesanelli, A., & Guarracino, L. (2011). Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeology Journal, 19, 629–639. https://doi.org/10.1007/s10040-011-0708-3
Chalar, G., Arocena, R., Pacheco, J. P., & Fabián, D. (2011). Trophic assessment of streams in Uruguay: A trophic state index for benthic invertebrates (TSI-BI). Ecological Indicators, 11, 362–369. https://doi.org/10.1016/j.ecolind.2010.06.004
CISAUA, Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario. (2006). Análisis ambiental del partido de La Plata: Aportes al ordenamiento territorial (Environmental analysis of La Plata: tools for territorial management). 1ª ed. Consejo Federal de Inversiones, Buenos Aires 124p. Retrieved November 10, 2021, from http://sedici.unlp.edu.ar/handle/10915/27046
Cortelezzi, A., Sierra, M. V., Gómez, N., Marinelli, C., & Rodrigues Capítulo, A. (2013). Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environmental Monitoring and Assessment, 185(7), 5801–5815. https://doi.org/10.1007/s10661-012-2985-2
Dai, C., Liu, Y., Wang, T., Li, Z., & Zhou, Y. (2018). Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agricultural Water Management, 210, 41–48. https://doi.org/10.1016/j.agwat.2018.07.032
Davie, T. (2008). Fundamentals of hydrology. Second edition. Routledge fundamentals of physical geography series. Taylor & Francis Group. Pp 221.
DeFries, R., Nagendra, H. (2017). Ecosystem management as a wicked problem. Science, 356(6335), 265–270. Retrieved August 15, 2021, from https://www.science.org/doi/epdf/10.1126/science.aal1950
Delgado, M. I., Carol, E., Casco, M. A., Mac Donagh, M. E. (2018). The peri-urban Interface: hydrological effects of anthropogenic pressure. Pollution Research, 37(May Suppl), 83–91.
Delgado, M. I., Carol, E., & Casco, M. A. (2020a). Land-use changes in the periurban interface: Hydrologic consequences on a flatland-watershed scale. Science of the Total Environment, 722, 137836. https://doi.org/10.1016/j.scitotenv.2020.137836
Delgado, M. I., Carol, E., Mac Donagh, M. E., & Casco, M. A. (2020b). Chemical variation of surface water and groundwater in relation to water balance in the watershed of El Pescado Creek (Central-Eastern Argentina). Environmental Earth Sciences, 79, 399. https://doi.org/10.1007/s12665-020-09143-8
Delgado M. I., Carol E., Di Lello C., Mac Donagh M. E. (2020c). Distribución y concentración de elementos traza en aguas superficiales y subterráneas del arroyo El Pescado, Argentina. (Distribution and concentration of trace elements in surface water and groundwater of El Precado Creek, Argentina). Revista del Museo de La Plata. https://doi.org/10.24215/25456377e118
Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., Larigauderie, A., Adhikari, J. R., Arico, S., Báldi, A., Bartuska, A., Baste, I. A., Bilgin, A., Brondizio, E., Chan, K. M. A., Figueroa, V. E., Duraiappah, A., Fischer, M., & Hill, R) Zlatanova, D. (2015). The IPBES conceptual framework — Connecting nature and people. Current Opinion in Environmental Sustainability, 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002
Dodds, W. K. (2006). Eutrophication and trophic state in rivers and streams. Limnology and Oceanography, 51(1 II), 671–680. https://doi.org/10.4319/lo.2006.51.1_part_2.0671
Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32, 1455–1462.
El-Khoury, A., Seidou, O., Lapen, D. R., Que, Z., Mohammadian, M., Sunohara, M., & Bahram, D. (2015). Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. Journal of Environmental Management, 151, 76–86. https://doi.org/10.1016/j.jenvman.2014.12.012
Ferreira, A. C., & Rodrigues Capítulo, A. (2017). Growth and survival of juvenile Pomacea canaliculata (Gastropoda: Ampullariidae) in plain streams associated to different land uses. Studies on Neotropical Fauna and Environment, 52(2), 95–102. https://doi.org/10.1080/01650521.2017.1294359
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309, 570–574.
Frazar, S., Gold, A. J., Addy, K., Moatar, F., Birgand, F., Schroth, A. W., Kellogg, D. Q., & Pradhanang, S. M. (2019). Contrasting behavior of nitrate and phosphate flux from high flow events on small agricultural and urban watersheds. Biogeochemistry, 145(1), 141–160.
Gabellone, N. A., Claps, M. C., Solari, L. C., & Neschuk, N. C. (2005). Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry, 75, 455–477.
Gabellone, N. A., Claps, M. C., Solari, L. C., Neschuk, N. C., & Ardohain, D. M. (2013). Spatial and temporal distribution pattern of phosphorus fractions in a saline lowland river with agricultural land use (Salado River, Buenos Aires, Argentina). Fundamental and Applied Limnology, 183(4), 271–286.
Gallardo, M., Elia, A., & Thompson, R. B. (2020). Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agricultural Water Management, 240, 106209. https://doi.org/10.1016/j.agwat.2020.106209
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674
Graziano, M., Giorgi, A., & Feijoó, C. (2021). Multiple stressors and social-ecological traps in Pampean streams (Argentina): A conceptual model. Science of the Total Environment, 765, 142785. https://doi.org/10.1016/j.scitotenv.2020.142785
Herrero, M. A., & Gil, S. B. (2008). Consideraciones ambientales de la intensificación en producción animal (Environmental considerations of the animal production intensification). Ecología Austral, 18, 273–289.
Kruse, E., Carol, E., Mancuso, M., Laurencena, P., Deluchi, M., & Rojo, A. (2013). Recharge assessment in an urban area: A case study of La Plata. Argentina. Hydrogeol. J., 2, 1091–1100. https://doi.org/10.1007/s10040-013-0981-4
Laurencena, P., Kruse, E., Rojo, A., Deluchi, M., Carol, E. (2005). Variaciones de niveles freáticos en la cuenca del arroyo El Pescado (provincia de Buenos Aires). (Variations in phreatic levels in the watershed of El Pescado Creek (Buenos Aires province)). Retrieved November 08, 2021, from http://naturalis.fcnym.unlp.edu.ar/repositorio/_documentos/sipcyt/bfa003130.pdf
Licursi, M., & Gómez, N. (2002). Benthic diatoms and some environmental conditions in three lowland streams. Annales De Limnologie, 38(2), 109–118. https://doi.org/10.1051/limn/2002009
Liu, J., Mooney, H., Hull, V., Davis, S., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K. C., Gleick, P., Kremen, C., & Li, S. (2015). Systems integration for global sustainability. Science, 347(6225), 1258832. https://doi.org/10.1126/science.1258832
Lorenzen, C. I. (1967). Determination of chlorophyll and phaeopigments, spectrophotometric equations. Limnology and Oceanography, 12, 343–346. https://doi.org/10.4319/lo.1967.12.2.0343
Melaku, S., Wondimu, T., Dams, R., & Moens, L. (2007). Pollution status of tinishu akaki river and its tributaries (Ethiopia) evaluated using physico-chemical parameters, major ions, and nutrients. Bulletin of the Chemical Society of Ethiopia, 21(1), 13–22. https://doi.org/10.4314/bcse.v21i1.61364
Meneses, B. M., Reis, R., Vale, M. J., & Saraiva, R. (2015). Land use and land cover changes in Zêzere watershed (Portugal) - Water quality implications. Science of the Total Environment, 527–528, 439–447.
Moreiro Varela, J., Di Lello, C., Delgado, M. I. (2020). Calidad del agua para consumo en establecimientos rurales del partido de Magdalena, provincia de Buenos Aires. 1.15° Encuentro Internacional de Ciencias de la Tierra (E-ICES). Retrieved November 03, 2021, from https://www.uncuyo.edu.ar/ices/upload/2021-actas-de-trabajos-completos-del-e-ices-15.pdf
Moustafa, M. Z. (1999). Analysis of P retention in free-water surface treatment wetlands. Hydrobiology, 392, 41–53.
Ocón, C., & Rodriguez Capítulo, A. (2012). Assessment of water quality in temperate-plain streams. (Argentina, South America) using a multiple approach. Ecología Austral, 22, 81–91.
Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran. KSCE Journal of Civil Engineering, 21, 134–140. https://doi.org/10.1007/s12205-016-0572-8
Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science, 362 (6417), eaav0294. https://doi.org/10.1126/science.aav0294
Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Environmental Pollution, 100, 179–196.
Solis, M., Mugni, H., Hunt, L., Marrochi, N., Fanelli, S., & Bonetto, C. (2016). Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina). Environmental Monitoring and Assessment, 188, 539. https://doi.org/10.1007/s10661-016-5545-3
Solis, M., Arias, M., Fanelli, S., Bonetto, C., & Mugni, H. (2019). Agrochemical´s effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecological Indicators, 101, 373–379.
Staviski, A. (2013). Panorama de la plasticultura en Argentina. (Plasticulture overview in Argentina). Plásticos, 308, 27–33. Retrieved September 02, 2021 from http://www.revistaplasticos.com/308/files/assets/basic-html/page27.html
Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the Total Environment, 650, 2751–2760. https://doi.org/10.1016/j.scitotenv.2018.10.018
USDA (United States Department of Agriculture). (1972). Section "Discussion": Hydrology. National Engineering Handbook. Soil Conservation Service, Washington, DC.
Wang, J., Chen, J., Jin, Z., Guo, J., Yang, H., Zeng, Y., & Liu, Y. (2020). Simultaneous removal of phosphate and ammonium nitrogen from agricultural runoff by amending soil in lakeside zone of Karst area, Southern China. Agriculture, Ecosystems & Environment, 289, 106745.
Wick, K., Heumesser, C., & Schmid, E. (2012). Groundwater nitrate contamination: Factors and indicators. Journal of Environmental Management, 111, 178–186.
Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin. Ethiopia. Science of the Total Environment, 575, 724–741. https://doi.org/10.1016/j.scitotenv.2016.09.124
Acknowledgements
The authors also thank, for providing chlorophyll-a analysis facilities, the Instituto de Limnología Dr. Raúl Ringuelet (CONICET-UNLP), La Plata, Argentina.
Funding
Funding was provided by Grant N843 and Grant N944, from the Incentive Program for Teaching and Research, Ministry of Education, Argentina.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Delgado, M.I., Mac Donagh, M.E., Casco, M.A. et al. Nutrient dynamics in water resources of productive flatland territories in the Pampean region of Argentina: evaluation at a watershed scale. Environ Monit Assess 195, 236 (2023). https://doi.org/10.1007/s10661-022-10838-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-022-10838-7