Skip to main content

Advertisement

Log in

Nutrient dynamics in water resources of productive flatland territories in the Pampean region of Argentina: evaluation at a watershed scale

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Pampean plains in South America are well-known for their livestock and agricultural productivity. The peri-urban watershed of El Pescado Creek (Central-Eastern Argentina) has been significantly modified in the last few years due to local land-use changes. This work aims to analyze the dynamics of nutrient content associated with the surface water-groundwater relationship in this watershed and to define the trophic state of the watercourse. Sampling sites were selected for both surface water and groundwater analyses, and field surveys were carried out during the spring and summer of 2017. Handmade shallow groundwater wells were installed along the floodplain of the watercourse. Deep groundwater was analyzed in agricultural and livestock farms. In situ determinations included dissolved oxygen (DO), pH, electrical conductivity (EC), turbidity, transparency, and temperature measurements. Laboratory analyses included NO3-N, total nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP), and phytobenthonic and phytoplanktonic chlorophyll-a. Results showed an increase in EC and nutrient concentration in the summer samples (both in surface water and shallow groundwater), along with higher turbidity of the surface water. Water flow was dissimilar between samplings (spring: 1.735 m3/s, summer: 0.065 m3/s), showing contrasting hydrological scenarios. Low wash-out conditions enhanced phytobenthonic algae biomass growth, turning most of the sites towards a eutrophic state in summer. Our results showed that the dynamics of nitrogen and phosphorus compounds in the watershed of El Pescado Creek depend on the hydrodynamic processes of the watershed, the different land-uses, and the chemical characteristics of these compounds. In order to develop sustainable management strategies, further understanding of nutrient concentrations effects, and the factors affecting them, must be done in this area of the Pampean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). American Public Health Association.

    Google Scholar 

  • Auge, M. (2000). Explotación sostenible de agua subterránea en La Plata-Argentina. (Sustainable groundwater exploitation in La Plata-Argentina). 1st Joint World Congress on Groundwater. Fortaleza. Retrieved December 20, 2021, from https://aguassubterraneas.abas.org/asubterraneas/article/view/24097/16126

  • Baker, B. J., King, K. W., & Torbert, H. A. (2007). Runoff losses of dissolved reactive phosphorous from organic fertilizer applied to sod. Transactions of the ASABE, 50(2), 449–454.

    Article  Google Scholar 

  • Biggs, B. J. F. (2000). Eutrophication of streams and rivers: Dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society, 19, 17–31.

    Article  Google Scholar 

  • Bowes, M. J., Gozzard, E., Johnson, A. C., Scarlett, P. M., Roberts, C., Read, D. S., Armstrong, L. K., Harman, S. A., & Wickham, H. D. (2012). Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: Are phosphorus concentrations beginning to limit phytoplankton biomass? Science of the Total Environment, 426, 45–55. https://doi.org/10.1016/j.scitotenv.2012.02.056

    Article  CAS  Google Scholar 

  • Cabrera, A. L. (1971). Fitogeografía de la República Argentina. Boletin de la Sociedad Argentina de la Botánica, 14(1–2), 1–42.

    Google Scholar 

  • Canter, L. W. (2019). Nitrates in groundwater. Routledge.

    Book  Google Scholar 

  • Carol, E., Kruse, E., Laurencena, P., Rojo, A., & Deluchi, M. (2012). Ionic exchange in groundwater hydrochemical evolution. Study case: The drainage basin of El Pescado Creek (Buenos Aires province, Argentina). Environment and Earth Science, 65, 421–428.

    Article  CAS  Google Scholar 

  • Cesanelli, A., & Guarracino, L. (2011). Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeology Journal, 19, 629–639. https://doi.org/10.1007/s10040-011-0708-3

    Article  Google Scholar 

  • Chalar, G., Arocena, R., Pacheco, J. P., & Fabián, D. (2011). Trophic assessment of streams in Uruguay: A trophic state index for benthic invertebrates (TSI-BI). Ecological Indicators, 11, 362–369. https://doi.org/10.1016/j.ecolind.2010.06.004

    Article  CAS  Google Scholar 

  • CISAUA, Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario. (2006). Análisis ambiental del partido de La Plata: Aportes al ordenamiento territorial (Environmental analysis of La Plata: tools for territorial management). 1ª ed. Consejo Federal de Inversiones, Buenos Aires 124p. Retrieved November 10, 2021, from http://sedici.unlp.edu.ar/handle/10915/27046

  • Cortelezzi, A., Sierra, M. V., Gómez, N., Marinelli, C., & Rodrigues Capítulo, A. (2013). Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environmental Monitoring and Assessment, 185(7), 5801–5815. https://doi.org/10.1007/s10661-012-2985-2

    Article  CAS  Google Scholar 

  • Dai, C., Liu, Y., Wang, T., Li, Z., & Zhou, Y. (2018). Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agricultural Water Management, 210, 41–48. https://doi.org/10.1016/j.agwat.2018.07.032

    Article  Google Scholar 

  • Davie, T. (2008). Fundamentals of hydrology. Second edition. Routledge fundamentals of physical geography series. Taylor & Francis Group. Pp 221.

  • DeFries, R., Nagendra, H. (2017). Ecosystem management as a wicked problem. Science, 356(6335), 265–270. Retrieved August 15, 2021, from https://www.science.org/doi/epdf/10.1126/science.aal1950

  • Delgado, M. I., Carol, E., Casco, M. A., Mac Donagh, M. E. (2018). The peri-urban Interface: hydrological effects of anthropogenic pressure. Pollution Research, 37(May Suppl), 83–91.

  • Delgado, M. I., Carol, E., & Casco, M. A. (2020a). Land-use changes in the periurban interface: Hydrologic consequences on a flatland-watershed scale. Science of the Total Environment, 722, 137836. https://doi.org/10.1016/j.scitotenv.2020.137836

    Article  CAS  Google Scholar 

  • Delgado, M. I., Carol, E., Mac Donagh, M. E., & Casco, M. A. (2020b). Chemical variation of surface water and groundwater in relation to water balance in the watershed of El Pescado Creek (Central-Eastern Argentina). Environmental Earth Sciences, 79, 399. https://doi.org/10.1007/s12665-020-09143-8

    Article  CAS  Google Scholar 

  • Delgado M. I., Carol E., Di Lello C., Mac Donagh M. E. (2020c). Distribución y concentración de elementos traza en aguas superficiales y subterráneas del arroyo El Pescado, Argentina. (Distribution and concentration of trace elements in surface water and groundwater of El Precado Creek, Argentina). Revista del Museo de La Plata. https://doi.org/10.24215/25456377e118

  • Díaz, S., Demissew, S., Carabias, J., Joly, C., Lonsdale, M., Ash, N., Larigauderie, A., Adhikari, J. R., Arico, S., Báldi, A., Bartuska, A., Baste, I. A., Bilgin, A., Brondizio, E., Chan, K. M. A., Figueroa, V. E., Duraiappah, A., Fischer, M., & Hill, R) Zlatanova, D. (2015). The IPBES conceptual framework — Connecting nature and people. Current Opinion in Environmental Sustainability, 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002

    Article  Google Scholar 

  • Dodds, W. K. (2006). Eutrophication and trophic state in rivers and streams. Limnology and Oceanography, 51(1 II), 671–680. https://doi.org/10.4319/lo.2006.51.1_part_2.0671

  • Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32, 1455–1462.

    Article  CAS  Google Scholar 

  • El-Khoury, A., Seidou, O., Lapen, D. R., Que, Z., Mohammadian, M., Sunohara, M., & Bahram, D. (2015). Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. Journal of Environmental Management, 151, 76–86. https://doi.org/10.1016/j.jenvman.2014.12.012

    Article  CAS  Google Scholar 

  • Ferreira, A. C., & Rodrigues Capítulo, A. (2017). Growth and survival of juvenile Pomacea canaliculata (Gastropoda: Ampullariidae) in plain streams associated to different land uses. Studies on Neotropical Fauna and Environment, 52(2), 95–102. https://doi.org/10.1080/01650521.2017.1294359

    Article  Google Scholar 

  • Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  Google Scholar 

  • Frazar, S., Gold, A. J., Addy, K., Moatar, F., Birgand, F., Schroth, A. W., Kellogg, D. Q., & Pradhanang, S. M. (2019). Contrasting behavior of nitrate and phosphate flux from high flow events on small agricultural and urban watersheds. Biogeochemistry, 145(1), 141–160.

    Article  CAS  Google Scholar 

  • Gabellone, N. A., Claps, M. C., Solari, L. C., & Neschuk, N. C. (2005). Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry, 75, 455–477.

    Article  CAS  Google Scholar 

  • Gabellone, N. A., Claps, M. C., Solari, L. C., Neschuk, N. C., & Ardohain, D. M. (2013). Spatial and temporal distribution pattern of phosphorus fractions in a saline lowland river with agricultural land use (Salado River, Buenos Aires, Argentina). Fundamental and Applied Limnology, 183(4), 271–286.

    Article  Google Scholar 

  • Gallardo, M., Elia, A., & Thompson, R. B. (2020). Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agricultural Water Management, 240, 106209. https://doi.org/10.1016/j.agwat.2020.106209

    Article  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674

    Article  CAS  Google Scholar 

  • Graziano, M., Giorgi, A., & Feijoó, C. (2021). Multiple stressors and social-ecological traps in Pampean streams (Argentina): A conceptual model. Science of the Total Environment, 765, 142785. https://doi.org/10.1016/j.scitotenv.2020.142785

    Article  CAS  Google Scholar 

  • Herrero, M. A., & Gil, S. B. (2008). Consideraciones ambientales de la intensificación en producción animal (Environmental considerations of the animal production intensification). Ecología Austral, 18, 273–289.

    Google Scholar 

  • Kruse, E., Carol, E., Mancuso, M., Laurencena, P., Deluchi, M., & Rojo, A. (2013). Recharge assessment in an urban area: A case study of La Plata. Argentina. Hydrogeol. J., 2, 1091–1100. https://doi.org/10.1007/s10040-013-0981-4

    Article  Google Scholar 

  • Laurencena, P., Kruse, E., Rojo, A., Deluchi, M., Carol, E. (2005). Variaciones de niveles freáticos en la cuenca del arroyo El Pescado (provincia de Buenos Aires). (Variations in phreatic levels in the watershed of El Pescado Creek (Buenos Aires province)). Retrieved November 08, 2021, from http://naturalis.fcnym.unlp.edu.ar/repositorio/_documentos/sipcyt/bfa003130.pdf

  • Licursi, M., & Gómez, N. (2002). Benthic diatoms and some environmental conditions in three lowland streams. Annales De Limnologie, 38(2), 109–118. https://doi.org/10.1051/limn/2002009

    Article  Google Scholar 

  • Liu, J., Mooney, H., Hull, V., Davis, S., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K. C., Gleick, P., Kremen, C., & Li, S. (2015). Systems integration for global sustainability. Science, 347(6225), 1258832. https://doi.org/10.1126/science.1258832

    Article  CAS  Google Scholar 

  • Lorenzen, C. I. (1967). Determination of chlorophyll and phaeopigments, spectrophotometric equations. Limnology and Oceanography, 12, 343–346. https://doi.org/10.4319/lo.1967.12.2.0343

    Article  CAS  Google Scholar 

  • Melaku, S., Wondimu, T., Dams, R., & Moens, L. (2007). Pollution status of tinishu akaki river and its tributaries (Ethiopia) evaluated using physico-chemical parameters, major ions, and nutrients. Bulletin of the Chemical Society of Ethiopia, 21(1), 13–22. https://doi.org/10.4314/bcse.v21i1.61364

    Article  CAS  Google Scholar 

  • Meneses, B. M., Reis, R., Vale, M. J., & Saraiva, R. (2015). Land use and land cover changes in Zêzere watershed (Portugal) - Water quality implications. Science of the Total Environment, 527–528, 439–447.

    Article  Google Scholar 

  • Moreiro Varela, J., Di Lello, C., Delgado, M. I. (2020). Calidad del agua para consumo en establecimientos rurales del partido de Magdalena, provincia de Buenos Aires. 1.15° Encuentro Internacional de Ciencias de la Tierra (E-ICES). Retrieved November 03, 2021, from https://www.uncuyo.edu.ar/ices/upload/2021-actas-de-trabajos-completos-del-e-ices-15.pdf

  • Moustafa, M. Z. (1999). Analysis of P retention in free-water surface treatment wetlands. Hydrobiology, 392, 41–53.

    Article  CAS  Google Scholar 

  • Ocón, C., & Rodriguez Capítulo, A. (2012). Assessment of water quality in temperate-plain streams. (Argentina, South America) using a multiple approach. Ecología Austral, 22, 81–91.

    Google Scholar 

  • Ostad-Ali-Askari, K., Shayannejad, M., & Ghorbanizadeh-Kharazi, H. (2017). Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran. KSCE Journal of Civil Engineering, 21, 134–140. https://doi.org/10.1007/s12205-016-0572-8

    Article  Google Scholar 

  • Pretty, J. (2018). Intensification for redesigned and sustainable agricultural systems. Science, 362 (6417), eaav0294. https://doi.org/10.1126/science.aav0294

  • Smith, V. H., Tilman, G. D., & Nekola, J. C. (1999). Eutrophication: Impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Environmental Pollution, 100, 179–196.

    Article  CAS  Google Scholar 

  • Solis, M., Mugni, H., Hunt, L., Marrochi, N., Fanelli, S., & Bonetto, C. (2016). Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina). Environmental Monitoring and Assessment, 188, 539. https://doi.org/10.1007/s10661-016-5545-3

    Article  CAS  Google Scholar 

  • Solis, M., Arias, M., Fanelli, S., Bonetto, C., & Mugni, H. (2019). Agrochemical´s effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecological Indicators, 101, 373–379.

    Article  CAS  Google Scholar 

  • Staviski, A. (2013). Panorama de la plasticultura en Argentina. (Plasticulture overview in Argentina). Plásticos, 308, 27–33. Retrieved September 02, 2021 from http://www.revistaplasticos.com/308/files/assets/basic-html/page27.html

  • Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the Total Environment, 650, 2751–2760. https://doi.org/10.1016/j.scitotenv.2018.10.018

    Article  CAS  Google Scholar 

  • USDA (United States Department of Agriculture). (1972). Section "Discussion": Hydrology. National Engineering Handbook. Soil Conservation Service, Washington, DC.

  • Wang, J., Chen, J., Jin, Z., Guo, J., Yang, H., Zeng, Y., & Liu, Y. (2020). Simultaneous removal of phosphate and ammonium nitrogen from agricultural runoff by amending soil in lakeside zone of Karst area, Southern China. Agriculture, Ecosystems & Environment, 289, 106745.

    Article  CAS  Google Scholar 

  • Wick, K., Heumesser, C., & Schmid, E. (2012). Groundwater nitrate contamination: Factors and indicators. Journal of Environmental Management, 111, 178–186.

    Article  CAS  Google Scholar 

  • Woldesenbet, T. A., Elagib, N. A., Ribbe, L., & Heinrich, J. (2017). Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin. Ethiopia. Science of the Total Environment, 575, 724–741. https://doi.org/10.1016/j.scitotenv.2016.09.124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also thank, for providing chlorophyll-a analysis facilities, the Instituto de Limnología Dr. Raúl Ringuelet (CONICET-UNLP), La Plata, Argentina.

Funding

Funding was provided by Grant N843 and Grant N944, from the Incentive Program for Teaching and Research, Ministry of Education, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isabel Delgado.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, M.I., Mac Donagh, M.E., Casco, M.A. et al. Nutrient dynamics in water resources of productive flatland territories in the Pampean region of Argentina: evaluation at a watershed scale. Environ Monit Assess 195, 236 (2023). https://doi.org/10.1007/s10661-022-10838-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10838-7

Keywords

Navigation