Skip to main content

Advertisement

Log in

Magnetic susceptibility as a proxy for detection of total petroleum hydrocarbons in contaminated wetlands

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil petroleum hydrocarbon contamination in the wetlands could cause ecological risk, especially through leakage into water reservoirs. So, the detection of the spatial variability of total petroleum hydrocarbons (TPH) in these soils is very crucial. The variability of TPH and its associations with magnetic susceptibility (χlf) in contaminated soils around the Shadegan pond in southern Iran was investigated. TPH varied from 2.1 to 18.1% (w/w), by the variation of χlf from 14.08 to 713.93 × 10−8 m3 kg−1. The highest variability (coefficient of variation, CV = 107.12%) was obtained for χlf indicating significant impacts of magnetic minerals induced by crude oil contamination. High positive correlations were detected among TPH, χlf, and different forms of iron (Fed: extracted by CBD, Feo: extracted by oxalate, and Fet: total iron). The results of mineralogy by powdery XRD and scanning electron microscopy (SEM), also revealed the formation of ferrimagnetic minerals (magnetite, maghemite) during the biodegradation of petroleum hydrocarbons. The stepwise multiple regression analysis showed that χlf and Fed made a great contribution and could explain about 74% of TPH variability in the studied sites. For the extension of this cost-effective and rapid technique, further work is needed to assay saturation isothermal remnant magnetization and isothermal remanet magnetization in contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Due to privacy and ethical concerns, neither the data nor the source of the data can be made available.

References

  • Agarry, S. E., Aremu, M. O., & Aworanti, O. A. (2013). Biodegradation of 2,6-dichlorophenol wastewater in soil column reactor in the presence of pineapple peels-derived activated carbon, palm kernel oil and inorganic fertilizer. Journal of Environmental Protection, 04(06), 537–547. https://doi.org/10.4236/jep.2013.46063

    Article  CAS  Google Scholar 

  • Aldana, M., Costanzo-Alvarez, V., & Díaz, M. (2003). Magnetic and mineralogical studies to characterize oil reservoirs in Venezuela. The Leading Edge, 22(6), 526–529. https://doi.org/10.1190/1.1587674

    Article  Google Scholar 

  • Aldana, M., Costanzo-Álvarez, V., Gómez, L., González, C., Díaz, M., Silva, P., & Rada, M. (2011). Identification of magnetic minerals related to hydrocarbon authigenesis in venezuelan oil fields using an alternative decomposition of isothermal remanence curves. Studia Geophysica Et Geodaetica, 55(2), 343–358. https://doi.org/10.1007/s11200-011-0019-0

    Article  Google Scholar 

  • Ayoubi, S., Samadi, M. J., Khademi, H., Shirvani, M., & Gyasi-Agyei, Y. (2020). Using magnetic susceptibility for predicting hydrocarbon pollution levels in a petroleum refinery compound in Isfahan Province. Iran Journal of Applied Geophysics, 172, 103906. https://doi.org/10.1016/j.jappgeo.2019.103906

    Article  Google Scholar 

  • Ayoubi, S., Samadi, J., & Shirvani, M. (2021). Changes in iron mineralogy and magnetic susceptibility during crude oil incubation in four textural soils in Central Iran. Journal of Applied Geophysics, 190, 104338. https://doi.org/10.1016/j.jappgeo.2021.104338

  • Borch, T., Kretzschmar, R., Kappler, A., Cappellen, P. V., Ginder-Vogel, M., Voegelin, A., & Campbell, K. (2010). Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology, 44(1), 15–23. https://doi.org/10.1021/es9026248

    Article  CAS  Google Scholar 

  • Burt, R. (2004). Soil survey laboratory methods manual. USDA-Natural Resources Conservation Service, Lincoln.

  • Chen, M., Huang, P., & Chen, L. (2013). Polycyclic aromatic hydrocarbons in soils from Urumqi, China: Distribution, source contributions, and potential health risks. Environmental Monitoring and Assessment, 185(7), 5639–5651. https://doi.org/10.1007/s10661-012-2973-6

    Article  CAS  Google Scholar 

  • Chhabra, R. (2022). Salt-affected Soils and Marginal Waters: Global Perspectives and Sustainable Management. Springer International Publishing. https://books.google.com/books?id=xWZXEAAAQBAJ

  • Dankoub, Z., Ayoubi, S., Khademi, H., & Lu, S. G. (2012). Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan Region. Central Iran Pedosphere, 22(1), 33–47. https://doi.org/10.1016/S1002-0160(11)60189-6

    Article  CAS  Google Scholar 

  • Dippon, U., Pantke, C., Porsch, K., Larese-Casanova, P., & Kappler, A. (2012). Potential Function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1. Environmental Science & Technology, 46(12), 6556–6565. https://doi.org/10.1021/es2046266

    Article  CAS  Google Scholar 

  • Fortesa, J., Ricci, G. F., García-Comendador, J., Gentile, F., Estrany, J., Sauquet, E., Datry, T., & De Girolamo, A. M. (2021). Analysing hydrological and sediment transport regime in two Mediterranean intermittent rivers. Catena, 196(February 2020), 104865. https://doi.org/10.1016/j.catena.2020.104865

  • Freund, R., & Littell, R. (2000). SAS System for Regression. Wiley. https://books.google.com/books?id=h3k_EAAAQBAJ

  • Gautam, P., Blaha, U., & Appel, E. (2005). Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu City, Nepal. Atmospheric Environment, 39(12), 2201–2211. https://doi.org/10.1016/j.atmosenv.2005.01.006

    Article  CAS  Google Scholar 

  • Ghorban Lovineh, N., & Jafari, S. (2019). Investigating different Fe forms as an indicator for soil evolution in part of the Khuzestan’s land. In 16th Iraina Soil Congress (pp. 1–7). Zanjan, Iran.

  • Gong, X., Li, J., Lu, H., Wan, R., Li, J., Hu, J., & Fang, H. (2007). A charge-driven molecular water pump. Nature Nanotechnology, 2(11), 709–712. https://doi.org/10.1038/nnano.2007.320

    Article  CAS  Google Scholar 

  • Hamamura, N., Olson, S. H., Ward, D. M., & Inskeep, W. P. (2006). Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Applied and Environmental Microbiology, 72(9), 6316–6324. https://doi.org/10.1128/AEM.01015-06

    Article  CAS  Google Scholar 

  • Hanesch, M., & Scholger, R. (2002). Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 42(8), 857–870. https://doi.org/10.1007/s00254-002-0604-1

    Article  CAS  Google Scholar 

  • Holmgren, G. G. S. (1967). A rapid citrate-dithionite extractable iron procedure. Soil Science Society of America Journal, 31(2), 210–211. https://doi.org/10.2136/sssaj1967.03615995003100020020x

    Article  CAS  Google Scholar 

  • Hu, G., Li, J., & Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials, 261, 470–490. https://doi.org/10.1016/j.jhazmat.2013.07.069

    Article  CAS  Google Scholar 

  • Kappler, A. (2005). Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry, 59(1), 85–108. https://doi.org/10.2138/rmg.2005.59.5

    Article  CAS  Google Scholar 

  • Konhauser, K. O., Kappler, A., & Roden, E. E. (2011). Iron in microbial metabolisms. Elements, 7(2), 89–93. https://doi.org/10.2113/gselements.7.2.89

    Article  CAS  Google Scholar 

  • Li, J., He, L., Lu, H., & Fan, X. (2014). Stochastic goal programming based groundwater remediation management under human-health-risk uncertainty. Journal of Hazardous Materials, 279, 257–267. https://doi.org/10.1016/j.jhazmat.2014.06.082

    Article  CAS  Google Scholar 

  • Liu, G. (2021). Traffic-related pollution history (1994–2014) determined using urban lake sediments from Nanjing. China Plos One, 16(8), e0255395. https://doi.org/10.1371/journal.pone.0255395

    Article  CAS  Google Scholar 

  • Liu, Q., Liu, Q., Chan, L., Yang, T., Xia, X., & Cheng, T. (2006). Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China. Journal of Petroleum Science and Engineering, 53(1), 25–33. https://doi.org/10.1016/j.petrol.2006.01.010

    Article  CAS  Google Scholar 

  • Lovley, D. R., & Anderson, R. T. (2000). Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal, 8(1), 77–88. https://doi.org/10.1007/PL00010974

    Article  CAS  Google Scholar 

  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., & Siegel, D. I. (1989). Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339(6222), 297–300. https://doi.org/10.1038/339297a0

    Article  CAS  Google Scholar 

  • Ma, X., Xia, D., Liu, X., Liu, H., Fan, Y., Chen, P., & Yu, Q. (2022). Application of magnetic susceptibility and heavy metal bioaccessibility to assessments of urban sandstorm contamination and health risks: Case studies from Dunhuang and Lanzhou, Northwest China. Science of The Total Environment, 830, 154801. https://doi.org/10.1016/j.scitotenv.2022.154801

  • Martins, C. C., Mahiques, M. M., Bícego, M. C., Fukumoto, M. M., & Montone, R. C. (2007). Comparison between anthropogenic hydrocarbons and magnetic susceptibility in sediment cores from the Santos Estuary. Brazil Marine Pollution Bulletin, 54(2), 240–246. https://doi.org/10.1016/j.marpolbul.2006.11.006

    Article  CAS  Google Scholar 

  • Marwick, B. (2005). Element concentrations and magnetic susceptibility of anthrosols: Indicators of prehistoric human occupation in the inland Pilbara, Western Australia. Journal of Archaeological Science, 32, 1357–1368. https://doi.org/10.1016/j.jas.2005.03.009

    Article  Google Scholar 

  • Masak, J., Machackova, J., Siglova, M., Cejkova, A., & Jirku, V. (2003). Capacity of the bioremediation technology for clean-up of soil and groundwater contaminated with petroleum hydroca[1] J. Masak, J. Machackova, M. Siglova, A. Cejkova, and V. Jirku, “Capacity of the Bioremediation Technology for Clean-Up of Soil and Ground. Journal of Environmental Science and Health, Part A, 38(10), 2447–2452. https://doi.org/10.1081/ESE-120023453

  • McKeague, J. A., & Day, J. H. (1966). Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46(1), 13–22. https://doi.org/10.4141/cjss66-003

    Article  CAS  Google Scholar 

  • Meliana, U. (2017). Magnetic susceptibility analysis of soil affected by hydrocarbon in Wonocolo traditional oil field, Indonesia. Earth and Environmental Science, 62, 1745–1754.

    Google Scholar 

  • Naimi, S., & Ayoubi, S. (2013). Vertical and horizontal distribution of magnetic susceptibility and metal contents in an industrial district of central Iran. Journal of Applied Geophysics, 96, 55–66. https://doi.org/10.1016/j.jappgeo.2013.06.012

    Article  Google Scholar 

  • Odlare, M., Svensson, K., & Pell, M. (2005). Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. Geoderma, 126(3), 193–202. https://doi.org/10.1016/j.geoderma.2004.09.013

    Article  CAS  Google Scholar 

  • Pajohannia, M., Chorom, M., & Jafari, S. (2016). The effect of water table fluctuation and its salinity on Fe crystal and noncrystal in some Khuzestan soils. Journal of Water and Soil, 30(5), 1531–1542. [persian].

  • Porsch, K., Rijal, M. L., Borch, T., Troyer, L. D., Behrens, S., Wehland, F., Appel, E., & Kappler, A. (2014). Impact of organic carbon and iron bioavailability on the magnetic susceptibility of soils. Geochimica Et Cosmochimica Acta, 128, 44–57. https://doi.org/10.1016/j.gca.2013.12.001

    Article  CAS  Google Scholar 

  • Rengasamy, P., De Lacerda, C. F., & Gheyi, H. R. (2022). Salinity, sodicity and alkalinity. In T. S. De Oliveira, & R. W. Bell (Eds.), BT - Subsoil constraints for crop production (pp. 83–107). Springer International Publishing. https://doi.org/10.1007/978-3-031-00317-2_4

  • Rijal, M. L., Porsch, K., Appel, E., & Kappler, A. (2011). Magnetic signature of hydrocarbon-contaminated soils and sediments at the former oil field Hänigsen, Germany. Studia Geophysica Et Geodaetica, 56, 889–908.

    Article  Google Scholar 

  • Ritchie, G. D., Still, K. R., Alexander, W. K., Nordholm, A. F., Wilson, C. L., Rossi, J., III., & Mattie, D. R. (2001). A review of the neurotoxicity risk of selected hydrocarbon fuels. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 4(3), 223–312. https://doi.org/10.1080/109374001301419728

    Article  CAS  Google Scholar 

  • Rochette, P., Jackson, M., & Aubourg, C. (1992). Rock Mag N Etism an D the Interpretation of Mag N Etic Suscepti Bi Lity of. Reviews of Geophysics, 30(3), 209–226.

    Article  Google Scholar 

  • Salomão, G. N., De Farias, D., & L., Sahoo, P. K., Dall’Agnol, R., & Sarkar, D. (2021). Integrated geochemical assessment of soils and stream sediments to evaluate source-sink relationships and background variations in the Parauapebas River Basin. Eastern Amazon. Soil Systems, 5(1), 21. https://doi.org/10.3390/soilsystems5010021

    Article  CAS  Google Scholar 

  • Sammarco, P. W., Kolian, S. R., Warby, R. A. F., Bouldin, J. L., Subra, W. A., & Porter, S. A. (2013). Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill. Gulf of Mexico. Marine Pollution Bulletin, 73(1), 129–143. https://doi.org/10.1016/j.marpolbul.2013.05.029

    Article  CAS  Google Scholar 

  • Siqueira, D. S., Marques, J., Jr., Matias, S. S. R., Barrón, V., Torrent, J., Baffa, O., & Oliveira, L. C. (2010). Correlation of properties of Brazilian Haplustalfs with magnetic susceptibility measurements. Soil Use and Management, 26(4), 425–431. https://doi.org/10.1111/j.1475-2743.2010.00294.x

    Article  Google Scholar 

  • Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). USDA Natural Resources Conservation Service, USA.

  • Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46(2), 260–264. https://doi.org/10.2136/sssaj1982.03615995004600020009x

    Article  CAS  Google Scholar 

  • Swan, A. R. H. (viaf)46914468, Sandilands, M. (viaf)92196827, & McCabe, P. (1995). Introduction to geological data analysis. Oxford : Blackwell Science. http://lib.ugent.be/catalog/rug01:002366165

  • Towell, M. G., Bellarby, J., Paton, G. I., Coulon, F., Pollard, S. J. T., & Semple, K. T. (2011). Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environmental Pollution, 159(2), 515–523. https://doi.org/10.1016/j.envpol.2010.10.015

    Article  CAS  Google Scholar 

  • Vegter, J., Lowe, J., & Kasamas, H. (2002). Sustainable management of contaminated land: An overview. Umweltbundesamt GmbH (Federal Environment Agency Ltd) Spittelauer Lände 5, A-1090 Wien, Austria, 1st(August), 128. https://doi.org/10.13140/RG.2.2.20348.03204

  • Venkatachalapathy, R., Veerasingam, S., Basavaiah, N., Ramkumar, T., & Deenadayalan, K. (2011). Environmental magnetic and petroleum hydrocarbons records in sediment cores from the north east coast of Tamilnadu, Bay of Bengal, India. Marine Pollution Bulletin, 62(4), 681–690. https://doi.org/10.1016/j.marpolbul.2011.01.030

    Article  CAS  Google Scholar 

  • Xiao, H., Leng, X., Qian, X., Li, S., Liu, Y., Liu, X., & Li, H. (2022). Prediction of heavy metals in airborne fine particulate matter using magnetic parameters by machine learning from a metropolitan city in China. Atmospheric Pollution Research, 13(3), 101347-#x02212; https://doi.org/10.1016/j.apr.2022.101347

    Article  CAS  Google Scholar 

  • Yang, Z. H., Lien, P. J., Huang, W. S., Surampalli, R. Y., & Kao, C. M. (2017). Development of the risk assessment and management strategies for TPH-contaminated sites using TPH fraction methods. Journal of Hazardous, Toxic, and Radioactive Waste, 21(1). https://doi.org/10.1061/(asce)hz.2153-5515.0000290

  • Zhang, J., Lin, Q., Liu, B., Guan, Y., Wang, Y., Li, D., Zhou, X., & Kang, X. (2022). Magnetic response of heavy metal pollution in soil of urban street greenbelts. Polish Journal of Environmental Studies, 31(2), 1923–1933. https://doi.org/10.15244/pjoes/141339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Iranian National Science Foundation (INSF) for the financial support of this research under Project Number 4004470 and Isfahan University of Technology.

Funding

The authors received financial support from the Iranian National Science Foundation (INSF) for the financial support of this research under Project Number 4004470 and Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: S. Ayoubi; data collection: F. Karimian; analysis and interpretation of results: S. Ayoubi, F. Karimian, B. Khalili; draft manuscript preparation: S. Ayoubi, F. Karimian, B. Khalili, S. A. Mireei; All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Shamsollah Ayoubi.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, F., Ayoubi, S., Khalili, B. et al. Magnetic susceptibility as a proxy for detection of total petroleum hydrocarbons in contaminated wetlands. Environ Monit Assess 195, 244 (2023). https://doi.org/10.1007/s10661-022-10826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10826-x

Keywords

Navigation