Skip to main content

Advertisement

Log in

Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Information on spatial distribution and potential sources of heavy metals in agricultural lands is very important for human health and food safety. In this study, pollution degree of lead (Pb), cadmium (Cd), and nickel (Ni) in Yüksekova Plain, located on the border in the southeastern part of Turkey, was evaluated by geoaccumulation index (Igeo), modified contamination factor (mCdeg), and Nemerow pollution index (PINemerow) combined with spatial autocorrelation using deep learning algorithms. A total of 304 soil samples were collected from two different depths (0–20 and 20–40 cm) in the study area, which covered 17.5 thousand ha land. Covariates were determined for spatial distribution models of Pb, Cd, and Ni by factor analysis (FA). Spatial distribution models for surface soils were developed using pedovariables (silt, sand, clay lime, organic matter, electrical conductivity, pH, Ca, and Na) determined by the FA and Igeo and mCdeg values by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models. The estimation success of models for different depths was assessed by root mean square error (RMSE), mean absolute percent error (MAPE), and Taylor diagrams. The RMSE and MAPE values showed a strong correlation between heavy metal contents and the covariates. The RMSE values of ANN-Ni0-20, ANN-Ni20-40, ANN-Pb0-20, ANN-Cd0-20, and ANN-Cd20-40 models (0.01240, 0.07257, 0.0039, 0.00045, 0.00044, and 0.04607, respectively) confirmed the success of the models. Likewise, the MAPE values between 0.2 and 8.5% indicated that all models were very good predictors. In addition, the Taylor diagrams showed that the estimation performance of ANFIS and ANN models are compatible. The IgeoNi and IgeoPb values in both models at both depths indicated that strongly to extremely polluted (4–5) areas are quite high in the study area, while the IgeoCd values revealed that unpolluted areas are widespread. The mCdeg index value showed a moderate to high contamination at the first depth, while very high contamination at the second depth in most of the study area. Spatial distribution of PINemerow revealed that moderate pollution (2–3) is common in both soil depths of the study area. The PINemerow of subsurface layer was between 0.91 and 1 (warning limit class) in a small part of the study area. The results showed that vertical mobility of heavy metals is closely related to pedovariables. In addition, the ANN and ANFIS models are capable of exhibiting the heterogeneity in the spatial distribution pattern of high variation in the data. Thus, the locations with extreme contamination have been accurately determined. The pollution indices calculated considering the commonly used international reference values revealed that heavy metal pollution in some part of the study area reached the detrimental levels for human health and food safety. The results suggested that the pollution indices were more successful than simple heavy metal concentrations in interpreting the pollution risk levels. High-resolution spatial information reported in this study can help policy makers and authorities to reduce heavy metal emissions of pollutants or, if possible, to eliminate the pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used in the study can be obtained on a reasonable request from the corresponding author.

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1), 227–238. https://doi.org/10.1007/s10661-007-9678-2

    Article  CAS  Google Scholar 

  • Al-Hamadi, H. M., & Soliman, S. A. (2004). Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electric Power Systems Research, 68(1), 47–59. https://doi.org/10.1016/S0378-7796(03)00150-0

    Article  Google Scholar 

  • Alıntılı, E. (1966). Geology of Eastern and Southeastern Anatolia. Bulletin of the Mineral Research and Exploration, 66(1), 35–74.

    Google Scholar 

  • Allison, L. E., & Moodie, C. D. (1965). Carbonate. In Methods of Soil Analysis (pp. 1379–1396). https://doi.org/10.2134/agronmonogr9.2.c40

  • Alsamamra, H., Ruiz-Arias, J. A., Pozo-Vázquez, D., & Tovar-Pescador, J. (2009). A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. Agricultural and Forest Meteorology, 149(8), 1343–1357. https://doi.org/10.1016/j.agrformet.2009.03.005

    Article  Google Scholar 

  • Ansari, M. I., & Malik, A. (2007). Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresource Technology, 98(16), 3149–3153. https://doi.org/10.1016/j.biortech.2006.10.008

  • Azizoglu, E. (2013). A study on ornithofauna of the Nehil marshes Yuksekova. MSc Thesis in Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences, Department of Biology. p. 173. Van, Turkiye.

  • Bagdatli, C. (2019). Natural treatment of agricultural soils exposed to Pb, Cd, Sb and Ni pollution by using Alfalfa (Medıcago Satıva L.) Plant. MSc. Thesis in Nevsehir Haci Bektas Veli Unıversıty, Graduate School of Natural and Applied Sciences / Department of Chemistry, p. 104. Nevsehir, Turkiye.

  • Barbieri, M. (2016). The importance of enrichment factor (EF) and geoaccumulation index (igeo) to evaluate the soil contamination. Journal of Geology & Geophysics, 5(1). https://doi.org/10.4172/2381-8719.1000237

  • Bazoobandi, A., Emamgholizadeh, S., & Ghorbani, H. (2022). Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models. European Journal of Environmental and Civil Engineering, 26(3), 933–951. https://doi.org/10.1080/19648189.2019.1686429

    Article  Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach (pp. 1–268). Portland, Oregon, USA: Dioscorides Press. 

  • Bu, Q., Li, Q., Zhang, H., Cao, H., Gong, W., Zhang, X., Ling, K., & Cao, Y. (2020). Concentrations, spatial distributions, and sources of heavy metals in surface soils of the Coal Mining City Wuhai, China. Journal of Chemistry, 2020, 1–10. https://doi.org/10.1155/2020/4705954

    Article  CAS  Google Scholar 

  • Cai, C., Xiong, B., Zhang, Y., Li, X., & Nunes, L. M. (2015). Critical comparison of soil pollution indices for assessing contamination with toxic metals. Water, Air, & Soil Pollution, 226(10), 1–14. https://doi.org/10.1007/s11270-015-2620-2

    Article  CAS  Google Scholar 

  • Carrillo, K. C., Drouet, J. C., Rodríguez-Romero, A., Tovar-Sánchez, A., Ruiz-Gutiérrez, G., & Viguri Fuente, J. R. (2021). Spatial distribution and level of contamination of potentially toxic elements in sediments and soils of a biological reserve wetland, northern Amazon region of Ecuador. Journal of Environmental Management, 289, 112495. https://doi.org/10.1016/j.jenvman.2021.112495

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., & Cheng, X. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31–52. https://doi.org/10.1016/j.gexplo.2013.08.012

  • Chiroma, T. M., Ebewele, R. O., & Hymore, F. K. (2014). Comparative assessement of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola And Kano. International Refereed Journal of Engineering and Science (IRJES), 3(2), 01–09.

    Google Scholar 

  • Dayani, M., Mohammadi, J., & Naderi Khorasgani, M. (2010). Geostatistical assessment of Pb and the related soil physical and chemical properties in near-surface soil around Sepahanshahr, Isfahan. Desert, 15(2), 139–149. https://doi.org/10.22059/jdesert.2011.23011

  • Decena, S. C., Arguilles, M., & Robel, L. (2018). Assessing heavy metal contamination in surface sediments in an Urban River in the Philippines. Polish Journal of Environmental Studies, 27(5), 1983–1995. https://doi.org/10.15244/pjoes/75204

  • Diamantopoulou, A., Kalavrouziotis, I. K., & Varnavas, S. P. (2019). Geochemical investigations regarding the variability of metal pollution in the Amvrakikos Bay, Greece. Global NEST Journal, 21(1), 7–13.

    CAS  Google Scholar 

  • Du Laing, G., De Meyer, B., Meers, E., Lesage, E., Van de Moortel, A., Tack, F. M. G., & Verloo, M. G. (2008). Metal accumulation in intertidal marshes: Role of sulphide precipitation. Wetlands, 28(3), 735–746. https://doi.org/10.1672/07-103.1

    Article  Google Scholar 

  • Ertus, M. M. (2018). Use of sustainable pasture and forage crop production in Hakkari Province. Journal of Natural & Applied Sciences of East, 2(1), 47–53.

    Google Scholar 

  • ESRI. (2022). World_Imagery (MapServer), Source: ESRI, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus, DS, USDA, AeroGRID, IGN, and the GIS User Community. Retrieved March 15, 2022 from https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer

  • Fazekašová, D., & Fazekaš, J. (2020). Soil quality and heavy metal pollution assessment of iron ore mines in Nizna Slana (Slovakia). Sustainability, 12(6), 2549. https://doi.org/10.3390/su12062549

    Article  CAS  Google Scholar 

  • Fei, X., Christakos, G., Xiao, R., Ren, Z., Liu, Y., & Lv, X. (2019). Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information. Science of the Total Environment, 661, 168–177. https://doi.org/10.1016/j.scitotenv.2019.01.149

    Article  CAS  Google Scholar 

  • Feng, T., Tipton, Z., Xia, L., & Chang, Y. (2019). Evaluation of CORDEX regional climate models in simulating extreme dry spells in Southwest China. Frontiers in Earth Science. https://doi.org/10.3389/feart.2019.00294

    Article  Google Scholar 

  • Ferreyra, H., Beldomenico, P. M., Marchese, K., Romano, M., Caselli, A., Correa, A. I., & Uhart, M. (2015). Lead exposure affects health indices in free-ranging ducks in Argentina. Ecotoxicology, 24(4), 735–745. https://doi.org/10.1007/s10646-015-1419-7

    Article  CAS  Google Scholar 

  • Filipović, L., Romić, M., Romić, D., Filipović, V., & Ondrašek, G. (2018). Organic matter and salinity modify cadmium soil (phyto)availability. Ecotoxicology and Environmental Safety, 147, 824–831. https://doi.org/10.1016/j.ecoenv.2017.09.041

  • Gee, G., & Bauder, J. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of Soil Analysis Part 1 (Soil Scien, pp. 383–411). Madison.

  • General Directorate of Meteorology. (2022). Meteorological data information system. In Republic of Turkey Ministry of Environment, Urbanization and Climate Change. mevbis.mgm.gov.tr

  • Ghallab, A., & Usman, A. R. A. (2007). Effect of sodium chloride-induced salinity on phyto-availability and speciation of Cd in soil solution. Water, Air, and Soil Pollution, 185, 43–51.

    Article  CAS  Google Scholar 

  • Gotway, C. A., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal, 60(4), 1237–1247. https://doi.org/10.2136/sssaj1996.03615995006000040040x

    Article  CAS  Google Scholar 

  • Gunal, H., Acir, N., & Budak, M. (2012). Heavy metal variability of a native saline pasture in arid regions of Central Anatolia. Carpathian Journal of Earth and Environmental Sciences, 7(2), 183–193.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

  • Hakkari Provincial Directorate of Agriculture and Forestry. (2021). Geographical location of Yuksekova. Republic of Turkey Ministry of Agriculture and Forestry.

  • Han, C., Lu, J., Chen, S., Xu, X., Wang, Z., Pei, Z., Zhang, Y., & Li, F. (2021). Estimation of heavy metal(loid) contents in agricultural soil of the Suzi River Basin using optimal spectral indices. Sustainability, 13(21), 12088. https://doi.org/10.3390/su132112088

    Article  CAS  Google Scholar 

  • Hasan, O., Miko, S., Ilijanić, N., Brunović, D., Dedić, Ž, Šparica Miko, M., & Peh, Z. (2020). Discrimination of topsoil environments in a karst landscape: An outcome of a geochemical mapping campaign. Geochemical Transactions, 21(1), 1. https://doi.org/10.1186/s12932-019-0065-z

    Article  CAS  Google Scholar 

  • Hashimoto, Y. (2013). Field and laboratory assessments on dissolution and fractionation of Pb from spent and unspent shots in the rhizosphere soil. Chemosphere, 93(11), 2894–2900. https://doi.org/10.1016/j.chemosphere.2013.08.095

  • Hashimoto, Y., Takaoka, M., & Shiota, K. (2011). Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: An X-ray absorption fine structure spectroscopy investigation. Journal of Environmental Quality, 40(3), 696–703. https://doi.org/10.2134/jeq2010.0057

  • Hashmi, M. Z., Abbasi, N. A., Tang, X., & Malik, R. N. (2015). Egg as a biomonitor of heavy metals in soil. 127–143. https://doi.org/10.1007/978-3-319-14526-6_7

  • Haykin, S. (2004). Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall.

  • He, X., Wang, F., Li, W., & Sheng, D. (2022). Deep learning for efficient stochastic analysis with spatial variability. Acta Geotechnica, 17(4), 1031–1051. https://doi.org/10.1007/s11440-021-01335-1

    Article  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

    Article  CAS  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993). Soil reaction and exchangeable acidity. In: Carter, M.R. (Ed.), Soil sampling and methods of analysis (2nd ed., pp. 141–145). Boca Raton: Lewis Publishers. 

  • IBM. (2021). Exploratory factor analysis: Rotation. SPSS Statistics. Retrieved on January 17, 2023, from https://www.ibm.com/docs/en/spss-statistics/beta?topic=analysis-exploratory-factor-rotation

  • Iles, A. (2008). Shifting to green chemistry: The need for innovations in sustainability marketing. Business Strategy and the Environment, 17(8), 524–535. https://doi.org/10.1002/bse.547

  • Huang, S.-J., & Shih, K.-R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Transactions on Power Systems, 18(2), 673–679. https://doi.org/10.1109/TPWRS.2003.811010

    Article  Google Scholar 

  • Inengite, A. K., Abasi, C. Y., & Walter, C. (2015). Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. International Research Journal of Pure & Applied Chemistry, 8(3), 175–189. Retrieved May 5, 2022, from https://journalirjpac.com/index.php/IRJPAC/article/view/171

  • Jang, J.-S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  • Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C., & Yang, Z. P. (2014). Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), 1599–1610. https://doi.org/10.5194/nhess-14-1599-2014

    Article  Google Scholar 

  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst. In Analysis (pp. 156–166). Redlands: ESRI Press.

  • Jung, M. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors, 8(4), 2413–2423. https://doi.org/10.3390/s8042413

    Article  Google Scholar 

  • Kabata-Pendias, A. (2000). Trace elements in soils and plants (3rd ed.). Boca Rotan: CRC Press. https://doi.org/10.1201/9781420039900

    Book  Google Scholar 

  • Khaledian, Y., & Miller, B. A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling, 81, 401–418. https://doi.org/10.1016/j.apm.2019.12.016

    Article  Google Scholar 

  • Khan, S., Naushad, M., Lima, E. C., Zhang, S., Shaheen, S. M., & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review. Journal of Hazardous Materials, 417, 126039. https://doi.org/10.1016/j.jhazmat.2021.126039

    Article  CAS  Google Scholar 

  • Khashei-Siuki, A., & Sarbazi, M. (2015). Evaluation of ANFIS, ANN, and geostatistical models to spatial distribution of groundwater quality (case study: Mashhad plain in Iran). Arabian Journal of Geosciences, 8(2), 903–912. https://doi.org/10.1007/s12517-013-1179-8

    Article  Google Scholar 

  • Kholghi, M., & Hosseini, S. M. (2008). Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Environmental Modeling & Assessment, 14(6), 729. https://doi.org/10.1007/s10666-008-9174-2

    Article  Google Scholar 

  • Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2014). Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture, 1(1), 14–22. https://doi.org/10.1016/j.inpa.2014.04.001

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Küçüktopcu, E., & Cemek, B. (2021). Comparison of neuro-fuzzy and neural networks techniques for estimating ammonia concentration in poultry farms. Journal of Environmental Chemical Engineering, 9(4), 105699. https://doi.org/10.1016/j.jece.2021.105699

    Article  CAS  Google Scholar 

  • Kumar, S., Lal, R., & Liu, D. (2012). A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma, 189–190, 627–634. https://doi.org/10.1016/j.geoderma.2012.05.022

    Article  CAS  Google Scholar 

  • Lewis, C. D. (1982). Industrial and business forecasting methods : A practical guide to exponential smoothing and curve fitting. Boston, USA: Butterworth Scientific. ISBN : 0408005599. p. 143.

  • Li, C., Yang, Z., Yu, T., Hou, Q., Liu, X., Wang, J., Zhang, Q., & Wu, T. (2021). Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County, Guangxi. Ecotoxicology and Environmental Safety, 208, 111505. https://doi.org/10.1016/j.ecoenv.2020.111505

  • Liew, Y. W., Arumugasamy, S. K., & Selvarajoo, A. (2022). Potential of biochar as soil amendment: Prediction of elemental ratios from pyrolysis of agriculture biomass using artificial neural network. Water, Air, & Soil Pollution, 233(2), 54. https://doi.org/10.1007/s11270-022-05510-2

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

    Article  CAS  Google Scholar 

  • Liu, R., Wang, M., Chen, W., & Peng, C. (2016). Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environmental Pollution, 210, 174–181. https://doi.org/10.1016/j.envpol.2015.11.044

    Article  CAS  Google Scholar 

  • Liu, W., Liu, Q., Ruan, F., Liang, Z., & Qiu, H. (2007). Springback prediction for sheet metal forming based on GA-ANN technology. Journal of Materials Processing Technology, 187–188, 227–231. https://doi.org/10.1016/j.jmatprotec.2006.11.087

    Article  CAS  Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165. https://doi.org/10.1016/S0160-4120(03)00157-0

  • Lu, S. G., & Bai, S. Q. (2010). Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: Relationship with different land uses. Environmental Earth Sciences, 60(7), 1481–1490. https://doi.org/10.1007/s12665-009-0283-2

    Article  CAS  Google Scholar 

  • Madu, D. I., Anthonius, A. E., Vivian, A., Nonso, C. E., & Ikechukwu, E. E. (2021). Assessment of heavy metal contents, and probable health risks of some staple vegetables in Enugu metropolis. European Journal of Nutrition & Food Safety. https://doi.org/10.9734/ejnfs/2021/v13i130341

    Article  Google Scholar 

  • Malek, K. (2020). Water programming: A collaborative research blog: Taylor diagram. Retrieved on March 2, 2022, from https://waterprogramming.wordpress.com/2020/12/22/taylor-diagram/#:~:text=

  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., Kępka, W., Tymczuk, M., & Orłowska, K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14(2), 94–104. https://doi.org/10.1007/BF01569890

    Article  CAS  Google Scholar 

  • Miko, S., Durn, G., Adamcová, R., Čović, M., Dubíková, M., Skalský, R., Kapelj, S., & Ottner, F. (2003). Heavy metal distribution in karst soils from Croatia and Slovakia. Environmental Geology, 45(2), 262–272. https://doi.org/10.1007/s00254-003-0878-y

    Article  CAS  Google Scholar 

  • Ministry of Environment and Forestry. (2009). Hakkari Provincial Environmental Status Report.

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118. http://ci.nii.ac.jp/naid/10030367619/en/

  • Nannoni, F., & Protano, G. (2016). Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy). Science of the Total Environment, 568, 1–10. https://doi.org/10.1016/j.scitotenv.2016.05.208

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis (pp. 961–1010). https://doi.org/10.2136/sssabookser5.3.c34

  • Ondrasek, G., Bakić Begić, H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., & Rengel, Z. (2019). Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Science of the Total Environment, 658, 1559–1573. https://doi.org/10.1016/j.scitotenv.2018.12.243

    Article  CAS  Google Scholar 

  • Qi, F., Zhu, A.-X., Harrower, M., & Burt, J. E. (2006). Fuzzy soil mapping based on prototype category theory. Geoderma, 136(3), 774–787. https://doi.org/10.1016/j.geoderma.2006.06.001

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4

  • Qu, M., Guang, X., Zhao, Y., & Huang, B. (2021). Spatially apportioning the source-oriented ecological risks of soil heavy metals using robust spatial receptor model with land-use data and robust residual kriging. Environmental Pollution, 285, 117261. https://doi.org/10.1016/j.envpol.2021.117261

    Article  CAS  Google Scholar 

  • Reghunath, R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research, 36(10), 2437–2442. https://doi.org/10.1016/S0043-1354(01)00490-0

    Article  CAS  Google Scholar 

  • Sahinoglu, A., & Ozdemir, A. (2019). Investigation of Yüksekova (Hakkari) peat bed by geological and geophysical methods. III. International Scientific And Vocational Studies Congress.

  • Salimi, M., Amin, M., Ebrahimi, A., Ghazifard, A., & Najafi, P. (2012). Influence of electrical conductivity on the phytoremediation of contaminated soils to Cd2+ and Zn2+. International Journal of Environmental Health Engineering, 1(1), 11. Retrieved March 26, 2022, from https://www.ijehe.org/article.asp?issn=2277-9183

  • Samui, P., & Sitharam, T. G. (2011). Machine learning modelling for predicting soil liquefaction susceptibility. Natural Hazards and Earth Systems Sciences, 11(1), 1–9. https://doi.org/10.5194/nhess-11-1-2011

    Article  Google Scholar 

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  • Sengoz, N., & Ozdemir, G. (2016). Combined use of principal component analysis and K-clustering method: A case study. Mehmet Akif Ersoy University Journal of Social Sciences Institute, 8(15), 85–94. Retrieved April 5, 2022, from https://dergipark.org.tr/en/download/article-file/227310

  • Sergeev, A. P., Buevich, A. G., Baglaeva, E. M., & Shichkin, A. V. (2019). Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. CATENA, 174, 425–435. https://doi.org/10.1016/j.catena.2018.11.037

    Article  CAS  Google Scholar 

  • Sergeev, A., Rakhmatova, A., Buevich, A., Shichkin, A., Baglaeva, E., & Subbotina, I. (2022). Improved algorithm for splitting raw data into training and test subsamples for MLP-based models. 110009. https://doi.org/10.1063/5.0081650

  • Sidle, R. C. (1976). Transport of heavy metals in a sludge-treated forested area. The Pennsylvania State University.

  • Somaratne, S., Seneviratne, G., & Coomaraswamy, U. (2005). Prediction of soil organic carbon across different land-use patterns. Soil Science Society of America Journal, 69(5), 1580–1589. https://doi.org/10.2136/sssaj2003.0293

    Article  CAS  Google Scholar 

  • Sürücü, A., Mohammad, D. M., Günal, E., & Budak, M. (2018). Concentration of heavy metals in soils along three major roads of Sulaimani, Northeast Iraq. Carpathian Journal of Earth and Environmental Sciences, 13(2), 523–538. https://doi.org/10.26471/cjees/2018/013/045

  • Tarasov, D. A., Buevich, A. G., Sergeev, A. P., & Shichkin, A. V. (2018). High variation topsoil pollution forecasting in the Russian Subarctic: Using artificial neural networks combined with residual kriging. Applied Geochemistry, 88, 188–197. https://doi.org/10.1016/j.apgeochem.2017.07.007

  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  • Taylor, K. E. (2005). Taylor diagram primer. Retrieved April 5, 2022, from https://pcmdi.llnl.gov/staff/taylor/CV/Taylor_diagram_primer.pdf

  • The MathWorks, I. (2020). Fuzzy Logic ToolboxTM user’s guide. MathWorks, cited in 3-180. Natick, MA 01760-2098. USA.

  • Turkey Provincial Directorate of Environment and Urban Management. (2019). Hakkari Province 2019 environmental report. General Directorate of ÇED, Permission and Inspection, Department of Environmental Inventory and Information Management, Branch Directorate of Environmental Status Reports. Retrieved January 17, 2023, from https://webdosya.csb.gov.tr/db/ced/icerikler/hakkar-_-cdr2019-20200923143547.pdf

  • Vantelon, D., Lanzirotti, A., Scheinost, A. C., & Kretzschmar, R. (2005). Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environmental Science & Technology, 39(13), 4808–4815. https://doi.org/10.1021/es0482740

    Article  CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3). https://doi.org/10.4067/S0718-95162010000100005

  • Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., & Alkon, D. L. (1988). Accelerating the convergence of the back-propagation method. Biological Cybernetics, 59(4), 257–263. https://doi.org/10.1007/BF00332914

    Article  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

  • Wei, L., Wang, M., Liu, G., & Wu, D. (2021). Geochemical anomaly characteristics of Cd in Soils around abandoned lime mines: Evidence from multiple technical methods. Molecules, 26(17), 5127. https://doi.org/10.3390/molecules26175127

    Article  CAS  Google Scholar 

  • Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environmental Monitoring and Assessment, 189(12), 616. https://doi.org/10.1007/s10661-017-6340-5

    Article  Google Scholar 

  • WHO, FAO, & IAEA. (1996). Trace elements in human nutrition and health. World Health Organization. ISBN: 9241561734. p. 343. Retrieved January 17, 2023, from https://apps.who.int/iris/handle/10665/37931

  • Xu, J., Zhuang, Q., Fu, Y., Huang, Y., Sun, Z., & Liu, Z. (2019). Spatial distribution, pollution levels, and source identification of heavy metals in wetlands of Suzhou Industrial Park, China. Wetlands Ecology and Management, 27(5–6), 743–758. https://doi.org/10.1007/s11273-019-09691-2

    Article  CAS  Google Scholar 

  • Yan, X., Hu, Y., Chang, Y., Li, Y., Liu, M., Zhong, J., Zhang, D., & Wu, W. (2017). Effects of land reclamation on distribution of soil properties and heavy metal concentrations, and the associated environmental pollution assessment. Polish Journal of Environmental Studies, 26(4), 1809–1823. https://doi.org/10.15244/pjoes/68533

  • Yang, P., Drohan, P. J., Yang, M., & Li, H. (2020a). Spatial variability of heavy metal ecological risk in urban soils from Linfen, China. CATENA, 190, 104554. https://doi.org/10.1016/j.catena.2020.104554

    Article  CAS  Google Scholar 

  • Yang, S., Qu, Y., Ma, J., Liu, L., Wu, H., Liu, Q., Gong, Y., Chen, Y., & Wu, Y. (2020b). Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta, China. Environmental Pollution, 264, 114688. https://doi.org/10.1016/j.envpol.2020.114688

    Article  CAS  Google Scholar 

  • Zafarzadeh, A., Taghani, J. M., Toomaj, M. A., Ramavandi, B., Bonyadi, Z., & Sillanpää, M. (2021). Assessment of the health risk and geo-accumulation of toxic metals in agricultural soil and wheat, northern Iran. Environmental Monitoring and Assessment, 193(11), 750. https://doi.org/10.1007/s10661-021-09530-z

    Article  CAS  Google Scholar 

  • Zhang, J., Schmidt, M. G., Heung, B., Bulmer, C., & Knudby, A. (2022). Using an ensemble learning approach in digital soil mapping of soil pH for the Thompson-Okanagan Region of British Columbia. Canadian Journal of Soil Science. https://doi.org/10.1139/CJSS-2021-0091

    Article  Google Scholar 

  • Zhong, L., Liu, L., & Yang, J. (2010). Assessment of heavy metals contamination of paddy soil in Xiangyin county, China. In Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 4.1. 2 Management and protection of receiving environments (pp. 17–20). International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur. Retrieved April 20, 2022, from https://www.iuss.org/19th%20WCSS/Symposium/pdf/4.1.2.pdf

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Hakkari Governorship Special Provincial Administration.

Funding

This study was funded by the Hakkari Governorship Special Provincial Administration.

Author information

Authors and Affiliations

Authors

Contributions

E.G., M.B., and M.K. conceived of the presented idea. E.G. and M.K. developed the theory and performed the computations. B.C. and M.B. verified the analytical methods. All authors discussed the results and contributed to the final manuscript. E.G., M.B, and M.S. carried out the experiment field studies and laboratory analysis. E.G., M.B., B.C., and M.K. conceived the original idea. E.G. and M.B. supervised the project. E.G. and M.K. developed the theoretical formalism, performed the analytic calculations, and performed the numerical simulations. E.G., M.B., and M.S. conceived and planned the experiments. M.B. and M.S. carried out the experiments. M.K and B.C. planned and carried out the simulations. E.G., M.B., M.S., and M.K. contributed to sample preparation. E.G., M.B., M.K., and M.S. contributed to the interpretation of the results. E.G., M.B., and M.K. took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript. E.G., M.B., and M.K. designed the model and the computational framework and analyzed the data. M.K. and B.C. performed the calculations. E.G. and M.K. wrote the manuscript with input from all authors. E.G. and M.B. conceived the study and were in charge of overall direction and planning.

Corresponding author

Correspondence to Miraç Kılıç.

Ethics declarations

Ethical responsibilities of authors

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günal, E., Budak, M., Kılıç, M. et al. Combining spatial autocorrelation with artificial intelligence models to estimate spatial distribution and risks of heavy metal pollution in agricultural soils. Environ Monit Assess 195, 317 (2023). https://doi.org/10.1007/s10661-022-10813-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10813-2

Keywords

Navigation