Skip to main content
Log in

State of gaseous air pollutants and resulting health effects in Karachi, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Karachi, Pakistan, is a priority site for air pollution research due to high emissions of air pollutants from vehicular traffic, industrial activities, and biomass burning, as well as rapid growth in population. The objectives of this study were to investigate the levels of gaseous pollutants (NO, NO2, O3, HNO3, and SO2) in Karachi, to determine temporal and seasonal variations, to compare Karachi’s air quality with other urban centers, to identify relationships with meteorological conditions, to identify source characterization, and to perform a backward-in-time trajectory analysis and a health impact assessment. Daily samples of gaseous pollutants were collected for six consecutive weeks in each of the four seasons for a year. Daily maximum concentrations of NO (90 parts per billion by volume (ppbv)), NO2 (28.1 ppbv), O3 (57.8 ppbv), and SO2 (331 ppbv) were recorded in fall, while HNO3 (9129 parts per trillion by volume (pptv)) was recorded in spring. Seasonal average concentrations were high in winter for NO (9.47 ± 7.82 ppbv), NO2 (4.84 ± 3.35 ppbv), and O3 (8.92 ± 7.65 ppbv), while HNO3 (629 ± 1316 pptv) and SO2 (20.2 ± 39.4 ppbv) were high in spring and fall, respectively. The observed SO2 seasonal average concentration in fall (20.2 ± 39.4) was 5 times higher than that in summer (3.97 ± 2.77) with the fall 24-h average (120 ppbv) exceeding the WHO daily guideline (7.64 ppbv) by a factor of about 15.7. A health impact assessment estimated an increase of 1200 and 569 deaths due to short-term exposure to SO2 in fall and spring, respectively. Chronic daily intake estimated risk per 1000 was 0.99, 0.47, 0.45, and 0.26 for SO2 in fall, NO in winter, O3 in winter, and NO2 in spring, respectively. This study confirms the effect of poor urban air quality on public health and demonstrated the influence of photochemical reactions as well as unfavorable meteorological conditions on the formation of secondary pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Adon, M., Yoboue, V., Galy-Lacaux, C., Liousse, C., Diop, B., Doumbia, H. T., Gardrat, E., & Ndiaye, S. A. (2016). Measurements of NO2, SO2, NH3, HNO3 and O3 in West Africa urban environments. Atmospheric Environment, 135, 31–40. https://doi.org/10.1016/j.atmosenv.2016.03.050

    Article  CAS  Google Scholar 

  • Afif, C., Chélala, C., Borbon, A., Abboud, M., Adjizian-Gérard, J., Farah, W., Jambert, C., Zaarour, R., Saliba, N. B., Perros, P. E., & Rizk, T. (2008). SO2 in Beirut: Air quality implication and effects of local emissions and long-range transport. Air Quality, Atmosphere and Health, 1, 167–178.

    Article  CAS  Google Scholar 

  • Agudelo-Castaneda, D. M., Teixeira, E. C., Schneider, I. L., Pereira, F. N., Oliveira, M. L. S., Taffarel, S. R., Sehn, J. L., Ramos, C. G., & Silva, L. F. O. (2016). Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Science Total Environment, 543(A), 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030

  • AIRPARIF. (2017). Air quality in the Paris region. Retrieved: February 15, 2021, from https://www.airparif.asso.fr/pdf/publications/bilan-2017-anglais20180829.pdf

  • Allegrini, I., DeSantis, F., DiPalo, V., Febo, A., Perrino, C., & Possanzini, M. (1987). Annular denuder method for sampling reactive gases and aerosols in the atmosphere. Science of the Total Environment, 67, 1–16. https://doi.org/10.1016/0048-9697(87)90062-3

    Article  CAS  Google Scholar 

  • Aneja, V. P., Kim, D. S., & Das, M. (1996). Measurements and analysis of reactive nitrogen species in the rural troposphere of southeast United States: Southern oxidant study site SONIA. Atmospheric Environment, 30, 649–659.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Agarwal, A., Roelle, P. A., Phillips, S. B., Tong, Q., Watkins, N., & Yablonsky, R. (2001). Measurements and analysis of criteria pollutants in New Delhi India. Environment International, 27(1), 35–42.

    Article  CAS  Google Scholar 

  • Astudillo-García, C. I., Rodríguez-Villamizar, L. A., Cortez-Lugo, M., Cruz-De la Cruz, J. C., & Fernández-Niño, J. A. (2019). Air pollution and suicide in Mexico City: A time series analysis, 2000–2016. International Journal of Environmental Research and Public Health, 16(16), 2971. https://doi.org/10.3390/ijerph16162971

    Article  CAS  Google Scholar 

  • Aung, N., Sanghvi, M. M., Zemrak, F., Lee, A. M., Cooper, J. A., Paiva, J. M., Thomson, R. J., Fung, K., Khanji, M. Y., Lukaschuk, E., Carapella, V., Kim, Y. J., Munroe, P. B., Piechnik, S. K., Neubauer, S., & Petersen, S. E. (2018). Association between ambient air pollution and cardiac morpho-functional phenotypes. Circulation, 138, 2175–2186. https://doi.org/10.1161/CIRCULATIONAHA.118.034856

    Article  Google Scholar 

  • Azad, A. K., & Kitada, T. (1998). Characteristics of the air pollution in the city of Dhaka Bangladesh in Winter. Atmospheric Environment, 32, 1991–2005. https://doi.org/10.1016/S1352-2310(97)00508-6

    Article  CAS  Google Scholar 

  • Bari, A., Ferraro, V., Wilson, L. R., Luttinger, D., & Husain, L. (2003). Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York. Atmospheric Environment, 37, 2825–2835.

    Article  CAS  Google Scholar 

  • Barletta, B., Meinardi, S., Simpson, I. J., Khwaja, H. A., Blake, D. R., & Rowland, F. S. (2002). Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmospheric Environment, 36, 3429-3443. https://doi.org/10.1016/S1352-2310(02)00302-

  • Calvert, J. G., & Stockwell, W. R. (1983). Acid generation in the troposphere by gas-phase chemistry. Environmental Science and Technology, 17, 428–443.

    Article  Google Scholar 

  • Castner, J., Gittere, S., & Seo, J. Y. (2015). Criteria air pollutants and emergency nursing. Journal of Emergency Nursing, 41(3), 186–192. https://doi.org/10.1016/j.jen.2014.08.011

    Article  Google Scholar 

  • Chen, H., Lin, Y., Su, Q., & Cheng, L. (2017). Spatial variation of multiple air pollutants and their potential contributions to all-cause, respiratory, and cardiovascular mortality across China in 2015–2016. Atmospheric Environment, 168, 23–35. https://doi.org/10.1016/j.atmosenv.2017.09.006

    Article  CAS  Google Scholar 

  • Chinkin, L. R., Coe, D. L., Funk, T. H., Hafner, H. R., Roberts, P. T., Ryan, A. R., & Lawson, D. R. (2003). Weekday versus weekend activity patterns for ozone precursor emissions in California’s South Coast Air Basin. Journal of the Air and Waste Management Association, 53, 829–843.

    Article  CAS  Google Scholar 

  • Chiwa, M. (2010). Characteristics of atmospheric nitrogen and sulfur containing compounds in an inland suburban-forested site in northern Kyushu, Western Japan. Atmospheric Research, 96, 631–543. https://doi.org/10.1016/j.atmosres.2010.01.001

    Article  CAS  Google Scholar 

  • Clarke, K., Kwon, H., & Choi, S. (2014). Fast and reliable source identification of criteria air pollutants in an industrial city. Atmospheric Environment, 95, 239–248. https://doi.org/10.1016/j.atmosenv.2014.06.040

    Article  CAS  Google Scholar 

  • Cobb, G. P., & Braman, R. S. (1995). Relationship between nitrous acid and other nitrogen oxides in urban air. Chemosphere, 31, 2945–2957.

    Article  CAS  Google Scholar 

  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389, 1907–1918.

    Article  Google Scholar 

  • Colbeck, I., & Harrison, R. M. (1985). Dry deposition of ozone: Some measurements of deposition velocity and of vertical profiles to 100 meters. Atmospheric Environment, 19, 1807–1818.

    Article  CAS  Google Scholar 

  • Danalatos, D., & Glavas, S. (1999). Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras Greece. Atmospheric Environment, 33, 3417–3425.

    Article  CAS  Google Scholar 

  • Dentener, F. J., & Crutzen, P. J. (1993). Reaction of N2O5 on tropospheric aerosols: Impact on the global distribution of NOx, O3 and OH. Journal of Geophysical Research, 98, 7149–7163.

    Article  CAS  Google Scholar 

  • Gao, O. H., Holmen, B. A., & Niemeier, D. A. (2005). Nonparametric factorial analysis of daily weigh-in-motion traffic: Implication for the ozone “weekend effect” in Southern California. Atmospheric Environment, 39, 1669–1682.

    CAS  Google Scholar 

  • Gillett, R. W., Ayers, G. P., Selleck, P. W., Tuti, M. H. W., & Harjanto, H. (2000). Concentrations of nitrogen and sulfur species in gas and rainwater from six sites in Indonesia. Water, Air, and Soil Pollution, 120, 205–215.

    Article  CAS  Google Scholar 

  • Guicherit, R., & Roemer, M. (2000). Tropospheric Ozone Trends. Chemosphere-Glob. Change Sci., 2(2), 167–183. https://doi.org/10.1016/S1465-9972(00)00008-8

    Article  CAS  Google Scholar 

  • Guo, H., Wang, Y., & Zhang, H. (2017). Characterization of criteria air pollutants in Beijing during 2014–2015. Atmospheric Research, 154, 334–344. https://doi.org/10.1016/j.envres.2017.01.029

    Article  CAS  Google Scholar 

  • Guo, P., Miao, H., & Chen, Y. (2019). Maternal exposure to gaseous ambient air pollutants increases the risk of preterm birth in the Pearl River Delta, China 2014–2017. Science of the Total Environment, 671, 959–970. https://doi.org/10.1016/j.scitotenv.2019.03.375

    Article  CAS  Google Scholar 

  • Gupta, A., Kumar, R., Kumari, K. M., & Srivastava, S. S. (2003). Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur India. Atmospheric Environment, 37, 4837–4846.

    Article  CAS  Google Scholar 

  • Gupta, A. K., Karar, K., Ayoob, S., & John, K. (2008). Spatio-temporal characteristics of gaseous and particulate pollutants in an urban region of Kolkata India.  Atmospheric Research, 87, 103–115.

    Article  CAS  Google Scholar 

  • Gurjar, B. R., Butler, T. M., Lawrence, M. G., & Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42, 1593–1606. https://doi.org/10.1016/j.atmosenv.2007.10.048

    Article  CAS  Google Scholar 

  • GVR (Gas Vehicles Report). (2011). Worldwide NGV statistics, the GVR 10, 116.

  • Harrison, R. M., Kitto, A. M. N. (1990). Surface-exchange of atmospheric nitrogen species including nitrous acid. In: Presented at the 7th International Symposium of the Commission on Atmospheric Chemistry and Global Pollution, Chamrousse, France.

  • Harrison, R. M., Rapsomanikis, S., & Turnbull, A. (1989). Land surface-exchange in a chemically reactive system: Surface fluxes of HNO3, HCl, and NH3. Atmospheric Environment, 23, 1900–1905.

    Google Scholar 

  • Hassan, S. K., El-Abssawy, A. A., & Khoder, M. I. (2013). Characteristics of gas–phase nitric acid and ammonium–nitrate–sulfate aerosol, and their gas–phase precursors in a suburban area in Cairo Egypt. Atmospheric Pollution Research, 4, 117–129. https://doi.org/10.5094/APR.2013.012

    Article  CAS  Google Scholar 

  • Heikes, B. G., & Thompson, A. M. (1983). Effect of heterogeneous processes on NO3, HONO, and HNO3 chemistry in the troposphere. Journal of Geophysical Research, 88, 10883–10895.

    Article  CAS  Google Scholar 

  • Hoek, G., Mennen, M. G., Allen, G. A., Hofschreuder, P., & Meulen, T. V. D. (1996). Concentrations of acidic air pollutants in the Netherlands. Atmospheric Environment, 30, 3141–3150.

    Article  CAS  Google Scholar 

  • Hong, Y. M., Lee, B. K., Park, K. J., Kang, M. H., Jung, Y. R., Lee, D. S., & Kim, M. G. (2002). Atmospheric nitrogen and sulfur containing compounds for three sites of South Korea. Atmospheric Environment, 36, 3485–3494.

    Article  CAS  Google Scholar 

  • Huess, J. M., Kahlbaum, D. F., & Wolff, G. T. (2003). Weekday/weekend ozone differences: What can we learn from them? Journal of the Air and Waste Management Association, 53, 772–788. https://doi.org/10.1080/10473289.2003.10466227

    Article  Google Scholar 

  • Huntzicker, J. J., Hoffman, R. S., & Cary, R. A. (1984). Aerosol sulfur episodes in St. Louis Missouri. Environmental Science Technology, 18, 962–967.

    Article  CAS  Google Scholar 

  • Irfan, M., Riaz, M., Arif, M. S., Shahzad, S. M., Saleem, F., Rahman, N., Berg, L., & Abbas, F. (2014). Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmospheric Environment, 84, 189–197. https://doi.org/10.1016/j.atmosenv.2013.11.046

    Article  CAS  Google Scholar 

  • Itano, Y., Bandow, H., Takenaka, N., Saitoh, Y., Asayama, A., & Fukuyama, J. (2007). Impact of NOx reduction on long-term ozone trends in an urban atmosphere. Science of the Total Environment, 379, 46–55.

    Article  CAS  Google Scholar 

  • Jimenez, P., Parra, R., Gasso, S., & Baldasano, J. M. (2005). Modeling the ozone weekend effect in very complex terrains: A case study in the northeastern Iberian Peninsula. Atmospheric Environment, 39, 429–444.

    Article  CAS  Google Scholar 

  • Jo, W. K., & Park, J. H. (2005). Characteristics of roadside air pollution in Korean metropolitan city (Daegu) over last 5 to 6 years: Temporal variations, standard exceedances, and dependence on meteorological conditions. Chemosphere, 59, 1557–1573.

    Article  CAS  Google Scholar 

  • Khalil, M. A. K., Butenhoff, C. L., Porter, W. C., Almazroui, M., Alkhalaf, A., & Al-Sahafi, M. S. (2016). Air quality in Yanbu, Saudi Arabia. Journal of the Air and Waste Management Association, 66, 341–355.

    Article  CAS  Google Scholar 

  • Khoder, M. I. (2002). Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere, 49, 675–684.

    Article  CAS  Google Scholar 

  • Khoder, M. I. (2009). Diurnal, seasonal, and weekdays-weekends variations of ground level ozone concentrations in an urban area in Greater Cairo. Environmental Monitoring and Assessment, 149, 349–362.

    Article  CAS  Google Scholar 

  • Khwaja, H. A., Fatmi, Z., Malashock, D., Aminov, Z., Siddique, A., & Carpenter, D. O. (2012). Effect of air pollution on daily morbidity in Karachi Pakistan. Journal of Local and Global Health Science. https://doi.org/10.5339/jlghs.2012.3

    Article  Google Scholar 

  • King’s College London. London average air quality levels. Retrieved February 15, 2021, from https://data.london.gov.uk/dataset/london-average-air-quality-levels

  • Kitto, A. M. N., & Harrison, R. M. (1992). Nitrous and nitric acid measurements at sites in South-East England. Atmospheric Environment, 26A, 235–241.

    Article  CAS  Google Scholar 

  • Kleinman, I. I., Daum, P. H., Lee, Y. N., Nunnermacker, I. J., Springston, S. R., Weinstein-Lloyd, J., & Rudolph, J. (2001). Sensitivity of ozone production rate to ozone precursors. Geophysical Research Letters, 28, 2903–2906.

    Article  CAS  Google Scholar 

  • Kremer, J. (1999). Modeling emission factors for compressed natural gas vehicles. EPA report number M6. FUL00.

  • Lee, H. S., Kang, C. M., Kang, B. W., & Kim, H. K. (1999). Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmospheric Environment, 33, 3143–3152.

    Article  CAS  Google Scholar 

  • Lin, W., Xu, X., Ge, B., & Liu, X. (2011). Gaseous pollutants in Beijing urban area during the heating period 2007–2008: Variability, sources, meteorological, and chemical impacts. Atmospheric Chemistry and Physics, 11(8157–8), 170.

    Google Scholar 

  • Lin, Y. C., Cheng, M. T., Ting, W. Y., & Yeh, C. R. (2006). Characteristics of gaseous HNO2, HNO3, NH3, and particulate ammonium nitrate in an urban city of central Taiwan. Atmospheric Environment, 40, 4725–4733.

    Article  CAS  Google Scholar 

  • Lu, Y., Lin, S., Fatmi, Z., Malashock, D., Hussain, M. M., Siddique, A., Carpenter, D. O., Lin, Z., & Khwaja, H. A. (2019). Assessing the association between fine particulate matter (PM2.5) constituents and cardiovascular diseases in a mega-city of Pakistan. Environmental Pollution, 252(B), 1412–1422. https://doi.org/10.1016/j.envpol.2019.06.078

  • Lurie, K., Nayebare, S. R., Fatmi, Z., Carpenter, D. O., Siddique, A., Malashock, D., Khan, K., Zeb, J., Hussain, M. M., Khatib, F., & Khwaja, H. A. (2019). PM2.5 in a megacity of Asia (Karachi): Source apportionment and health effects. Atmospheric Environment, 202, 223–233. https://doi.org/10.1016/j.atmosenv.2019.01.008

    Article  CAS  Google Scholar 

  • Lurmann, F. W., Lloyd, A. C., & Atkinson, R. A. (1986). Chemical mechanism for use in long-range transport/acid deposition computer modeling. Journal of Geophysical Research, 91, 10905–10936.

    Article  CAS  Google Scholar 

  • Madany, I. M., & Danish, M. (1988). Measurement of air pollution in Bahrain. Environment International, 15, 49–58.

    Article  Google Scholar 

  • Maji, S., Ahmed, S., Siddiqui, W. A., & Ghosh, S. (2017). Short term effects of criteria air pollutants on daily mortality in Delhi India. Atmospheric Environment, 150, 210–219. https://doi.org/10.1016/j.atmosenv.2016.11.044

    Article  CAS  Google Scholar 

  • Malashock, D., Khwaja, H., Fatmi, Z., Siddique, A., Lu, Y., Lin, S., & Carpenter, D. (2018). Short-term association between black carbon exposure and cardiovascular diseases in Pakistan’s largest megacity. Atmosphere, 9, 420. https://doi.org/10.3390/atmos9110420

    Article  Google Scholar 

  • Marr, L. C., & Harley, R. A. (2002). Modelling the effect of weekday weekend differences in motor vehicle emissions on photochemical pollution in Central California. Environmental Science and Technology, 36, 4099–4106.

    Article  CAS  Google Scholar 

  • Mehlmann, A., & Warneck, P. (1995). Atmospheric gaseous HNO3, particulate nitrate, and aerosol size distributions of major ionic species at a rural site in Western Germany. Atmospheric Environment, 29, 2359–2373.

    Article  CAS  Google Scholar 

  • Mmari, A. G., Potgieter-Vermaak, S. S., Bencs, L., McCrindle, R. I., & Grieken, R. V. (2013). Elemental and ionic components of atmospheric aerosols and associated gaseous pollutants in and near Dar es Salaam Tanzania. Atmospheric Environment, 77, 51–61. https://doi.org/10.1016/j.atmosenv.2013.04.061

    Article  CAS  Google Scholar 

  • Monn, C., & Schaeppi, G. (1993). Concentrations of total suspended particulates, fine particles and their anionic compounds in ambient air and indoor air. Environmental Technology, 14, 869–875.

    Article  CAS  Google Scholar 

  • Morakinyo, O. M., Mukhola, M. S., & Mokgobu, M. I. (2020). Ambient gaseous pollutants in an urban area in South Africa: Levels and potential human health risk. Atmosphere, 11(7), 751. https://doi.org/10.3390/atmos11070751

    Article  CAS  Google Scholar 

  • Moyebi, O. D. (2022). Megacity: A reservoir of toxic environmental contaminants and health disease burden (Publication No. 29162526). [Doctoral Dissertation, University at Albany]. ProQuest Dissertations and Theses Global.

  • NEERI (National Environmental and Engineering Research Institute, Nagpur, India). (1998). Air pollution aspects of three Indian mega cities, I, 144–148.

  • Nguyen, H. T., & Kim, K. H. (2006). Evaluation of SO2 pollution levels between four different types of air quality monitoring stations. Atmospheric Environment, 40, 7066–7081.

    Article  CAS  Google Scholar 

  • Notario, A., Bravo, I., Adame, J. A., Diaz-de-Mera, Y., Aranda, A., Rodriguez, A., & Rodriguez, D. (2012). Analysis of NO, NO2, NOx, O3 and oxidant (OX = O3 + NO2) levels measured in a metropolitan area in the southwest of Iberian Peninsula. Atmospheric Research, 104–105, 217–226. https://doi.org/10.1016/j.atmosres.2011.10.008

    Article  CAS  Google Scholar 

  • Parekh, P. P., Khwaja, H. A., Khan, A. R., Naqvi, R. R., Malik, A., Shah, S. A., Khan, K., & Hussain, G. (2001). Ambient air quality of two metropolitan cities of Pakistan and its health implications. Atmospheric Environment, 35, 5971–5978. https://doi.org/10.1016/S1352-2310(00)00569-0

    Article  CAS  Google Scholar 

  • Parrish, D. D., Norton, R. B., Bollinger, M. I., Liu, S. C., Murphy, P. C., Albritton, D. L., & Fehsenfeld, F. C. (1986). Measurements of HNO3 and NO3- particulate at a rural site in the Colorado mountains. Journal of Geophysical Research, 91, 5379–5393.

    Article  CAS  Google Scholar 

  • Parrish, D. D., Trainer, M., Buhr, M. P., Watkins, B. A., & Fehsenfeld, F. C. (1991). Carbon monoxide concentrations and their relation to concentrations of total reactive oxidized nitrogen at two rural U.S. sites. AGU Journals., 96, 9309–9320.

    CAS  Google Scholar 

  • Paschalidou, A. K., & Kassomenos, P. A. (2004). Comparison of air pollutant concentrations between weekdays and weekends in Athens, Greece for various meteorological conditions. Environmental Technology, 25, 1241–1255.

    Article  CAS  Google Scholar 

  • Patel, S., Leavey, A., He, S., Fang, J., O’Malley, K., & Biswas, P. (2016). Characterization of gaseous and particulate pollutants from gasification-based improved cookstoves. Energy Sustainable Development, 32, 130–139. https://doi.org/10.1016/j.esd.2016.02.005

    Article  CAS  Google Scholar 

  • Pudasainee, D., Sapkota, B., Shrestha, M. L., Kaga, A., Kondo, A., & Inoue, Y. (2006). Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley Nepal. Atmospheric Environment, 40, 8081–8087.

    Article  CAS  Google Scholar 

  • Pun, B. K., Seigneur, C., & White, W. (2003). Day-of-week behavior of atmospheric ozone in three US cities. Journal of the Air and Waste Management Association, 53, 789–801. https://doi.org/10.1080/10473289.2003.10466231

    Article  CAS  Google Scholar 

  • Qin, Y., Tonnesen, G. S., & Wang, Z. (2004). One-hour and eight-hour average ozone in the California south coast air basin: Trends in peaks values and sensitivity to precursors. Atmospheric Environment, 38, 2197–2207.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Mahamud, S., & Thurston, G. D. (2019). Recent spatial gradients and time trends in Dhaka, Bangladesh, air pollution and their human health implications. Journal of the Air and Waste Management Association, 69(4), 478–501. https://doi.org/10.1080/10962247.2018.1548388

    Article  CAS  Google Scholar 

  • Rasheed, A., Aneja, V. P., Aiyyer, A., & Rafique, U. (2014). Measurements and analysis of air quality in Islamabad, Pakistan. Earth’s Future, 2, 303–314. https://doi.org/10.1002/2013EF000174

    Article  CAS  Google Scholar 

  • Ravishankara, A. R. (1997). Heterogeneous and multiphase chemistry in the troposphere. Science, 276(1058–1065), 1997. https://doi.org/10.1126/science.276.5315.1058

    Article  Google Scholar 

  • Reddy, G. S., & Ruj, B. (2003). Ambient air quality status in Raniganj-Asansol area India. Environmental Monitoring and Assessment, 89, 153–163.

    Article  CAS  Google Scholar 

  • Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B., & Brune, W. H. (2003). HOx concentrations and OH reactivity observations in New York City during PMTACS-NY 2001. Atmospheric Environment, 37, 3627–3637.

    Article  CAS  Google Scholar 

  • Rhys-Tyler, G. A., Legassick, W., & Bell, M. C. (2011). The significance of vehicle emissions standards for levels of exhaust pollution from light vehicles in an urban area. Atmospheric Environment, 45, 3286–3293.

    Article  CAS  Google Scholar 

  • Richards, L. W. (1983). Comments on the oxidation of NO2 to nitrate: Day and night. Atmospheric Environment, 17, 397–402.

    Article  CAS  Google Scholar 

  • Riga-Karandinos, A. N., & Saitanis, C. (2005). Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere, 59, 1125–1136.

    Article  CAS  Google Scholar 

  • Rodriguez-Villamizar, L. A., Rojas-Roa, N. Y., & Fernandez-Nino, J. A. (2019). Short-term joint effects of ambient air pollutants on emergency department visits for respiratory and circulatory diseases in Colombia, 2011–2014. Environmental Pollution, 248, 380–387. https://doi.org/10.1016/j.envpol.2019.02.028

    Article  CAS  Google Scholar 

  • Rovira, J., Domingo, J. L., & Schuhmacher, M. (2019). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of the Total Environment, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538.

  • Russell, A. G., Cass, G. R., & Seinfeld, J. H. (1986). On some aspects of nighttime atmospheric chemistry. Environmental Science and Technology, 20, 1167–1172.

    Article  CAS  Google Scholar 

  • Sadanaga, Y., Matsumoto, J., & Kajii, Y. (2003). Photochemical reactions in the urban air: Recent understandings of radical chemistry. Journal of Photochemistry, 4, 85–104.

    CAS  Google Scholar 

  • Sadanaga, Y., Shibata, S., Hamana, M., Takenaka, N., & Bandow, H. (2008). Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmospheric Environment, 42, 4708–4723.

    Article  CAS  Google Scholar 

  • Sakamoto, M., Yoshimura, A., Kosaka, H., & Hiraki, T. (2005). Study on weekend-weekday differences in ambient oxidant concentrations in Hyogo Prefecture. Journal of Japan Society for Atmospheric Environment, 40, 201–208.

    CAS  Google Scholar 

  • Scheff, P. A., & Valiozis, C. (1990). Characterization and source identification of respirable particulate matter in Athens Greece. Atmospheric Environment, 24, 203–211.

    Article  Google Scholar 

  • Schifter, I., Diaz, L., Vera, M., Guzman, E., & Lopez-Salinas, E. (2004). Fuel formulation and vehicle exhaust emissions in Mexico. Fuel, 83, 2065–2074.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H. (1986). Atmospheric chemistry and physics of air pollution. Wiley/Interscience.

    Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics from air pollution to climate change (p. 528). Wiley.

    Google Scholar 

  • Shahid, I. (2010). Estimation of air pollutants emission in Pakistan with increasing energy consumption using Gains-Asia model. Retrieved January 15, 2021, fromhttps://www.researchgate.net/publication/27150608_Air_pollutants_emissions_in_Pakistan

  • Sillman, S. (1999). The relation between ozone, NOx, and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33, 1821–1845.

    Article  CAS  Google Scholar 

  • State of Global Air. (2018). Region & city PM2.5 ranking. Retrieved December 23, 2019, from https://www.stateofglobalair.org/sites/default/files/soga-2018-report.pdf

  • Stelson, A. W., & Seinfeld, J. H. (1982). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment, 16, 983–992.

    Article  CAS  Google Scholar 

  • Stockwell, W. R., Watson, J. G., Robinson, N. F., Steiner, W., & Sylte, W. W. (2000). The ammonium nitrate particle equivalent of NOx emissions for wintertime conditions in Central California’s San Joaquin valley. Atmospheric Environment, 34, 4711–4717.

    Article  CAS  Google Scholar 

  • Suh, H. H., Bahadori, T., Vallarino, J., & Spengler, J. D. (2000). Criteria air pollutants and toxic air pollutants. Environmental Health Perspectives, 108(4), 625–633. https://doi.org/10.1289/ehp.00108s4625

    Article  CAS  Google Scholar 

  • Taslim, U., Mubashsher, S., Arshad, S., Alam, J., & Rehman, I. (2017). Karachi traffic chaos: Jamming the wheels of economy. Karachi Chamber of Commerce & Industry, Karachi 2017.

  • Tie, X., Brasseur, G. P., Zhao, C., Granier, C., Massie, S., Qin, Y., Wang, P., Wang, G., Yang, P., & Richter, A. (2006). Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmospheric Environment, 40, 2607–2625.

    Article  CAS  Google Scholar 

  • Wang, L., Guan, Q., Wang, F., Yang, L., & Liu, Z. (2018). Association between heating seasons and criteria air pollutants in three provincial capitals in northern China: Spatiotemporal variation and sources contribution. Building and Environment, 132, 233–244. https://doi.org/10.1016/j.buildenv.2018.01.034

    Article  Google Scholar 

  • Wang, W., Ren, L., Zhang, Y., Chen, J., Liu, H., Bao, L., Fan, S., & Tang, D. (2008). Aircraft measurements of gaseous pollutants and particulate matter over Pearl River Delta in China. Atmospheric Environment, 42(25), 6187–6202. https://doi.org/10.1016/j.atmosenv.2008.06.001

    Article  CAS  Google Scholar 

  • Wang, Y., Ying, Q., Hu, J., & Zhang, H. (2014). Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environment International, 73, 413–422. https://doi.org/10.1016/j.envint.2014.08.016

    Article  CAS  Google Scholar 

  • Yao, Z., Huo, H., Zhang, Q., Streets, D. G., & He, K. (2011). Gaseous and particulate emissions from rural vehicles in China. Atmospheric Environment, 45, 3055–3061.

    Article  CAS  Google Scholar 

  • Ying, Z., Tie, X., & Li, G. (2009). Sensitivity of ozone concentrations to diurnal variations of surface emissions in Mexico City: A WRF/Chem modeling study. Atmospheric Environment, 43, 851–859. https://doi.org/10.1016/j.atmosenv.2008.10.044

    Article  CAS  Google Scholar 

  • Yli-Tuomi, T., Aarnio, P., Pirjola, L., Mäkelä, T., Hillamo, R., & Jantunen, M. (2005). Emissions of fine particles, NOx, and CO from on-road vehicles in Finland. Atmospheric Environment, 39, 6696–6706.

    Article  CAS  Google Scholar 

  • Zabalza, J., Ogulei, D., Elustondo, D., Santamaría, J. M., Alastuey, A., Querol, X., & Hopke, P. K. (2007). Study of urban atmospheric pollution in Navarre (Northern Spain). Environmental Monitoring and Assessment, 134, 137–151.

    Article  CAS  Google Scholar 

  • Zhang, H., Wang, Y., Hu, J., Ying, Q., & Hu, X. M. (2015). Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research, 140, 242–254. https://doi.org/10.1016/j.envres.2015.04.004

    Article  CAS  Google Scholar 

  • Zhang, R., Lei, W., Tie, X., & Hess, P. (2004). Industrial emissions cause extreme urban ozone diurnal variability. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6346–6350. https://doi.org/10.1073/pnas.0401484101

    Article  CAS  Google Scholar 

  • Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., & Dong, L. (2018). Spatial patterns and temporal variations of six criteria air pollutants during 2015 to 2017 in the city clusters of Sichuan Basin China. Science of the Total Environment, 624, 540–557. https://doi.org/10.1016/j.scitotenv.2017.12.172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wadsworth Center, New York State Department of Health; University at Albany; Higher Education Commission, Pakistan; and University of Karachi.

Funding

This work was supported by the Pakistan-US Science and Technology Cooperative Program (administered by the National Academy of Sciences, USA, and Higher Education Commission, Pakistan) under the grant # PGA-7251–07-010 to David O. Carpenter, Haider A. Khwaja, and Zafar Fatmi.

Author information

Authors and Affiliations

Authors

Contributions

Haider A. Khwaja: conceptualization, project administration, supervision, and writing, including review and editing. Fatim Sannoh and Omosehin Moyebi: data curation, formal analysis, and writing of original draft. Azhar Siddique, Kamran Khan, and Jahan Zeb: sampling. Mirza M. Hussain: methodology. David Carpenter and Zafar Fatmi: project administration and writing, including review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haider A. Khwaja.

Ethics declarations

Ethics approval and consent to participate

This study was approved by Institutional Review Boards of Wadsworth Center, New York State Department of Health; University at Albany; and The Aga Khan University. Consent to participate is not applicable.

Consent for publication

All authors agree to the publication in this journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyebi, O.D., Sannoh, F., Fatmi, Z. et al. State of gaseous air pollutants and resulting health effects in Karachi, Pakistan. Environ Monit Assess 195, 266 (2023). https://doi.org/10.1007/s10661-022-10787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10787-1

Keywords

Navigation