Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the main pollutants generated by the refining and use of oil. To search bioremediation alternatives for these compounds, mainly in situ, considering the biotic and abiotic variables that affect the contaminated sites is determinant for the success of bioremediation techniques. In this study, bioremediation strategies were evaluated in situ, including biostimulation and bioaugmentation for 16 priority PAHs present in activated sludge farms. B. vietnamiensis G4 was used as a biodegradation agent for bioaugmentation tests. The analyses occurred for 12 months, and temperature and humidity were measured to verify the effects of these factors on the biodegradation. We used the technique GC–MS to evaluate and quantify the degradation of PAHs over the time of the experiment. Of the four treatments applied, bioaugmentation with quarterly application proved to be the best strategy, showing the degradation of compounds of high (34.4% annual average) and low (21.9% annual average) molecular weight. A high degradation rate for high molecular weight compounds demonstrates that this technique can be successfully applied in bioremediation of areas with compounds considered toxic and stable in nature, contributing to the mitigation of impacts generated by PAHs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and materials
Not applicable.
References
Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
Acer, Ö., Johnston, G. P., Lineman, D., & Johnston, C. G. (2021). Evaluating degradation of polycyclic aromatic hydrocarbon (PAH) potential by indigenous bacteria isolated from highly contaminated riverbank sediments. Environmental Earth Sciences, 80(23), 773. https://doi.org/10.1007/s12665-021-10070-5
Amodu, O., Ntwampe, S., & Ojumu, T. (2019). Improving biodegradation of benzo(Ghi)perylene in soil: Effects of bacterial co-culture, agrowaste and biosurfactant supplementation. Carpathian Journal of Earth and Environmental Sciences, 14, 191–198. https://doi.org/10.26471/cjees/2019/014/071
Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412–431. https://doi.org/10.1093/jaoac/86.2.412
Cagnetta, G., Huang, J., & Yu, G. (2018). A mini-review on mechanochemical treatment of contaminated soil: From laboratory to large-scale. Critical Reviews in Environmental Science and Technology, 48(7–9), 723–771. https://doi.org/10.1080/10643389.2018.1493336
Cai, G., Zhao, L., Wang, T., Lv, N., Li, J., Ning, J., et al. (2021). Variation of volatile fatty acid oxidation and methane production during the bioaugmentation of anaerobic digestion system: Microbial community analysis revealing the influence of microbial interactions on metabolic pathways. Science of the Total Environment, 754, 142425. https://doi.org/10.1016/j.scitotenv.2020.142425
Castro, T. M. S. D., Cammarota, M. C., & Pacheco, E. B. A. V. (2021). Anaerobic co-digestion of oil refinery waste activated sludge and food waste. Environmental Technology, 1-12. https://doi.org/10.1080/09593330.2021.1946598
Cauduro, G. P., Leal, A. L., Lopes, T. F., Marmitt, M., & Valiati, V. H. (2020). Differential expression and PAH degradation: What Burkholderia vietnamiensis G4 Can Tell Us? International Journal of Microbiology, 2020, 8831331. https://doi.org/10.1155/2020/8831331
Cauduro, G. P., Leal, A. L., Marmitt, M., de Ávila, L. G., Kern, G., Quadros, P. D., et al. (2021). New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. Environmental Monitoring and Assessment, 193(4), 163. https://doi.org/10.1007/s10661-021-08952-z
Cerniglia, C. E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4(3), 331–338. https://doi.org/10.1016/0958-1669(93)90104-5
Chenprakhon, P., Wongnate, T., & Chaiyen, P. (2019). Monooxygenation of aromatic compounds by flavin-dependent monooxygenases: Flavin-dependent aromatic hydroxylases. Protein Science, 28(1), 8–29. https://doi.org/10.1002/pro.3525
Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
Dai, C., Han, Y., Duan, Y., Lai, X., Fu, R., Liu, S., et al. (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research, 205, 112423. https://doi.org/10.1016/j.envres.2021.112423
de Almeida, F. F., Freitas, D., Motteran, F., Fernandes, B. S., & Gavazza, S. (2021). Bioremediation of polycyclic aromatic hydrocarbons in contaminated mangroves: Understanding the historical and key parameter profiles. Marine Pollution Bulletin, 169, 112553. https://doi.org/10.1016/j.marpolbul.2021.112553
de Souza Pohren, R., Rocha, J. A. V., Horn, K. A., & Vargas, V. M. F. (2019). Bioremediation of soils contaminated by PAHs: Mutagenicity as a tool to validate environmental quality. Chemosphere, 214, 659–668. https://doi.org/10.1016/j.chemosphere.2018.08.020
Dolatabadi, M., Ghaneian, M. T., Wang, C., & Ahmadzadeh, S. (2021a). Electro-Fenton approach for highly efficient degradation of the herbicide 2,4-dichlorophenoxyacetic acid from agricultural wastewater: Process optimization, kinetic and mechanism. Journal of Molecular Liquids, 334, 116116. https://doi.org/10.1016/j.molliq.2021.116116
Dolatabadi, M., Świergosz, T., & Ahmadzadeh, S. (2021b). Electro-Fenton approach in oxidative degradation of dimethyl phthalate - The treatment of aqueous leachate from landfills. Science of the Total Environment, 772, 145323. https://doi.org/10.1016/j.scitotenv.2021.145323
Dvořák, P., Nikel, P. I., Damborský, J., & de Lorenzo, V. (2017). Bioremediation 3 . 0 : Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7), 845–866. https://doi.org/10.1016/j.biotechadv.2017.08.001
Fernández-Luqueño, F., Valenzuela-Encinas, C., Marsch, R., Martínez-Suárez, C., Vázquez-Núñez, E., & Dendooven, L. (2011). Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: A review. Environmental Science and Pollution Research, 18(1), 12–30. https://doi.org/10.1007/s11356-010-0371-6
Freire, R. S., Pelegrini, R., Kubota, L. T., Durán, N., & Peralta-Zamora, P. (2000). Novas tendências para o tratamento de resíduos industriais contendo espécies organocloradas. Química Nova, 23, 504–511. https://doi.org/10.1590/S0100-40422000000400013
Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Frontiers in microbiology, 1369. https://doi.org/10.3389/fmicb.2016.01369
Guo, W. -Q., Yang, S. -S., Xiang, W. -S., Wang, X. -J., & Ren, N. -Q. (2013). Minimization of excess sludge production by in-situ activated sludge treatment processes — A comprehensive review. Biotechnology Advances, 31(8), 1386–1396. https://doi.org/10.1016/j.biotechadv.2013.06.003
Gupta, G., Kumar, V., & Pal, A. K. (2019). Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. Polycyclic Aromatic Compounds, 39(2), 124–138. https://doi.org/10.1080/10406638.2017.1293696
Haleyur, N., Shahsavari, E., Jain, S. S., Koshlaf, E., Ravindran, V. B., Morrison, P. D., et al. (2019). Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community. Journal of Environmental Management, 238, 49–58. https://doi.org/10.1016/j.jenvman.2019.02.115
Herrero, M., & Stuckey, D. C. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128. https://doi.org/10.1016/j.chemosphere.2014.10.033
Ibrar, M., & Zhang, H. (2020). Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. Science of the Total Environment, 714, 136400. https://doi.org/10.1016/j.scitotenv.2019.136400
Innemanová, P., Filipová, A., Michalíková, K., Wimmerová, L., & Cajthaml, T. (2018). Bioaugmentation of PAH-contaminated soils: A novel procedure for introduction of bacterial degraders into contaminated soil. Ecological Engineering, 118, 93–96. https://doi.org/10.1016/j.ecoleng.2018.04.014
Ismail, N. A., Kasmuri, N., & Hamzah, N. (2022). Microbial bioremediation techniques for polycyclic aromatic hydrocarbon (PAHs)—A review. Water, Air, & Soil Pollution, 233(4), 124. https://doi.org/10.1007/s11270-022-05598-6
Jabbar, N. M., Alardhi, S. M., Mohammed, A. K., Salih, I. K., & Albayati, T. M. (2022). Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review. Environmental Nanotechnology, Monitoring & Management, 18, 100694. https://doi.org/10.1016/j.enmm.2022.100694
Jenkins, D., Wanner, J., IWA Conference activated sludge - 100 years and counting, & International Water Association (Eds.). (2014). IWA Conference Activated Sludge - 100 Years and Counting, International Water Association. Presented at the Conference “Activated Sludge 100 Years and Counting!, London.
Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 45(1–2), 57–88. https://doi.org/10.1016/S0964-8305(00)00052-4
Kanehisa, M. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. Journal of Chemistry, 2021, e9823362. https://doi.org/10.1155/2021/9823362
Keith, L. H. (2015). The source of U.S. EPA’s sixteen PAH priority pollutants. Polycyclic Aromatic Compounds, 35(2–4), 147–160. https://doi.org/10.1080/10406638.2014.892886
Khorshid, M., Souaya, E. R., Hamzawy, A. H., & Mohammed, M. N. (2015). QuEChERS method followed by solid phase extraction method for gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbons in fish. International Journal of Analytical Chemistry, 2015, e352610. https://doi.org/10.1155/2015/352610
Kim, T. J. (2003). Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World Journal of Microbiology and Biotechnology, 19(4), 411–417. https://doi.org/10.1023/A:1023998719787
Kong, F., Sun, G., & Liu, Z. (2018). Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. Chemosphere, 198, 83–91. https://doi.org/10.1016/j.chemosphere.2018.01.097
Kumar, R. R., Bhattacharya, C., & Vishwakarma, N. P. (2021). Application of microbial technology for waste removal. In P. Bhatt, S. Gangola, D. Udayanga, & G. Kumar (Eds.), Microbial technology for sustainable environment (pp. 261–291). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-3840-4_16
Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y. B., Naidu, R., & Megharaj, M. (2017). Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere, 168, 944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115
Kuyukina, M. S., & Ivshina, I. B. (2019). Bioremediation of contaminated environments using Rhodococcus. In H. M. Alvarez (Ed.), Biology of Rhodococcus (Vol. 16, pp. 231–270). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-11461-9_9
Leal, A. L., Dalzochio, M. S., Flores, T. S., de Alves, A. S., Macedo, J. C., & Valiati, V. H. (2013). Implementation of the sludge biotic index in a petrochemical WWTP in Brazil: Improving operational control with traditional methods. Journal of Industrial Microbiology and Biotechnology, 40(12), 1415–1422. https://doi.org/10.1007/s10295-013-1354-7
Lemieux, C. L., Lynes, K. D., White, P. A., Lundstedt, S., Öberg, L., & Lambert, I. B. (2009). Mutagenicity of an aged gasworks soil during bioslurry treatment. Environmental and Molecular Mutagenesis, 50(5), 404–412. https://doi.org/10.1002/em.20473
Li, X., Wang, C., Zhang, J., Liu, J., Liu, B., & Chen, G. (2020a). Preparation and application of magnetic biochar in water treatment: A critical review. Science of the Total Environment, 711, 134847. https://doi.org/10.1016/j.scitotenv.2019.134847
Li, Y., Wei, M., Liu, L., Xue, Q., & Yu, B. (2020b). Adsorption of toluene on various natural soils: Influences of soil properties, mechanisms, and model. Science of the Total Environment, 740, 140104. https://doi.org/10.1016/j.scitotenv.2020.140104
Liu, L., Bilal, M., Duan, X., & Iqbal, H. M. N. (2019). Mitigation of environmental pollution by genetically engineered bacteria — Current challenges and future perspectives. Science of the Total Environment, 667, 444–454. https://doi.org/10.1016/j.scitotenv.2019.02.390
Liu, Z., Gao, Z., & Lu, X. (2020). An integrated approach to remove PAHs from highly contaminated soil: Electro-Fenton process and bioslurry treatment. Water, Air, & Soil Pollution, 231(6), 314. https://doi.org/10.1007/s11270-020-04696-7
Lors, C., Damidot, D., Ponge, J. -F., & Périé, F. (2012). Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution, 165, 11–17. https://doi.org/10.1016/j.envpol.2012.02.004
Lundstedt, S., White, P. A., Lemieux, C. L., Lynes, K. D., Lambert, I. B., Öberg, L., et al. (2007). Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH- contaminated sites. AMBIO: A Journal of the Human Environment, 36(6), 475–485. https://doi.org/10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2
Macaya, C. C., Durán, R. E., Hernández, L., Rodríguez-Castro, L., Barra-Sanhueza, B., Dorochesi, F., & Seeger, M. (2019). Bioremediation of petroleum. In Reference Module in Life Sciences (p. B9780128096338209000). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20810-8
Maier, R. M., & Gentry, T. J. (2015). Microorganisms and organic pollutants. In Environmental Microbiology (pp. 377–413). Elsevier. https://doi.org/10.1016/B978-0-12-394626-3.00017-X
Mamaghani, A. H., Haghighat, F., & Lee, C. -S. (2019). Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere, 219, 804–825. https://doi.org/10.1016/j.chemosphere.2018.12.029
Mamba, F. B., Mbuli, B. S., & Ramontja, J. (2021). Recent advances in biopolymeric membranes towards the removal of emerging organic pollutants from water. Membranes, 11(11), 798. https://doi.org/10.3390/membranes11110798
Mastrangelo, G., Fadda, E., & Marzia, V. (1996). Polycyclic aromatic hydrocarbons and cancer in man. Environmental Health Perspectives, 104(11), 1166–1170. https://doi.org/10.1289/ehp.961041166
Mihai, F. -C., Plana, R., Taherzadeh, M. J., Aswathi, M. K., & Ezeah, C. (2021). Bioremediation of organic contaminants based on biowaste composting practices. In Handbook of Bioremediation (pp. 701–714). Elsevier. https://doi.org/10.1016/B978-0-12-819382-2.00045-4
Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971
Mortazavi Mehrizi, M., Yousefinejad, S., Jafari, S., Baghapour, M. A., Karimi, A., Mahvi, A. H., Jahangiri, M. (2020). Bioremediation and microbial degradation of benzo[a]pyrene in aquatic environments: A systematic review. International Journal of Environmental Analytical Chemistry, 1–16. https://doi.org/10.1080/03067319.2020.1770743
Morya, R., Salvachúa, D., & Thakur, I. S. (2020). Burkholderia: An untapped but promising bacterial genus for the conversion of aromatic compounds. Trends in Biotechnology, 38(9), 963–975. https://doi.org/10.1016/j.tibtech.2020.02.008
Moscoso, F., Deive, F. J., Longo, M. A., & Sanromán, M. A. (2015). Insights into polyaromatic hydrocarbon biodegradation by Pseudomonas stutzeri CECT 930: Operation at bioreactor scale and metabolic pathways. International Journal of Environmental Science and Technology, 12(4), 1243–1252. https://doi.org/10.1007/s13762-014-0498-y
Nelson, M. J. K., & Mahaffey, W. R. (1987). Biodegradation of Trichloroethylene and involvement of an aromatic biodegradative pathwayt. Applied and Environment Microbiology, 53, 6.
Nzila, A., Saravanan Sankara, Al-Momani, M., & Musa, M. M. (2018). Archives of environmental protection. https://doi.org/10.24425/119693
Oliveira, P. H., Touchon, M., Cury, J., & Rocha, E. P. C. (2017). The chromosomal organization of horizontal gene transfer in bacteria. Nature Communications, 8(1), 841. https://doi.org/10.1038/s41467-017-00808-w
O’Sullivan, L. A., & Mahenthiralingam, E. (2005). Biotechnological potential within the genus Burkholderia. Letters in Applied Microbiology, 41(1), 8–11. https://doi.org/10.1111/j.1472-765X.2005.01758.x
O’Sullivan, L. A., Weightman, A. J., Jones, T. H., Marchbank, A. M., Tiedje, J. M., & Mahenthiralingam, E. (2007). Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environmental Microbiology, 9(4), 1017–1034. https://doi.org/10.1111/j.1462-2920.2006.01228.x
Pacwa-Płociniczak, M., Biniecka, P., Bondarczuk, K., & Piotrowska-Seget, Z. (2020). Metagenomic functional profiling reveals differences in bacterial composition and function during bioaugmentation of aged petroleum-contaminated soil. Frontiers in Microbiology, 11, 2106. https://doi.org/10.3389/fmicb.2020.02106
Panahi, Y., Mellatyar, H., Farshbaf, M., Sabet, Z., Fattahi, T., & Akbarzadehe, A. (2018). Biotechnological applications of nanomaterials for air pollution and water/wastewater treatment. Materials Today: Proceedings, 5(7), 15550–15558. https://doi.org/10.1016/j.matpr.2018.04.162
Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Frontiers in Microbiology, 11, 562813. https://doi.org/10.3389/fmicb.2020.562813
Pawar, R. M. (2015). The effect of soil pH on bioremediation of polycyclic aromatic hydrocarbons (PAHS). Journal of Bioremediation & Biodegradation, 06(03). https://doi.org/10.4172/2155-6199.1000291
Pelaez, A. I., Lores, I., Sotres, A., Mendez-Garcia, C., Fernandez-Velarde, C., Santos, J. A., et al. (2013). Design and field-scale implementation of an “on site” bioremediation treatment in PAH-polluted soil. Environmental Pollution, 181, 190–199. https://doi.org/10.1016/j.envpol.2013.06.004
Premnath, N., Mohanrasu, K., Rao, G. R., R., Dinesh, G. H., Prakash, G. S., Ananthi, V., et al. (2021). A crucial review on polycyclic aromatic hydrocarbons - environmental occurrence and strategies for microbial degradation. Chemosphere, 280, 130608. https://doi.org/10.1016/j.chemosphere.2021.130608
Prestes, O. D., Friggi, C. A., Adaime, M. B., & Zanella, R. (2009). QuEChERS: Um método moderno de preparo de amostra para determinação multirresíduo de pesticidas em alimentos por métodos cromatográficos acoplados à espectrometria de massas. Química Nova, 32(6), 1620–1634. https://doi.org/10.1590/S0100-40422009000600046
Qiao, K., Tian, W., Bai, J., Wang, L., Zhao, J., Song, T., & Chu, M. (2020). Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads. Marine Pollution Bulletin, 159, 111489. https://doi.org/10.1016/j.marpolbul.2020.111489
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Avaliable in: https://www.R-project.org
Rabodonirina, S., Rasolomampianina, R., Krier, F., Drider, D., Merhaby, D., Net, S., & Ouddane, B. (2019). Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites. Journal of Environmental Management, 232, 1–7. https://doi.org/10.1016/j.jenvman.2018.11.005
Redfern, L. K., Gardner, C. M., Hodzic, E., Ferguson, P. L., Hsu-Kim, H., & Gunsch, C. K. (2019). A new framework for approaching precision bioremediation of PAH contaminated soils. Journal of Hazardous Materials, 378, 120859. https://doi.org/10.1016/j.jhazmat.2019.120859
Rezayi, M., Karazhian, R., Abdollahi, Y., Narimani, L., Sany, S. B. T., Ahmadzadeh, S., & Alias, Y. (2015). Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples. Scientific Reports, 4(1), 4664. https://doi.org/10.1038/srep04664
Roy, A., Dutta, A., Pal, S., Gupta, A., Sarkar, J., Chatterjee, A., et al. (2018). Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresource Technology, 253, 22–32. https://doi.org/10.1016/j.biortech.2018.01.004
Ruiz, O. N., Brown, L. M., Radwan, O., Bowen, L. L., Gunasekera, T. S., Mueller, S. S., et al. (2021). Metagenomic characterization reveals complex association of soil hydrocarbon-degrading bacteria. International Biodeterioration & Biodegradation, 157, 105161. https://doi.org/10.1016/j.ibiod.2020.105161
Rutz, D., Frasson, D., Sievers, M., Blom, J., Rezzonico, F., Pothier, J. F., & Smits, T. H. M. (2019). Comparative genomic analysis of the biotechnological potential of the novel species Pseudomonas wadenswilerensis CCOS 864T and Pseudomonas reidholzensis CCOS 865T. Diversity, 11(11), 204. https://doi.org/10.3390/d11110204
Sakshi, & Haritash, A. K. (2020). A comprehensive review of metabolic and genomic aspects of PAH-degradation. Archives of Microbiology, 202(8), 2033–2058. https://doi.org/10.1007/s00203-020-01929-5
Sakshi, Singh, S. K., & Haritash, A. K. (2019). Polycyclic aromatic hydrocarbons: Soil pollution and remediation. International Journal of Environmental Science and Technology, 16(10), 6489–6512. https://doi.org/10.1007/s13762-019-02414-3
Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243–248. https://doi.org/10.1016/S0167-7799(02)01943-1
Sayara, T., & Sánchez, A. (2020). Bioremediation of PAH-contaminated soils: Process enhancement through composting/compost. Applied Sciences, 10(11), 3684. https://doi.org/10.3390/app10113684
Shah, M. P. (2014). Environmental bioremediation: A low cost nature’s natural biotechnology for environmental clean-up. Journal of Petroleum & Environmental Biotechnology, 5(4), 1–12. https://doi.org/10.4172/2157-7463.1000191
Shahsavari, E., Schwarz, A., Aburto-Medina, A., & Ball, A. S. (2019). Biological degradation of polycyclic aromatic compounds (PAHs) in soil: A current perspective. Current Pollution Reports, 5(3), 84–92. https://doi.org/10.1007/s40726-019-00113-8
Smułek, W., Sydow, M., Zabielska-Matejuk, J., & Kaczorek, E. (2020). Bacteria involved in biodegradation of creosote PAH – A case study of long-term contaminated industrial area. Ecotoxicology and Environmental Safety, 187, 109843. https://doi.org/10.1016/j.ecoenv.2019.109843
Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environmental Chemistry Letters, 5(4), 169–195. https://doi.org/10.1007/s10311-007-0095-0
Stubbendieck, R. M., Vargas-Bautista, C., & Straight, P. D. (2016). Bacterial communities: interactions to scale. Frontiers in Microbiology, 7, 1234. https://doi.org/10.3389/fmicb.2016.01234
Tirado-Torres, D., Acevedo-Sandoval, O., Rodríguez-Pastrana, B. R., & Gayosso-Canales, M. (2017). Phylogeny and polycyclic aromatic hydrocarbons degradation potential of bacteria isolated from crude oil-contaminated site. Journal of Environmental Science and Health, Part A, 52(9), 897–904. https://doi.org/10.1080/10934529.2017.1316170
Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. C. R. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241. https://doi.org/10.1007/s10532-010-9394-4
Ubani, O., Atagana, H. I., Selvarajan, R., & Ogola, H. J. (2022). Unravelling the genetic and functional diversity of dominant bacterial communities involved in manure co-composting bioremediation of complex crude oil waste sludge. Heliyon, 8(2). https://doi.org/10.1016/j.heliyon.2022.e08945
Ukalska-Jaruga, A., Smreczak, B., & Klimkowicz-Pawlas, A. (2019). Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. Journal of Soils and Sediments, 19(4), 1890–1900. https://doi.org/10.1007/s11368-018-2214-x
Varanasi, U. (1989). Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment (1st ed.). CRC Press.
Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277–286. https://doi.org/10.1016/j.biortech.2016.10.037
Wang, S., Wang, X., Zhang, C., Li, F., & Guo, G. (2016). Bioremediation of oil sludge contaminated soil by landfarming with added cotton stalks. International Biodeterioration & Biodegradation, 106, 150–156. https://doi.org/10.1016/j.ibiod.2015.10.014
Wei, C., Han, Y., Bandowe, B. A. M., Cao, J., Huang, R. -J., Ni, H., et al. (2015). Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi’an, central China. Science of the Total Environment, 505, 814–822. https://doi.org/10.1016/j.scitotenv.2014.10.054
Winsor, G. L., Khaira, B., Van Rossum, T., Lo, R., Whiteside, M. D., & Brinkman, F. S. L. (2008). The Burkholderia genome database: Facilitating flexible queries and comparative analyses. Bioinformatics, 24(23), 2803–2804. https://doi.org/10.1093/bioinformatics/btn524
Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., et al. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Frontiers in Microbiology, 9, 2885. https://doi.org/10.3389/fmicb.2018.02885
Yu, K. S. H., Wong, A. H. Y., Yau, K. W. Y., Wong, Y. S., & Tam, N. F. Y. (2005). Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Marine Pollution Bulletin, 51(8), 1071–1077. https://doi.org/10.1016/j.marpolbul.2005.06.006
Yunus, I. S., Harwin, Kurniawan, A., Adityawarman, D., & Indarto, A. (2012). Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136–148. https://doi.org/10.1080/21622515.2012.733966
Zada, S., Zhou, H., Xie, J., Hu, Z., Ali, S., Sajjad, W., & Wang, H. (2021). Bacterial degradation of pyrene: Biochemical reactions and mechanisms. International Biodeterioration & Biodegradation, 162, 105233. https://doi.org/10.1016/j.ibiod.2021.105233
Zhao, G., Zou, J., Zhang, T., Li, C., Zhou, S., & Jiao, F. (2020). Recent progress on removal of indoor air pollutants by catalytic oxidation. Reviews on Environmental Health, 35(4), 311–321. https://doi.org/10.1515/reveh-2019-0102
Acknowledgements
We gratefully acknowledge the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES, Brazil) for research grants and fellowships in support of this study, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research grants to VHV (308996/2017-8) and Programa de Pós-Graduação em Biologia (UNISINOS). We thank the Companhia Riograndense de Saneamento (CORSAN), for providing samples and laboratory equipment for the realization of this study. Special thanks to Eshwar Mahenthiralingam, PhD from the Cardiff School of Biosciences, Cardiff University, UK, for providing the Burkholderia vietnamiensis G4 strain that we used in the work. Credit to the operators of the Laboratory of Genetics and Molecular Biology (LGBM/UNISINOS).
Funding
The work had financial support from the Companhia Riograndense de Saneamento (CORSAN) for the acquisition of some laboratory equipment and consumables that helped carry out this study. In addition, the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES, Brazil) provided the scholarship for a PhD student. All other costs were financed from the project coordinator’s own funds.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cauduro, G.P., Marmitt, M., Ferraz, M. et al. Burkholderia vietnamiensis G4 as a biological agent in bioremediation processes of polycyclic aromatic hydrocarbons in sludge farms. Environ Monit Assess 195, 116 (2023). https://doi.org/10.1007/s10661-022-10733-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-022-10733-1