Skip to main content

Advertisement

Log in

Atmospheric temperature and humidity demonstrated strong correlation with productivity in tropical moist deciduous forests

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Tropical forests sequester six times higher carbon than that released by humans annually into the atmosphere. These biodiversity-rich tropical forests have high net primary productivity (NPP), which differs among constituent plant communities. Tropical moist deciduous forests occupy 179,335 km2 of India’s geographical area and constitute 44% of the country’s total protected area (PA) forests. The productivity of these forests has neither been estimated specifically nor precisely. We measured the annual NPP of three predominant distinct community types, viz., mixed (DM), sal (SM), and teak (TP), in a tropical moist deciduous forest in northern India. The NPP was estimated from tree biomass data collected from nine long-term ecological research (LTER) plots of 1 ha each representing the above three community types. The estimated annual NPP were 10.28, 6.25, and 9.79 Mg ha−1 year−1 in DM; 8.93, 7.09, and 10.59 Mg ha−1 year−1 in SM; and 14.57, 7.14, and 13.56 Mg ha−1 year−1 in TP for the years 2010, 2011, and 2012, respectively. The NPP was correlated with tree density, height and DBH, species richness, diversity, microclimatic and edaphic variables, and leaf area index (LAI) using principal component analysis (PCA) and generalized linear modeling (GLM). Air temperature and humidity were strongly related to NPP in all the community types, while “complementarity” and “selection effects” contributed to the NPP in both the sal and mixed forest communities with equal importance, and the NPP in teak plantation ould point to “dominance effect.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

I, Soumit K. Behera, on behalf of all the authors declare that we have given all the required data in the above manuscript. We do not have any additional data to give with the above MS. We will share the raw data if required.

References

  • Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observation: Implication for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191–205.

    Article  Google Scholar 

  • Barik, S. K., Pandey, H. N., Tripathi, R. S., & Rao, P. (1992). Microenvironmental variability and species diversity in tree fall gaps in a sub-tropical broadleaved forest. Vegetatio, 103(1), 31–40.

    Article  Google Scholar 

  • Behera, S. K., Behera, M. D., & Tuli, R. (2015). An indirect method of estimating leaf area index in a tropical deciduous forest of India. Ecological Indicators, 58, 356–364.

    Article  Google Scholar 

  • Behera, S. K., Mishra, A. K., Sahu, N., Kumar, A., Singh, N., et al. (2012). The study of microclimate in response to different plant community association in tropical moist deciduous forest from northern India. Biodiversity and Conservation, 21, 1159–1176.

    Article  Google Scholar 

  • Behera, S. K., Sahu, N., Mishra, A. K., Bargali, S. S., Behera, M. D., & Tuli, R. (2017). Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. Ecological Engineering, 99, 513–524.

    Article  Google Scholar 

  • Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.

    Article  CAS  Google Scholar 

  • Bonan, G. B., & Shugart, H. H. (1989). Environmental factors and ecological processes in boreal forests. The Annual Review of Ecology, Evolution, and Systematics, 20, 1–28.

    Article  Google Scholar 

  • Bondeau, A., Kicklighter, D.W., Kaduk, J., and the Participants of the Potsdam NPP Model Intercomparison. (1999). Comparing global models of terrestrial net primary productivity (NPP): Importance of vegetation structure on seasonal NPP estimates. Global Change Biology, 5, 35–45.

    Article  Google Scholar 

  • Cardinale, B. J., Wright, J. P., Cadotte, M. W., Caroll, I. T., Hector, A., et al. (2007). Impact of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104, 18123–18128.

    Article  CAS  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. Manager of publications.

  • Chapin, F. S., & Eviner, V. T., III. (2003). Biogeochemistry of terrestrial net primary production. In W. Schlesinger (Ed.), Biogeochemistry: Treatise on geochemistry (pp. 215–247). Elsevier.

    Google Scholar 

  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.

    Article  CAS  Google Scholar 

  • Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., & Plummer, S. (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research, 102, 29429–29443.

    Article  Google Scholar 

  • Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., & Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences, 115(16), 4027–4032.

    Article  CAS  Google Scholar 

  • Chitale, V. S., & Behera, M. D. (2014). Analysing land and vegetation cover dynamics during last three decades in Katerniaghat Wildlife Sanctuary India. Journal of Earth System Science, 123(7), 1467–1479.

    Article  Google Scholar 

  • Churkina, G., Running, S. W., Schloss, A. L., and the Participants of the Potsdam NPP Model Intercomparison. (1999). Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Global Change Biology, 5, 46–55.

  • Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., et al. (2001a). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11, 356–370.

    Article  Google Scholar 

  • Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., et al. (2001b). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11, 371–384.

    Article  Google Scholar 

  • Das, A. K., & Ramakrishnan, P. S. (1985). Litter dynamics in Khasi pine (Pinus kesiya Royle ex Gordon) of North-eastern India. Forest Ecology and Management, 10, 135–153.

    Article  Google Scholar 

  • Devi, L. S., & Yadava, P. S. (2009). Aboveground biomass and net primary productivity of semi-evergreen tropical forest of Manipur, north-eastern India. Journal of Forestry Research, 20, 151–155.

    Article  Google Scholar 

  • David, H. C., de Araújo, E. J. G., Morais, V. A., Scolforo, J. R. S., Marques, J. M., Netto, S. P., & MacFarlane, D. W. (2017). Carbon stock classification for tropical forests in Brazil: Understanding the effect of stand and climate variables. Forest Ecology and Management, 404, 241–250.

    Article  Google Scholar 

  • Ducey, M. J., Zarin, D. J., Vasconcelos, S. S., & Araújo, M. M. (2009). Biomass equations for forest regrowth in the eastern Amazon using randomized branch sampling. Acta Amazonica, 39, 349–360.

    Article  Google Scholar 

  • George, M., Varghees, G., & Manivachakam, P. (1990). Nutrient cycling in Indian tropical dry deciduous forest ecosystem. Proceeding of the Seminar on Forest Productivity held at F.R.I. Dehradun, India, 23–24 April 1990, pp. 289–297.

  • Gherardi, L. A., & Sala, O. E. (2020). Global patterns and climatic controls of belowground net carbon fixation. Proceedings of the National Academy of Sciences, 117(33), 20038–20043.

    Article  CAS  Google Scholar 

  • Girardin, C. A. J., Mahli, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., et al. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16, 3176–3192.

    Article  Google Scholar 

  • Gower, S. T., McMurtrie, R. E., & Murty, D. (1996). Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology and Evolution, 11, 378–382.

    Article  CAS  Google Scholar 

  • Huang, J. G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., & Ziaco, E. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34), 20645–20652.

    Article  CAS  Google Scholar 

  • IGBP, Terrestrial Carbon Working Group. (1998). The terrestrial carbon cycle: Implications for the Kyoto protocol. Science, 280, 1393–1394.

    Article  Google Scholar 

  • Kooijmans, L. M., Sun, W., Aalto, J., Erkkilä, K. M., Maseyk, K., Seibt, U., & Chen, H. (2019). Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proceedings of the National Academy of Sciences, 116(7), 2470–2475.

    Article  CAS  Google Scholar 

  • Laurance, W. F., Fearnside, P. M., Laurance, S. G., Delamonica, P., Lovejoy, T. E., et al. (1999). Relationship between soils and Amazon forest biomass: A landscape-scale study. Forest Ecology and Management, 118, 127–138.

    Article  Google Scholar 

  • Leuschner, C., Moser, G., Bertsch, C., Röderstein, M., & Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology, 8, 219–230.

    Article  Google Scholar 

  • Liang, J., Zhou, M., Tobin, P. C., McGuire, A. D., & Reich, P. B. (2015). Biodiversity influences plant productivity through niche–efficiency. Proceedings of the National Academy of Sciences, 112(18), 5738–5743.

    Article  CAS  Google Scholar 

  • Linger, E., Hogan, J. A., Cao, M., Zhang, W. F., Yang, X. F., & Hu, Y. H. (2020). Precipitation influences on the net primary productivity of a tropical seasonal rainforest in Southwest China: A 9-year case study. Forest Ecology and Management, 467, 118153.

    Article  Google Scholar 

  • Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76.

    Article  CAS  Google Scholar 

  • Lu, X., Vitousek, P. M., Mao, Q., Gilliam, F. S., Luo, Y., Turner, B. L., & Mo, J. (2021). Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences, 118(16), e2020790118.

    Article  CAS  Google Scholar 

  • Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society Biological Sciences, 366, 3225–3245.

    Article  CAS  Google Scholar 

  • Malhi, Y., Eduardo, L., Aragao, C., Metcalfe, D. B., Paiva, R., et al. (2005). Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 15, 1255–1274.

    Article  Google Scholar 

  • Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology and Evolution, 15, 332–337.

    Article  CAS  Google Scholar 

  • Martinez-Yrizar, A., Sarukhan, J., Perez-Jimenez, A., Rincon, E., Maass, J. M., et al. (1992). Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, Mexico. Journal of Tropical Ecology, 8, 87–96.

    Article  Google Scholar 

  • McCarthy, H. R., Oren, R., Finzi, A. C., & Johnsen, K. H. (2006). Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, 103(51), 19356–19361.

    Article  CAS  Google Scholar 

  • Medvigy, D., Wofsy, S. C., Munger, J. W., & Moorcroft, P. R. (2010). Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 107, 8275–8280.

    Article  CAS  Google Scholar 

  • Misra, R., Singh, J. S., & Singh, K. P. (1967). Preliminary observations on the production of dry matter by sal (Shorea robusta Gaertn. f.). Tropical Ecology, 8, 94–104.

    Google Scholar 

  • Montagnini, F., & Jordan, C. F. (2005). Tropical forest ecology: The basis for conservation and management. Springer Science & Business Media.

  • Mooney, H., & Bullock, S. (Eds.). (1994). Tropical deciduous forest ecosystems. Cambridge University Press.

  • Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18(5), 521–531.

    Article  Google Scholar 

  • Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., & Oren, R. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, 102(50), 18052–18056.

    Article  CAS  Google Scholar 

  • Paquette, A., & Messier, C. (2011). The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20, 170–180.

    Article  Google Scholar 

  • Poorter, L., Sande, M. T., Thompson, J., Arets, E. J. M. M., Alarcón, A., et al. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1–15.

    Article  Google Scholar 

  • Raman, S. S. (1976). Biological productivity of Shorea plantations. Indian Forester, 102, 174–184.

    Google Scholar 

  • Rana, B. S., Singh, S. P., & Singh, R. P. (1988). Biomass and productivity of central Himalayan Sal (Shorea robusta) forest. Tropical Ecology, 29, 1–5.

    Google Scholar 

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., & Ramachandran, R. M. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159.

    Article  Google Scholar 

  • Saldarriaga, J. G., West, D. C., Tharp, M. L., & Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76, 938–958.

    Article  Google Scholar 

  • Shirima, D. D., Pfeifer, M., Platts, P. J., Totland, Ø., & Moe, S. R. (2015). Interactions between canopy structure and herbaceous biomass along environmental gradients in moist forest and dry Miombo woodland of Tanzania. PLoS ONE, 10, 1–15.

    Article  Google Scholar 

  • Singh, J. S., Singh, S. P., Saxena, A. K., & Rawat, Y. S. (1984a). The forest vegetation of Silent Valley, India. Tropical Rain Forest. The Leeds symposium. pp. 25–52.

  • Singh, J. S., Rawat, Y. S., & Chaturvedi, O. P. (1984b). Replacement of oak forest with pine in the Himalaya affects the nitrogen cycle. Nature, 311, 54–56.

    Article  Google Scholar 

  • Singh, L., & Singh, J. S. (1991). Storage and flux of nutrient in a dry tropical forest in India. Annals of Botany, 68, 275–284.

    Article  CAS  Google Scholar 

  • Slik, J. W. F., Aiba, S., Brearley, F. Q., Cannon, C. H., Forshed, O., et al. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography, 19, 50–60.

    Article  Google Scholar 

  • Swamy, S. L., Dutt, C. B. S., Murthy, M. S. R., Mishra, A., & Bargali, S. S. (2010). Floristics and dry matter dynamics of tropical wet evergreen forests of Western Ghats, India. Current Science, 99, 353–364.

    CAS  Google Scholar 

  • Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, C. E., Dobrowski, S. Z., & Townsend, A. R. (2017). Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 20(6), 779–788.

    Article  Google Scholar 

  • Tian, H., Mellilo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich III, J. V. K., et al. (1998). Effect of inter annual climate variability on carbon storage in Amazonian ecosystems. Nature, 396, 664–667.

    Article  CAS  Google Scholar 

  • Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., et al. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300–1302.

    Article  CAS  Google Scholar 

  • Toky, O. P., & Ramakrishnan, P. S. (1983). Secondary succession following slash-and-burn agriculture in north-eastern India. I. Biomass, litterfall and productivity. Journal of Ecology, 71, 735–745.

    Article  Google Scholar 

  • Tripathi, P., Behera, M. D., Behera, S. K., & Sahu, N. (2019). Investigating the contribution of climate variables to estimates of net primary productivity in a tropical deciduous forest in India. Environmental Monitoring and Assessment, 191(3), 1–15.

    Google Scholar 

  • Vilà, M., Vayreda, J., Comas, L., Ibáñez, J., Mata, T., et al. (2007). Species richness and wood production: A positive association in Mediterranean forests. Ecology Letters, 10, 241–250.

    Article  Google Scholar 

  • Wang, W., Ichii, K., Hashimoto, H., Michaelis, A. R., Thornton, P. E., et al. (2009). A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration. Ecological Modelling, 220, 2009–2023.

    Article  CAS  Google Scholar 

  • Whittaker, A. H., & Woodwell, G. M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven forest. New York. Journal of Ecology, 56, 1–25.

    Article  Google Scholar 

Download references

Acknowledgements

The director of CSIR-National Botanical Research Institute, Lucknow, India, is sincerely acknowledged for providing the necessary facilities. Dr. Nayan Sahu, Dr. Ashish K. Mishra, Dr. Omesh Bajpai, and Dr. Niraj Singh are also acknowledged for assisting in the field measurements. Thanks are also due to PCCF (Wildlife), Government of Uttar Pradesh, Lucknow, the Field director of Dudhwa National Park, Lakhimpur, and the divisional forest officer at Katarniaghat Wildlife Sanctuary, Bahraich, for granting permission to carry out the field works and extending on-site support. The valuable suggestions given by both the anonymous reviewers and the editor are sincerely acknowledged.

Funding

The funds to carry out this work were received from CSIR, New Delhi, under NWP-020 and BSC-0109. We thank the institutional ethics committee for granting institutional MS no CSIR-NBRI_MS/2022/07/04.

Author information

Authors and Affiliations

Authors

Contributions

Soumit K. Behera planned the experiment, collected the field data for calculation of NPP, and measured the different eco-physiological parameters. Mukunda D. Behera and Rakesh Tuli supervised the PhD work of Soumit K. Behera and reviewed the manuscript. Saroj K. Barik performed the statistical data analysis and provided valuable suggestions and reviews for improving the contents of this paper. Soumit K. Behera prepared the first draft of the manuscript. All the authors contributed equally in revising the manuscript.

Corresponding author

Correspondence to Soumit Kumar Behera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S.K., Behera, M.D., Tuli, R. et al. Atmospheric temperature and humidity demonstrated strong correlation with productivity in tropical moist deciduous forests. Environ Monit Assess 195, 69 (2023). https://doi.org/10.1007/s10661-022-10668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10668-7

Keywords

Navigation