Skip to main content

Advertisement

Log in

The possibilities of explicit Striga (Striga asiatica) risk monitoring using phenometric, edaphic, and climatic variables, demonstrated for Malawi and Zambia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Food insecurity continues to affect more than two-thirds of the population in sub‐Saharan Africa (SSA), particularly those depending on rain-fed agriculture. Striga, a parasitic weed, has caused yield losses of cereal crops, immensely affecting smallholder farmers in SSA. Although earlier studies have established that Striga is a constraint to crop production, there is little information on the spatial extent of spread and infestation severity of the weed in some SSA countries like Malawi and Zambia. This study aimed to use remotely sensed vegetation phenological (n = 11), climatic (n = 3), and soil (n = 4) variables to develop a data-driven ecological niche model to estimate Striga (Striga asiatica) spatial distribution patterns over Malawi and Zambia, respectively. Vegetation phenological variables were calculated from 250-m enhanced vegetation index (EVI) timeline data, spanning 2013 to 2016. A multicollinearity test was performed on all 18 predictor variables using the variance inflation factor (VIF) and Pearson’s  correlation approach. From the initial 18 variables, 12 non-correlated predictor variables were selected to predict Striga risk zones over the two focus countries. The variable “start of the season” (start of the rainy season) showed the highest model relevance, contributing 26.8% and 37.9% to Striga risk models for Malawi and Zambia, respectively. This indicates that the crop planting date influences the occurrence and the level of Striga infestation. The resultant occurrence maps revealed interesting spatial patterns; while a very high Striga occurrence was predicted for central Malawi and eastern Zambia (mono-cultural maize growing areas), lower occurrence rates were found in the northern regions. Our study shows the possibilities of integrating various ecological factors with a better spatial and temporal resolution for operational and explicit monitoring of Striga-affected areas in SSA. The explicit identification of Striga “hotspot” areas is crucial for effectively informing intervention activities on the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available in http://dmmg.icipe.org/dataportal/dataset/push-pull-for-sub-saharan.

References

  • AATF. (2009). Baseline study of small farmers in Striga infested maize growing areas of central Malawi. African Agricultural Technology Foundation. https://www.aatf-africa.org/wp-content/uploads/2021/02/BS-striga_Malawi.pdf

  • Adhikari, U., Nejadhashemi, A. P., & Woznicki, S. A. (2015). Climate change and eastern Africa: A review of impact on major crops. Food and Energy Security, 4(2), 110–132. https://doi.org/10.1002/fes3.61

    Article  Google Scholar 

  • AGRA. (2018). Africa agriculture status report: Catalyzing government capacity to drive agricultural transformation. Alliance for a Green Revolution in Africa (AGRA), 6. https://agra.org/wp-content/uploads/2018/10/AASR-2018.pdf

  • Alin, A. (2010). Multicollinearity. Wiley Interdisciplinary Reviews: Computational Statistics, 2(3), 370–374. https://doi.org/10.1002/wics.84

    Article  Google Scholar 

  • Aliyu, B. M., Emmanuel, D., & Musa, G. M. K. (2020). Enhancing maize production in a Striga infested environment through weed management practices, sowing date and improved crop varieties. African Journal of Agricultural Research, 16(9), 1270–1277. https://doi.org/10.5897/ajar2020.14950

    Article  CAS  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Atera, E. A., Ishii, T., Onyango, J. C., Itoh, K., & Azuma, T. (2013). Striga infestation in Kenya: Status, distribution and management options. Sustainable Agriculture Research, 2(2), 99. https://doi.org/10.5539/sar.v2n2p99

    Article  Google Scholar 

  • Atera, E. A., Itoh, K., Azuma, T., & Ishii, T. (2012). Farmers’ perception and constraints to the adoption of weed control options: The case of Striga asiatica in Malawi. Journal of Agricultural Science, 4(5), 41–50. https://doi.org/10.5539/jas.v4n5p41

    Article  Google Scholar 

  • Bohl, C. L., Kass, J. M., & Anderson, R. P. (2019). A new null model approach to quantify performance and significance for ecological niche models of species distributions. Journal of Biogeography, 46(6), 1101–1111. https://doi.org/10.1111/jbi.13573

    Article  Google Scholar 

  • Chemura, A., Mudereri, B. T., Yalew, A. W., & Gornott, C. (2021). Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-87647-4

    Article  CAS  Google Scholar 

  • Chemura, A., Mutanga, O., Sibanda, M., & Chidoko, P. (2018). Machine learning prediction of coffee rust severity on leaves using spectroradiometer data. Tropical Plant Pathology, 43(2), 117–127. https://doi.org/10.1007/s40858-017-0187-8

    Article  Google Scholar 

  • Chivasa, W., Mutanga, O., & Biradar, C. (2017). Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: A review. International Journal of Remote Sensing, 38(23), 6816–6845. https://doi.org/10.1080/01431161.2017.1365390

    Article  Google Scholar 

  • Crall, A. W., Jarnevich, C. S., Panke, B., Young, N., Renz, M., & Morisette, J. (2013). Using habitat suitability models to target invasive plant species surveys. Ecological Applications, 23(1), 60–72. https://doi.org/10.1890/12-0465.1

    Article  Google Scholar 

  • Csillag, F., Kummert, Á., & Kertész, M. (1992). Resolution, accuracy and attributes: Approaches for environmental geographical information systems. Computers, Environment and Urban Systems, 16(4), 289–297. https://doi.org/10.1016/0198-9715(92)90010-O

    Article  Google Scholar 

  • Degbelo, A., & Kuhn, W. (2018). Spatial and temporal resolution of geographic information: An observation-based theory. Open Geospatial Data, Software and Standards, 3(1). https://doi.org/10.1186/s40965-018-0053-8

  • Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dube, L. T. (2002). Climate of southern Africa. South African Geographical Journal, 84(1), 125–138. https://doi.org/10.1080/03736245.2002.9713763

    Article  Google Scholar 

  • Dube, T., Mutanga, O., Elhadi, A., & Ismail, R. (2014). Intra-and-inter species biomass prediction in a plantation forest: Testing the utility of high spatial resolution spaceborne multispectral Rapideye sensor and advanced machine learning algorithms. Sensors (Switzerland), 14(8), 15348–15370. https://doi.org/10.3390/s140815348

    Article  Google Scholar 

  • Dubovyk, O., Landmann, T., Erasmus, B. F. N., Tewes, A., & Schellberg, J. (2015). Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa. International Journal of Applied Earth Observation and Geoinformation, 38(1), 175–183. https://doi.org/10.1016/j.jag.2015.01.002

    Article  Google Scholar 

  • Ejeta, G., & Gressel, J. (Eds.). (2007). Integrating new technologies for Striga control - Towards ending the witch-hunt. World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789812771506

  • Ekeleme, F., Kamara, A. Y., Omoigui, L., & Chikoye, D. (2011). Effect of sowing date on Striga infestation and yield of sorghum (Sorghum bicolor [L.] Moench) cultivars in the Sudan savanna of northeast Nigeria. African Journal of Agricultural Research, 6(14), 3240–3246. https://doi.org/10.5897/AJAR10.270

  • Eklundh, L., & Jönsson, P. (2016). TIMESAT for processing time-series data from satellite sensors for land surface monitoring. Multitemporal Remote Sensing (pp. 177–194). https://doi.org/10.1007/978-3-319-47037-5_9

  • Eklundh, L., & Jönsson, P. (2017). TIMESAT 3.3 with seasonal trend decomposition and parallel processing Software Manual. Lund and Malmo University, Sweden, 1–92. http://web.nateko.lu.se/timesat/docs/TIMESAT33_SoftwareManual.pdf

  • Emeghebe, A. M., Ellis-Jones, J., Schulz, S., Chikoye, D., Douthwaite, B., Kureh, I., Tarawali, G., Hussaini, M. A., Kormawa, P., & Sanni, A. (2004). Farmers’ perception of the Striga problem and its control in northern Nigeria. Experimental Agriculture, 40(2), 215–232. https://doi.org/10.1017/S0014479703001601

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Gbèhounou, G., Adango, E., Hinvi, J. C., & Nonfon, R. (2004). Sowing date or transplanting as components for integrated Striga hermonthica control in grain-cereal crops? Crop Protection, 23(5), 379–386. https://doi.org/10.1016/j.cropro.2003.09.014

    Article  Google Scholar 

  • Gilani, H., Arif Goheer, M., Ahmad, H., & Hussain, K. (2020). Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecological Indicators, 111(December 2019), 106049. https://doi.org/10.1016/j.ecolind.2019.106049

  • Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114(1), 23–34. https://doi.org/10.1016/j.fcr.2009.06.017

    Article  Google Scholar 

  • Henderson, L. (2007). Invasive, naturalized and casual alien plants in southern Africa: A summary based on the Southern African Plant Invaders Atlas (SAPIA). Bothalia, 37(2), 215–248. https://doi.org/10.4102/abc.v37i2.322

    Article  Google Scholar 

  • Hengl, T., De Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. In PLoS ONE (Vol. 12, Issue 2). https://doi.org/10.1371/journal.pone.0169748

  • Hentze, K., Thonfeld, F., & Menz, G. (2016). Evaluating crop area mapping from Modis time-series as an assessment tool for Zimbabwe’s “fast track land reform programme.” PLoS ONE, 11(6), 1–22. https://doi.org/10.1371/journal.pone.0156630

    Article  CAS  Google Scholar 

  • Hijmans, R. J. (2020). Raster: Geographic data analysis and modeling. R package version 3.3-7. https://CRAN.R-project.org/package=raster

  • Ikegawa, Y., Honma, A., Himuro, C., & Matsuyama, T. (2019). A new system for detecting initial colonization by invasive pests and their locations. Journal of Economic Entomology, 112(6), 2976–2983. https://doi.org/10.1093/jee/toz228

    Article  Google Scholar 

  • Janitza, S., Celik, E., & Boulesteix, A. L. (2016). A computationally fast variable importance test for random forests for high-dimensional data. Advances in Data Analysis and Classification, 1–31. https://doi.org/10.1007/s11634-016-0270-x

  • João, P. M. , Sandra C. F., Isabel T., & Carla B. (2019). Vegetation and Energy - 10-day land surface temperature. Version 2.0. Copernicus Global Land Operations, 1.50, 1–33. https://doi.org/10.5281/zenodo.3938974 

  • Jönsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1824–1832. https://doi.org/10.1109/TGRS.2002.802519

    Article  Google Scholar 

  • Khan, Z., Midega, C. A. O., Hooper, A., & Pickett, J. (2016). Push-pull: Chemical ecology-based integrated pest management technology. Journal of Chemical Ecology, 42(7), 689–697. https://doi.org/10.1007/s10886-016-0730-y

    Article  CAS  Google Scholar 

  • Khan, Z., Midega, C., Pittchar, J., Pickett, J., & Bruce, T. (2011). Push-pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. International Journal of Agricultural Sustainability, 9(1), 162–170. https://doi.org/10.3763/ijas.2010.0558

    Article  Google Scholar 

  • Khan, Z. R., Midega, C. A. O., Pittchar, J. O., Murage, A. W., Birkett, M. A., Bruce, T. J. A., & Pickett, J. A. (2014). Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1639). https://doi.org/10.1098/rstb.2012.0284

  • Khan, Z. R., Pickett, J. A., Wadhams, L. J., Hassanali, A., & Midega, C. A. O. (2006). Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Protection, 25(9), 989–995. https://doi.org/10.1016/j.cropro.2006.01.008

  • Koua, F. H. M. (2011). Striga hermonthica (Del.) Benth: Phytochemistry and pharmacological properties outline. Journal of Applied Pharmaceutical Science, 1(7), 1–5. https://www.japsonline.com/ uploads/162_pdf

  • Kowe, P., Mutanga, O., Odindi, J., & Dube, T. (2021). Effect of landscape pattern and spatial configuration of vegetation patches on urban warming and cooling in Harare metropolitan city. Zimbabwe. GIScience & Remote Sensing, 00(00), 1–20. https://doi.org/10.1080/15481603.2021.1877008

    Article  Google Scholar 

  • Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., & Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379. https://doi.org/10.1111/ddi.12096

    Article  Google Scholar 

  • Kudra, A. (2011). Influence of soil fertility management on Striga reproduction and grain yield of Sorghum in semiarid areas of Tanzania. University of Nairobi. http://erepository.uonbi.ac.ke:8080/handle/123456789/6187

  • Landmann, T., Dubovyk, O., Ghazaryan, G., Kimani, J., & Abdel-Rahman, E. M. (2020). Wide-area invasive species propagation mapping is possible using phenometric trends. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 1–12. https://doi.org/10.1016/j.isprsjprs.2019.10.016

    Article  Google Scholar 

  • Larsson, M. (2012). Soil fertility status and Striga hermonthica infestation relationship due to management practices in Western Kenya. Swedish University of Agricultural Sciences Department of Soil and Environment Soil, 96. http://stud.epsilon.slu.se/4488/

  • Makondo, C. C., & Thomas, D. S. G. (2021). Environmental change and migration as adaptation in rural economies: evidence from Zambia’s rural–rural migration. Migration and Development, 10>(3), 359–387. https://doi.org/10.1080/21632324.2019.1646534 

  • Makori, D., Fombong, A., Abdel-Rahman, E., Nkoba, K., Ongus, J., Irungu, J., Mosomtai, G., Makau, S., Mutanga, O., Odindi, J., Raina, S., & Landmann, T. (2017). Predicting spatial distribution of key honeybee pests in Kenya using remotely sensed and bioclimatic variables: Key honeybee pests distribution models. ISPRS International Journal of Geo-Information, 6(3), 66. https://doi.org/10.3390/ijgi6030066

    Article  Google Scholar 

  • Mandumbu, R., Mutengwa, C., Mabasa, S., Mwenje, E., Gotosa, J., & Munyati, V. T. (2017). The parasitic weeds scourge in northern Zimbabwe: Effects of soil degradation, hosts and food security implications to rural farmers. Scientia Agriculturae, 20(3). https://doi.org/10.15192/PSCP.SA.2017.20.3.8691

  • Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species distributions: What it does, and why inputs and setting matter. In Ecography (Vol. 36, pp. 1058–1069). https://doi.org/10.1111/j.1600-0587.2013.07872.x

  • Midega, C. A. O., Bruce, T. J. A., Pickett, J. A., Pittchar, J. O., Murage, A., & Khan, Z. R. (2015). Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Research, 180, 118–125. https://doi.org/10.1016/j.fcr.2015.05.022

    Article  Google Scholar 

  • Midega, C. A. O., Wasonga, C. J., Hooper, A. M., Pickett, J. A., & Khan, Z. R. (2017). Drought-tolerant Desmodium species effectively suppress parasitic Striga weed and improve cereal grain yields in western Kenya. Crop Protection, 98, 94–101. https://doi.org/10.1016/j.cropro.2017.03.018

    Article  Google Scholar 

  • Mohamed, K. I., Musselman, L. J., & Riches, C. R. (2001). The Genus Striga (Scrophulariaceae) in Africa. Annals of the Missouri Botanical Garden, 88(1), 60. https://doi.org/10.2307/2666132

    Article  Google Scholar 

  • Moua, Y., Roux, E., Seyler, F., & Briolant, S. (2020). Correcting the effect of sampling bias in species distribution modeling – A new method in the case of a low number of presence data. Ecological Informatics, 57(March), 101086. https://doi.org/10.1016/j.ecoinf.2020.101086

    Article  Google Scholar 

  • Mudereri, B. T., Dube, T., Adel-Rahman, E. M., Niassy, S., Kimathi, E., Khan, Z., & Landmann, T. (2019). A comparative analysis of Planetscope and Sentinel-2 space-borne sensors in mapping Striga weed using guided regularised random forest classification ensemble. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13(2/W13), 701–708. https://doi.org/10.5194/isprs-archives-XLII-2-W13-701-2019

  • Mudereri, Bester Tawona, Abdel-Rahman, E. M., Dube, T., Landmann, T., Khan, Z., Kimathi, E., Owino, R., & Niassy, S. (2020). Multi-source spatial data-based invasion risk modeling of Striga ( Striga asiatica ) in Zimbabwe. GIScience & Remote Sensing, 57(4), 553–571. https://doi.org/10.1080/15481603.2020.1744250

    Article  Google Scholar 

  • Muranaka, S., Rabbi, I. Y., Odhiambo, G., Farombi, E. O., Elzein, A., Oluoch, M., Gedil, M., Unachukwu, N. N., & Menkir, A. (2017). Genetic diversity and population structure of Striga hermonthica populations from Kenya and Nigeria. Weed Research, 57(5), 293–302. https://doi.org/10.1111/wre.12260

    Article  Google Scholar 

  • Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/10.1111/2041-210x.12261

    Article  Google Scholar 

  • Mutamiswa, R., Chikowore, G., Nyamukondiwa, C., Mudereri, B. T., Khan, Z. R., & Chidawanyika, F. (2022). Biogeography of cereal stemborers and their natural enemies: Forecasting pest management efficacy under changing climate. Pest Management Science. https://doi.org/10.1002/ps.7062

    Article  Google Scholar 

  • Muthoni, F. K., Odongo, V. O., Ochieng, J., Mugalavai, E. M., Mourice, S. K., Hoesche-Zeledon, I., Mwila, M., & Bekunda, M. (2019). Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theoretical and Applied Climatology, 137(3–4), 1869–1882. https://doi.org/10.1007/s00704-018-2712-1

    Article  Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x

    Article  Google Scholar 

  • Ndayisaba, P. C., Kuyah, S., Midega, C. A. O., Mwangi, P. N., & Khan, Z. R. (2021). Intercropping desmodium and maize improves nitrogen and phosphorus availability and performance of maize in Kenya. Field Crops Research, 263(March), 108067. https://doi.org/10.1016/j.fcr.2021.108067

    Article  Google Scholar 

  • Ngwira, A. R., Thierfelder, C., & Lambert, D. M. (2013). Conservation agriculture systems for Malawian smallholder farmers: Long-term effects on crop productivity, profitability and soil quality. Renewable Agriculture and Food Systems, 28(4), 350–363. https://doi.org/10.1017/S1742170512000257

    Article  Google Scholar 

  • Osman, M. A., Raju, P. S., & Peacock, J. M. (1991). The effect of soil temperature, moisture and nitrogen on Striga asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L. Moench) roots under field conditions. Plant and Soil, 131(2), 265–273. https://doi.org/10.1007/BF00009458

  • Oswald, A., Ransom, J. K., Kroschel, J., & Sauerborn, J. (2002). Intercropping controls Striga in maize-based farming systems. Crop Protection, 21(5), 367–374. https://doi.org/10.1016/S0261-2194(01)00104-1

    Article  Google Scholar 

  • Ouma, T., Kavoo, A., Wainaina, C., Ogunya, B., Karanja, M., Kumar, P. L., & Shah, T. (2019). Open data kit (ODK) in crop farming: Mobile data collection for seed yam tracking in Ibadan Nigeria. Journal of Crop Improvement, 33(5), 605–619. https://doi.org/10.1080/15427528.2019.1643812

  • Parker, C. (2009). Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science, 65(5), 453–459. https://doi.org/10.1002/ps.1713

    Article  CAS  Google Scholar 

  • Patterson, D. T., Musser, R. L., Flint, E. P., & Eplee, R. E. (1982). Temperature responses and potential for spread of witchweed (Striga lutea) in the United States. Weed Science, 30(1), 87–93. https://doi.org/10.1017/s0043174500026230

    Article  Google Scholar 

  • Pescott, O. L. (2013). The genetics of host adaptation in the parasitic plant Striga hermonthica. University of Sheffield, April, 1–240. https://core.ac.uk/download/pdf/14343592.pdf

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of MaxEnt. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19(1), 181–197. https://doi.org/10.1890/07-2153.1

    Article  Google Scholar 

  • Plant, R. E. (2012). Spatial data analysis in ecology and agriculture using R. In Journal of Chemical Information and Modeling (Vol. 53). https://www.routledge.com/Spatial-Data-Analysis-in-Ecology-and-Agriculture-Using-R/Plant/p/book/9780367732325

  • QGIS Development Team. (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project (3.8). https://qgis.osgeo.org

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K., & Chauhan, B. S. (2017). Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science, 8, 95. https://doi.org/10.3389/fpls.2017.00095

    Article  CAS  Google Scholar 

  • Richard, K., Abdel-Rahman, E. M., Mohamed, S. A., Ekesi, S., Borgemeister, C., & Landmann, T. (2018). Importance of remotely-sensed vegetation variables for predicting the spatial distribution of African Citrus Triozid (Trioza erytreae) in Kenya. ISPRS International Journal of Geo-Information, 7(11), 429. https://doi.org/10.3390/ijgi7110429

  • Rich, P. J., & Ejeta, G. (2007). Biology of host-parasite interactions in Striga species. In Intergrating new technologies for Striga control: Towards ending the witch-hunt (pp. 19–32). World Scientific Publishing Company.

  • Rodenburg, J., Demont, M., Zwart, S. J., & Bastiaans, L. (2016). Parasitic weed incidence and related economic losses in rice in Africa. Agriculture, Ecosystems and Environment, 235, 306–317. https://doi.org/10.1016/j.agee.2016.10.020

    Article  Google Scholar 

  • Rong, Z., Zhao, C., Liu, J., Gao, Y., Zang, F., Guo, Z., Mao, Y., & Wang, L. (2019). Modeling the effect of climate change on the potential distribution of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests, 10(1), 62. https://doi.org/10.3390/f10010062

  • Sasson, A. (2012). Food security for Africa: An urgent global challenge. Agriculture and Food Security, 1(1), 1–16. https://doi.org/10.1186/2048-7010-1-2

    Article  Google Scholar 

  • SKYbrary. (2017). Inter tropical convergence zone (ITCZ). SKYbrary Aviation Safety. https://skybrary.aero/articles/inter-tropical-convergence-zone-itcz

  • Sokame, B. M., Subramanian, S., Kilalo, D. C., Juma, G., & Calatayud, P. A. (2020). Larval dispersal of the invasive fall armyworm, Spodoptera frugiperda, the exotic stemborer Chilo partellus, and indigenous maize stemborers in Africa. Entomologia Experimentalis et Applicata, 1–10. https://doi.org/10.1111/eea.12899

  • Spallek, T., Mutuku, M., & Shirasu, K. (2013). The genus Striga: A witch profile. Molecular Plant Pathology, 14(9), 861–869. https://doi.org/10.1111/mpp.12058

    Article  Google Scholar 

  • Tan, B., Morisette, J., Wolfe, R., Esaias, W., Gao, F., Ederer, G., Nightingale, J., Nickeson, J. E., Ma, P., & Pedely, J. (2011). Modis vegetation phenology metrics estimated with an enhanced Timesat algorithm. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 4. https://doi.org/10.1109/JSTARS.2010.2075916

    Article  Google Scholar 

  • The African Union Commission. (2014). Strategic Plan 2014. June 2013, 4. https://au.int/en/newsevents/20130527/african-union-commissions-strategic-plan-2014-2017-adopted-assembly

  • Tonnang, H. E. Z., Balemi, T., Masuki, K. F., Mohammed, I., Adewopo, J., Adnan, A. A., Mudereri, B. T., Vanlauwe, B., & Craufurd, P. (2020). Rapid acquisition, management, and analysis of spatial Maize (Zea mays L .) phenological data — Towards ‘Big Data’ for agronomy transformation in Africa. Agronomy, 10(9). https://doi.org/10.3390/agronomy10091363

  • Vanlauwe, B., Kanampiu, F., Odhiambo, G. D., De Groote, H., Wadhams, L. J., & Khan, Z. R. (2008). Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Research, 107(2), 102–115. https://doi.org/10.1016/j.fcr.2008.01.002

    Article  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Fourth edition. Statistics and Computing. ISBN 0-387-95457-0. https://doi.org/10.1007/b97626

  • Vu, D. H., Muttaqi, K. M., & Agalgaonkar, A. P. (2015). A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy, 140, 385–394. https://doi.org/10.1016/j.apenergy.2014.12.011

    Article  Google Scholar 

  • Wan, Z., Hook, S., & Hulley, G. (2015). MOD11C2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD11C2.006 

  • Yoneyama, K., Yoneyama, K., Takeuchi, Y., & Sekimoto, H. (2007). Phosphorus deficiency in red clover promotes exudation of Orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225(4), 1031–1038. https://doi.org/10.1007/s00425-006-0410-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this research by the following organizations and agencies: Biovision Foundation for Ecological Development (Switzerland), grant number BV DPP-010/2019; the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya. The views expressed herein do not necessarily reflect the official opinion of the donors. Sincere gratitude to our collaborators including the extension officers from the Malawian and Zambian Ministry of Agriculture and “Total Land Care” who assisted in the field.

Author information

Authors and Affiliations

Authors

Contributions

Initiated the study: T.L., E.K., S.N. Conceived and designed the experiments: T.L., E.K., S.N., B.T.M, E.M.A. Analyzed the data: E.K., B.T.M., T.L., E.M.A., H.E.Z.T., S.N. Wrote the paper: E.K., B.T.M., E.M.A., S.N., H.E.Z.T., T.L. All authors read and approved the manuscript.

Corresponding author

Correspondence to Emily Kimathi.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimathi, E., Mudereri, B.T., Abdel-Rahman, E.M. et al. The possibilities of explicit Striga (Striga asiatica) risk monitoring using phenometric, edaphic, and climatic variables, demonstrated for Malawi and Zambia. Environ Monit Assess 194, 913 (2022). https://doi.org/10.1007/s10661-022-10560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10560-4

Keywords

Navigation