Skip to main content

Advertisement

Log in

Monitoring the distribution pattern and invasion status of Ageratina adenophora across elevational gradients in Sikkim Himalaya, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding the spread intensity and population dynamics of invasive plant species is a prerequisite for developing management strategies in the Himalayan Forest ecosystems that are experiencing an accelerated rate of climate change. Although there are studies on the occurrence of few invasive species in the Himalayan ecosystems, systematic information on their intensity of spread and species association is still missing. Considering existing data gaps, we aimed to assess the intensity of spread and distribution pattern of A. adenophora, one of the high-concern invasive species (HiCIS) of India that is causing havoc in the Himalayas, across an elevational gradient. Field data were collected in 2018 and 2021 in the Indian federal state of Sikkim, located in the Eastern Himalayas. We analyzed the population status and species association of A. adenophora along an elevational gradient ranging from > 600 m to 2700 m above sea level, which was divided into seven gradients of 300 m width, and each gradient was further randomly sampled. Overall, 81 species were present in association with A. adenophora, including 58 herbs, 19 shrubs, and 4 climbers, belonging to 30 families and 67 genera in the region. No other species continuously co-occurred along with A. adenophora throughout the elevation ranging from > 600 m to 2700 m. The species observed increased frequency (100%), density (40.51 ind./100 m2), and basal cover (11.25 cm2/m2) in the elevational gradient 1500–1800 m in 2018. In 2021, A. adenophora dominated the highest elevational gradient (< 2400–2700 m) with increased frequency (99.96%), density (58.41 ind./100m2), and basal cover (42.54 cm2/100m2), which demonstrated rapid invasion and improved plant health and reproductive vigor in comparison to the lower elevational gradient in Sikkim Himalaya. Despite being completely absent at the highest elevation (< 2400–2700 m), in 2018, it observed gregarious spread at the highest elevation in 2021, which is of serious concern to ecologists. The presence of the targeted species in all seven studied altitudinal gradients reflects stage III of the species invasion. An enormous shift in the distribution pattern along elevational gradients within a short time span is alarming for the Himalayan ecosystem since it is becoming a thriving habitat for invasive species owing to anthropogenic activity. We mapped the potential geographical extent using the species distribution model (SDM) and predicted the suitable habitat of distribution in Sikkim Himalaya. In order to curtail the spread and counteract the negative impact of this species on native vegetation in Sikkim Himalaya and ultimately reverse the process, local and regional initiatives for its biological control and management must be taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

I (corresponding author), on behalf of all the authors, declare that we have given all the required data in the above manuscript. We do not have any additional data to provide. We will share the raw data if required.

Soumit K. Behera.

References

  • Ahmad, R., Khuroo, A. A., Hamid, M., Charles, B., & Rashid, I. (2019). Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodiversity and ConservAtion, 28, 2319–2344.

    Article  Google Scholar 

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). Sp Thin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545.

    Article  Google Scholar 

  • Booth, T. H., Nix, H. A., Busby, J. R., Hutchinson, M. F., & Franklin, J. (2014). Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity Distribution, 20(1), 1–9.

    Article  Google Scholar 

  • Booth, T. H. (2018). Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecology, 43(8), 852–860.

    Article  Google Scholar 

  • Centre for Inter-disciplinary Studies of Mountain and Hill Environment, (CISMHE). (2007). Carrying capacity study of Teesta basin in Sikkim. Executive Summary and Recommendations. Delhi, University of Delhi.

  • Chakravarty, A. K., Mazumder, T., & Chatterjee, S. N. (2011). Anti-inflammatory potential of ethanolic leaf extract of Eupatorium adenophorum Spreng. Through Alteration in Production of TNF-α, ROS and expression of certain genes. Evidence-Based Complementary and Alternative Medicine, 2011, 1–10.

    Article  Google Scholar 

  • Changjun, G., Yanli, T., Linshan, L., Bo, W., Yili, Z., Haibin, Y., Xilong, W., Zhuoga, Y., Binghua, Z., & Bohao, C. (2021). Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecology and Evolution, 11, 12092–12113.

    Article  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. Manager of Publications.

    Google Scholar 

  • Colautti, R. I., & MacIsaac, H. J. (2004). A neutral terminol ogy to define ‘invasive’species. Diversity and Distribu tions, 10(2), 135–141.

    Article  Google Scholar 

  • Curtis, J. T., & McIntosh, R. P. (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32, 476–496.

    Article  Google Scholar 

  • Curtis, J. T. (1959). The vegetation of Wisconsin: an ordination of plant communities. University of Wisconsin Press. WI: Madison.

  • Dar, M. A., Wani, G. A., Reshi, Z. A., Al-Qarawi, A. A., Abd Allah, E. F., & Shah, M. A. (2020). Stage-specific ploidy level variations in invasive species in comparison to rare endemics in Kashmir Himalaya. Flora, 262, 151525.

    Article  Google Scholar 

  • Dhyani, S. K. (1978). Allelopathic potential of Eupatorium adenophorum on seed germination of Lantana camara var. aculeata. Indian journal of forestry, 1, 311.

  • Dobhal, P. K., Kohli, R. K., & Batish, D. R. (2011). Impact of Lantana camara L. invasion on riparian vegetation of Nayar region in Garhwal Himalayas (Uttarakhand, India). Journal of Ecology and Natural Environment, 3, 11–22.

    Google Scholar 

  • Dormann, C. F., Bobrowski, M., Dehling, D. M., Harris, D. J., Hartig, F., Lischke, H., & Kraan, C. (2018). Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 27, 1004–1016.

    Article  Google Scholar 

  • Enserink, M. (1999). Biological invaders sweep in. Science, 285, 1834–1836.

    Article  CAS  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 40, 677–697.

    Article  Google Scholar 

  • Ghosh, D. K., & Mallick, J. K. (2014). Flora of Darjeeling Himalayas and Foothills: Angiosperms. Bishen Singh Mahendra Pal Singh, Dehradun, India.

  • Grierson, A. J. C., & Long, D. G. (1983―2001). Flora of Bhutan, including a record of plants from Sikkim. (3 vols. 1) Royal Botanic Garden, Edinburgh.

  • Heshmati, I., Khorasani, N., Shams-Esfandabad, B., & Riaz, B. (2019). Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: Implications for environmental monitoring and risk assessment. Environmental Monitoring and Assessment, 191, 1–12.

    Article  Google Scholar 

  • Hodkinson, D. J., & Thompson, K. (1997). Plant dispersal: The role of man. Journal of Applied Ecology, 34, 1484–1496.

    Article  Google Scholar 

  • Kariyawasam, C. S., Kumar, L., & Ratnayake, S. S. (2021). Potential risks of invasive alien plant species on agriculture under climate change scenarios in Sri Lanka. Current Research in Environmental Sustainability, 3, 100051.

    Article  Google Scholar 

  • Khuroo, A. A., Malik, A. H., Reshi, Z. A., & Dar, G. H. (2010). From ornamental to detrimental: Plant invasion of Leucanthemum vulgare Lam. (Ox-eye Daisy) in Kashmir valley. India. Current Science, 98, 600–602.

    Google Scholar 

  • Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: Taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14, 99–113.

    Article  Google Scholar 

  • Kikvidze, Z., Suzuki, M., & Brooker, R. (2011). Importance versus intensity of ecological effects: Why context matters. Trends in Ecology and Evolution, 26, 383–388.

    Article  Google Scholar 

  • Kohli, R. K., Batish, D. R., Singh, H. P., & Dogra, K. S. (2006). Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biological Invasions, 8, 1501–1510.

    Article  Google Scholar 

  • Kong, Y., Kong, J., Wang, D., Huang, H., Geng, K., Wang, Y., & Xia, Y. (2017). Effect of Ageratina adenophora invasion on the composition and diversity of soil microbiome. The Journal of General and Applied Microbiology, 63, 114–121.

    Article  CAS  Google Scholar 

  • Kosaka, Y., Saikia, B., Mingki, T., Tag, H., Riba, T., & Ando, K. (2010). Roadside distribution patterns of invasive alien plants along an altitudinal gradient in Arunachal Himalaya, India. Mountain Research and Development, 30, 252–258.

    Article  Google Scholar 

  • Kukshal, S., Nautiyal, B. P., Anthwal, A., Sharma, A., & Bhatt, A. B. (2009). Phytosociological investigation and life form pattern of grazinglands under pine canopy in temperate zone, Northwest Himalaya, India. Research Journal of Botany, 4, 55–69.

    Article  Google Scholar 

  • Kumar, S. & Singh, V. (2001). Asteraceae of Sikkim. Deep, New Delhi, India.

  • Lazzaro, L., Bolpagni, R., Buffa, G., Gentili, R., Lonati, M., Stinca, A., & Lastrucci, L. (2020). Impact of invasive alien plants on native plant communities and Natura 2000 habitats: State of the art, gap analysis and perspectives in Italy. Journal of Environmental Management, 274, 111140.

  • Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689–710.

    Article  Google Scholar 

  • Mathur, V. B., Kaushik, M., Bist, S. S., Mungi, N. A., & Qureshi, Q. (2015). Management of human-wildlife interaction and invasive alien species in India. Report no (pp. 1-235). TR 2015/004. Dehradun: Wildlife Institute of India.

  • Milanović, M., Knapp, S., Pyšek, P., & Kuhn, I. (2020). Linking traits of invasive plants with ecosystem services and disservices. Ecosystem Services, 42, 101072.

    Article  Google Scholar 

  • Misra, R. (1968). Ecology Work Book Oxford and IBH Publishing Company. New Delhi.

    Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203.

    Article  Google Scholar 

  • National Mission on Himalayan Studies (NMHS). (2018–2019). Invasive alien plants in Himalayas: Status, ecological impact and management. Progress Report from 1 April. https://nmhs.org.in/pdf/Progress_Reports/Annual_Report_2020/Project/139.Dr.V.K.Garg/2nd%20APR%20NMHS%20project_%202019-2020.pdf

  • Negi, G. C. S., Sharma, S., Vishvakarma, S. C., Samant, S. S., Maikhuri, R. K., Prasad, R. C., & Palni, L. M. S. (2013). Lantana camara in India: an ecological review. Almora: GBPIHED publication.

    Google Scholar 

  • Nayak, R., Verma, A. K., Manika, N., Bargali, K., Pandey, V. N., Behera, S. K., & Chaudhary, L. B. (2020). Alien species in the flora of Sikkim Himalaya, India.”. Journal of Economic and Taxonomic Botany, 44, 119–137.

    Google Scholar 

  • Peyton, J., Martinou, A. F., Pescott, O. L., Demetriou, M., Adriaens, T., Arianoutsou, M., & Roy, H. E. (2019). Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biological Invasions, 21, 2107–2125.

    Article  Google Scholar 

  • Phillips, E. A. (1959). Methods of vegetation study (p. 107). Holt.

    Google Scholar 

  • Pielou, E. C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology, 10, 370–383.

    Article  CAS  Google Scholar 

  • Poudel, A. S., Jha, P. K., Shrestha, B. B., & Muniappan, R. (2019). Biology and management of the invasive weed Ageratina adenophora (Asteraceae): Current state of knowledge and future research needs. Weed Research, 59, 79–92.

    Article  Google Scholar 

  • Rao, R. R., & Sagar, K. (2012). Invasive alien weeds of the Western Ghats: Taxonomy and distribution. Invasive alien plants: An ecological appraisal for the Indian subcontinent, 139–161.

  • Reddy, C. S. (2008). Catalogue of invasive alien flora of India. Life Science Journal, 5, 84–89.

    Google Scholar 

  • Sax, D. F., & Brown, J. H. (2000). The paradox of invasion. Global Ecology and Biogeography, 9, 363–371.

    Article  Google Scholar 

  • Sekar, K. C. (2012). Invasive alien plants of Indian Himalayan region – Diversity and implication. American Journal of Plant Sciences, 3, 177–184.

    Article  Google Scholar 

  • Shannon, C. B., Weaver, W. (1963). The mathematical theory of communication. Urbana (Illinois).

  • Sharma, G. P., Singh, J. S., & Raghubanshi, A. S. (2005). Plant invasions: Emerging trends and future implications. Current Science, 88, 726–734.

    Google Scholar 

  • Sher, A. A., El Waer, H., González, E., Anderson, R., Henry, A. L., Biedron, R., & Yue, P. (2018). Native species recovery after reduction of an invasive tree by biological control with and without active removal. Ecological Engineering, 111, 167–175.

    Article  Google Scholar 

  • Shrestha, B. B. (2016). Invasive alien plant species in Nepal. Frontiers of botany, 269–284.

  • Sileshi, G. W., Gebeyehu, S., & Mafongoya, P. L. (2019). The threat of alien invasive insect and mite species to food security in Africa and the need for a continent-wide response. Food Security, 11, 763–775.

    Article  Google Scholar 

  • Simberloff, D., & Von Holle, B. (1999). Positive interactions of nonindigenous species: Invasional meltdown? Biological Invasions, 1, 21–32.

    Article  Google Scholar 

  • Singh, K. K., & Gray, J. (2020). Mapping understory invasive plants in urban forests with spectral and temporal unmixing of landsat imagery. Photogrammetric Engineering & Remote Sensing, 86, 509–518.

    Article  Google Scholar 

  • Soliveres, S., Smit, C., & Maestre, F. T. (2015). Moving forward on facilitation research: Response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biological Reviews, 90, 297–313.

    Article  Google Scholar 

  • Srivastava, S., Dvivedi, A., & Shukla, R. P., (2014). Invasive alien species of terrestrial vegetation of north-eastern Uttar Pradesh. International Journal of Forestry Research, 1–9.

  • Tererai, F., & Wood, A. R. (2014). On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. South African Journal of Botany, 95, 152–158.

    Article  Google Scholar 

  • Thapa, L. B., Kaewchumnong, K., Sinkkonen, A., & Sridith, K. (2016). Impacts of invasive Chromolaena odorata on species richness, composition and seedling recruitment of Shorea robusta in a tropical Sal Forest Nepal. Songklanakarin Journal of Science and Technology, 38, 683–689.

    Google Scholar 

  • Tripathi, R. S., Khan, M. L., & Yadav, A. S. (2012). Biology of Mikania micrantha HBK: A Review. Bhatt, J. R., Singh, S. P., Tripathi, R. S., Kohli, R. K., (Eds.), Invasive alien plants: An ecological appraisal for the Indian subcontinent, 99-107. CAB International, UK.

  • Tripathi, R. S., Singh, R. S., & Rai, J. P. N. (1981). Allelopathic potential of Eupatorium adenophorum, a dominant ruderal weed of Meghalaya. Proceedings of the Indian National Science Academy. Biological sciences, 47(Part B), 458–465.

  • Tripathi, R. S., & Yadav, A. S. (1982). Population regulation of Eupatorium adenophorum spreng. and E. riparium regel: Effect of population density, soil nitrogen and light intensity. Plant and Soil, 65, 35–49.

    Article  CAS  Google Scholar 

  • Tye, A. (2001). Invasive plant problems and requirements for weed risk assessment in the Galapagos Islands. Weed Risk Assessment, 153, 154–175.

    Google Scholar 

  • Vesk, P. A., & Westoby, M. (2004). Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, 92, 310–320.

    Article  Google Scholar 

  • Wan, F., Liu, W., Guo, J., Qiang, S., Li, B., Wang, J., & Wang, W. (2010). Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Science China Life Sciences, 53, 1291–1298.

    Article  Google Scholar 

  • Witkowski, E. T. F., & Wilson, M. (2001). Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecology, 152, 13–27.

    Article  Google Scholar 

  • Yang, Y. B., Liu, G., Shi, X., Zhang, W. G., Cai, X. W., Ren, Z. L., Yao, N. N., Zhu, Z. H., & Nie, H. (2018). Where will invasive plants colonize in response to climate change: Predicting the invasion of Galinsoga quadriradiata in China. International Journal of Environmental Research, 12, 929–938.

    Article  Google Scholar 

  • Yu, F. K., Huang, X. H., Duan, C. Q., He, S. Z., Zhang, G. S., Liu, C. E., & Shao, H. B. (2014). Impacts of Ageratina adenophora invasion on soil physical–chemical properties of Eucalyptus plantation and implications for constructing agro-forest ecosystem. Ecological Engineering, 64, 130–135.

    Article  Google Scholar 

  • Zhang, R., & Tielbörger, K. (2020). Density-dependence tips the change of plant–plant interactions under environmental stress. Nature Communications, 11, 1–9.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-National Botanical Research Institute, Lucknow for providing necessary facilities and support. We acknowledge G. B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, Uttarakhand for financial support under the National Mission on Himalayan Studies (NMHS) scheme of Ministry of Environment, Forest and Climate Change, Government of India (NMHS-2017/LG-01/475). The Department of Forest, Environment and Wildlife Management, Government of Sikkim, Gangtok is sincerely acknowledged for granting research permission for conducting the field visits in Sikkim. All the in-charges of herbaria consulted are also acknowledged. We thank the Institutional Ethics Committee for granting institutional MS no CSIR-NBRI_MS/2022/03/15. The valuable suggestions given by both the anonymous reviewers and the Editor are sincerely acknowledged. Dr. Manas Ranjan Mohanta of CORAL, IIT Kharagpur, West Bengal is sincerely acknowledged for helping in the species distribution modeling of Ageratina adenophora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumit Kumar Behera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A.K., Nayak, R., Manika, N. et al. Monitoring the distribution pattern and invasion status of Ageratina adenophora across elevational gradients in Sikkim Himalaya, India. Environ Monit Assess 195, 152 (2023). https://doi.org/10.1007/s10661-022-10549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10549-z

Keywords

Navigation