Skip to main content

Advertisement

Log in

Forest cover resilience to climate change over India using the MC2 dynamic vegetation model

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

It is imperative to understand the climate change impact on the forest ecosystem to develop appropriate mitigation and management strategies. We have employed a process-based dynamic vegetation modeling (MAPSS-CENTURY: MC) approach to project change in vegetation life forms under projected climate conditions that attained 81% overall accuracy. The present and projected climate conditions suggested highly resilient/stable forest covers in wet climate regimes and moderately resilient in dry semi-arid regions. Several forested grids in the seasonally dry tropical forest in the Eastern Ghats and dry Deccan peninsula regions are estimated to be less resilient, which may experience a regime shift toward scrub and grassland. The future prediction demonstrated an upward temperature shift in the Western Himalayas and trans-Himalaya, which may facilitate forest spread at higher elevations. Although the forest cover resilience may increase in future climate conditions, the disturbances in several regions in the Deccan Peninsula and the Eastern Ghats may trigger forest to scrub and grassland transition. The inaccuracy in model simulation in the Western Himalayas could be attributed to coarse resolution grids (0.5°) failing to resolve the narrow climate niches. The spatially explicit model simulation provides opportunities to develop long-term climate change adaptation and conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, K., Dupuy, J. M., Gei, M. G., Hulshof, C., Medvigy, D., Pizano, C., Salgado-Negret, B., Smith, C. M., Trierweiler, A., van Bloem, S. J., Waring, B. G., Xu, X., & Powers, J. S. (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 12(2). https://doi.org/10.1088/1748-9326/aa5968

  • Anjos, L. J. S., & de Toledo, P. M. (2018). Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America. PLoS ONE, 13(3), 1–15. https://doi.org/10.1371/journal.pone.0194654

    Article  CAS  Google Scholar 

  • Bachelet, D. (2001). MC1, a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water: Technical documentation; in Cooperation with Oregon State University, Colorado State University (Vol. 508). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  • Bachelet, D. (2015). History and general description of the dynamic global vegetation model MC1. Global Vegetation Dynamics: Concepts and Applications in the MC1 Model, 1–16.

  • Bachelet, D., Lenihan, J. M., Daly, C., & Neilson, R. P. (2000). Interactions between fire, grazing and climate change at Wind Cave National Park SD. Ecological Modelling, 134(2–3), 229–244.

    Article  CAS  Google Scholar 

  • Baker, W. L., & Williams, M. A. (2015). Bet-hedging dry-forest resilience to climate-change threats in the western USA based on historical forest structure. Frontiers in Ecology and Evolution, 2(JAN), 1–7. https://doi.org/10.3389/fevo.2014.00088

  • Behera, M. D., Murthy, M. S. R., Das, P., & Sharma, E. (2018). Modelling forest resilience in Hindu Kush Himalaya using geoinformation. Journal of Earth System Science, 127(7). https://doi.org/10.1007/s12040-018-1000-x

  • Chaturvedi, R. K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N. V., Sukumar, R., & Ravindranath, N. H. (2011a). Impact of climate change on Indian forests: A dynamic vegetation modeling approach. Mitigation and Adaptation Strategies for Global Change, 16(2), 119–142. https://doi.org/10.1007/s11027-010-9257-7

    Article  Google Scholar 

  • Chaturvedi, R. K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N. V., Sukumar, R., & Ravindranath, N. H. (2011b). Impact of climate change on Indian forests: A dynamic vegetation modeling approach. Mitigation and Adaptation Strategies for Global Change, 16(2), 119–142. https://doi.org/10.1007/s11027-010-9257-7

    Article  Google Scholar 

  • Chaturvedi, R. K., Tiwari, R., & Ravindranath, N. H. (2008). Climate change and forests in India. International Forestry Review, 10(2), 256–268.

    Article  Google Scholar 

  • Chitale, V. S., Behera, M. D., & Roy, P. S. (2014). Future of endemic flora of biodiversity hotspots in India. PLoS ONE, 9(12), e115264.

    Article  Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., et al. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373.

    Article  Google Scholar 

  • Cristal, I., Ameztegui, A., González-Olabarria, J. R., & Garcia-Gonzalo, J. (2019). A decision support tool for assessing the impact of climate change on multiple ecosystem services. Forests, 10(5), 440.

    Article  Google Scholar 

  • Cronan, C. S. (2018). Biogeochemical models. In Ecosystem Biogeochemistry pp. 141–150. Springer.

  • Das, P., & Behera, M. D. (2019). Can the forest cover in India withstand large climate alterations? Biodiversity and Conservation, 28(8–9). https://doi.org/10.1007/s10531-019-01759-y

  • Das, P., Behera, M. D., & Roy, P. S. (2019). Estimation of forest cover resilience in India using MC2 DVM. International Geoscience and Remote Sensing Symposium (IGARSS). https://doi.org/10.1109/IGARSS.2019.8898739

    Article  Google Scholar 

  • Davidson, E. A., de Araújo, A. C., Artaxo, P., Balch, J. K., Brown, I. F., C. Bustamante, M. M., Coe, M. T., DeFries, R. S., Keller, M., Longo, M., Munger, J. W., Schroeder, W., Soares-Filho, B. S., Souza, C. M., & Wofsy, S. C. (2012). The Amazon basin in transition. Nature, 481(7381), 321–328. https://doi.org/10.1038/nature10717

    Article  CAS  Google Scholar 

  • Fang, O., Zhang, Q., & bin. (2019). Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology, 25(1), 245–253. https://doi.org/10.1111/gcb.14470

    Article  Google Scholar 

  • Fernandez-Illescas, C. P., Porporato, A., Laio, F., & Rodriguez-Iturbe, I. (2001). The ecohydrological role of soil texture in a water-limited ecosystem. Water Resources Research, 37(12), 2863–2872.

    Article  Google Scholar 

  • Gonzalez, P., Neilson, R. P., Lenihan, J. M., & Drapek, R. J. (2010). Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 19(6), 755–768.

    Article  Google Scholar 

  • Gouda, K. C., Nahak, S., & Goswami, P. (2018). Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather and Climate Extremes, 21, 10–16.

    Article  Google Scholar 

  • Halofsky, J. E., Hemstrom, M. A., Conklin, D. R., Halofsky, J. S., Kerns, B. K., & Bachelet, D. (2013). Assessing potential climate change effects on vegetation using a linked model approach. Ecological Modelling, 266(1), 131–143. https://doi.org/10.1016/j.ecolmodel.2013.07.003

    Article  Google Scholar 

  • Kim, J. B., Kerns, B. K., Drapek, R. J., Pitts, G. S., & Halofsky, J. E. (2018). Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model. Climate Services, 10, 20–32.

    Article  Google Scholar 

  • Kim, J. B., Monier, E., Sohngen, B., Pitts, G. S., Drapek, R., McFarland, J., Ohrel, S., & Cole, J. (2017). Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios. Environmental Research Letters, 12(4), 45001.

    Article  Google Scholar 

  • Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (2020). Assessment of climate change over the Indian region: a report of the ministry of earth sciences (MOES), government of India. Springer Nature.

  • Neilson, R. P. (1995). A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 5(2), 362–385.

    Article  Google Scholar 

  • Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics, 4(1), 25–51.

    Article  Google Scholar 

  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., & others. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.

  • Pulla, S., Ramaswami, G., Mondal, N., Chitra-Tarak, R., Suresh, H. S., Dattaraja, H. S., Vivek, P., Parthasarathy, N., Ramesh, B. R., & Sukumar, R. (2015). Assessing the resilience of global seasonally dry tropical forests. International Forestry Review, 17(2), 91–113. https://doi.org/10.1505/146554815815834796

    Article  Google Scholar 

  • Raju, K. Srinivasa, Sonali, P., & Kumar, D. Nagesh (2017). Ranking of CMIP5-based global climate models for India using compromise programming. Theoretical and Applied Climatology, 128(3), 563–574.

    Article  Google Scholar 

  • Ravindranath, N. H., Chaturvedi, R. K., Joshi, N., & v, Sukumar, R., & Sathaye, J. (2011a). Implications of climate change on mitigation potential estimates for forest sector in India. Mitigation and Adaptation Strategies for Global Change, 16(2), 211–227. https://doi.org/10.1007/s11027-010-9256-8

    Article  Google Scholar 

  • Ravindranath, N. H., Chaturvedi, R. K., Joshi, N., & v., Sukumar, R., & Sathaye, J. (2011b). Implications of climate change on mitigation potential estimates for forest sector in India. Mitigation and Adaptation Strategies for Global Change, 16(2), 211–227. https://doi.org/10.1007/s11027-010-9256-8

    Article  Google Scholar 

  • Ravindranath, N. H., Joshi, N. v., Sukumar, R., & Saxena, A. (2006). Impact of climate change on forests in India. Current Science, 354–361.

  • Ravindranath, N. H., & Sukumar, R. (1998). Climate change and tropical forests in India. In Climatic Change 39(2–3), 563–581. https://doi.org/10.1023/a:1005394505216

  • Ray, D., Behera, M. D., & Jacob, J. (2018). Evaluating ecological niche models: A comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(4), 1337–1343.

    Article  Google Scholar 

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., Jha, C. S., Sudhakar, S., Joshi, P. K., Reddy, C. S., et al. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159.

    Article  Google Scholar 

  • Rubel, F., & Kottek, M. (2010). Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift, 19(2), 135.

    Article  Google Scholar 

  • Sharma, A., & Goyal, M. K. (2018). Assessment of ecosystem resilience to hydroclimatic disturbances in India. Global Change Biology, 24(2), e432–e441. https://doi.org/10.1111/gcb.13874

    Article  Google Scholar 

  • Sharma, J., Upgupta, S., Jayaraman, M., Chaturvedi, R. K., Bala, G., & Ravindranath, N. H. (2017). Vulnerability of Forests in India: A National Scale Assessment. Environmental Management, 60(3), 544–553. https://doi.org/10.1007/s00267-017-0894-4

    Article  Google Scholar 

  • Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9), 2015–2039.

    Article  Google Scholar 

  • Staudinger, M. D., Grimm, N. B., Staudt, A., Carter, S. L., & Chapin, F. S. (2012). Impacts of climate change on biodiversity, ecosystems, and ecosystem services. United States Global Change Research Program.

    Google Scholar 

  • Steinkamp, J., & Hickler, T. (2015). Is drought-induced forest dieback globally increasing? Journal of Ecology, 103(1), 31–43. https://doi.org/10.1111/1365-2745.12335

    Article  Google Scholar 

  • Tao, Z., & Jain, A. K. (2005). Modeling of global biogenic emissions for key indirect greenhouse gases and their response to atmospheric CO2 increases and changes in land cover and climate. Journal of Geophysical Research: Atmospheres, 110(D21).

  • Telwala, Y., Brook, B. W., Manish, K., & Pandit, M. K. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE, 8(2), e57103.

    Article  CAS  Google Scholar 

  • Verbesselt, J., Umlauf, N., Hirota, M., Holmgren, M., van Nes, E. H., Herold, M., Zeileis, A., & Scheffer, M. (2016). Remotely sensed resilience of tropical forests. Nature Climate Change, 6(11), 1028–1031.

    Article  Google Scholar 

  • Watterson, I. G., Bathols, J., & Heady, C. (2014). What influences the skill of climate models over the continents? Bulletin of the American Meteorological Society, 95(5), 689–700.

    Article  Google Scholar 

  • Ying, X. U., & Chong-Hai, X. U. (2012). Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmospheric and Oceanic Science Letters, 5(6), 489–494.

    Article  Google Scholar 

  • Zhou, D., Hao, L., Kim, J. B., Liu, P., Pan, C., Liu, Y., & Sun, G. (2019). Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau. Climatic Change, 156(1), 31–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been carried out under the framework of “Climate Change Effects on Indian Forest Cover, a project under DST CoE in Climate Change.” The vegetation type map generated against a national-level “Biodiversity Characterization project” was utilized here, is thankfully acknowledged. The authors acknowledge the support provided by the authorities of the Indian Institute of Technology Kharagpur during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukunda Dev Behera.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 LAI-based life form categorization used in MC2 model (JPG 292 KB)

Supplementary file2 Biogeographic zones of India (JPG 784 KB)

10661_2022_10545_MOESM3_ESM.jpg

Supplementary file3 Predicted change in (i) precipitation, (ii) minimum and (iii) maximum temperature simulated by the CNRM-CM5 model (JPG 852 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Behera, M.D., Bhaskaran, P.K. et al. Forest cover resilience to climate change over India using the MC2 dynamic vegetation model. Environ Monit Assess 194, 903 (2022). https://doi.org/10.1007/s10661-022-10545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10545-3

Keywords

Navigation