Skip to main content
Log in

Soil degradations in the IGP of central Haryana, India–a spatial assessment for reclamation and management

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Natural and anthropogenic processes are primary drivers for soil degradations in the Gangetic plain of India. Indian Remote Sensing (IRS) data was used to assess soil degradations and study spatial changes comparing with the legacy datasets. Based on the nature, extent, and degrees of limitations, these soils were evaluated to suggest suitable reclamation and management options. Typical strong signature (white tones) from a barren highly salinized soil (P3, P6, P9, P11, and P15) and higher energy absorption (blue-black tones) from a permanent waterlogged surface (P13, P14, P10) in the irrigated areas have favored delineation of salt-affected, strong, and permanent waterlogged areas. Moderate and slightly salt-affected soils (P1, P2, P4, P5, P7, P8, and P12) and the areas with high water table depths (P13 and P14) have shown mixed spectral signatures for associations of soil, water, and crops and were mapped using ground truth and soil chemical analysis data. Irrigation with poor quality ground water (RSC: 1.2 to 12.3 me L−1) has prompted developing salinity and sodicity in P2, P5, and P11, while irrigation in poorly drained areas caused appearance of waterlogging (WTD < 1.5 m) and salinization (P3, P5, P7, P9, P13, P14). The gypsum application and sub-surface drainage (SSD) techniques have enhanced soil reclamation by (i) neutralizing CO32 − and HCO3 − in P12 (pH 9.2, ESP 24) and (ii) controlling soil salinity (EC 3.0 dS m−1) and waterlogging (WTD > 1.5 m) in P14. Soils with CaCO3 layers at shallow depth in P3 (0.7–4.2%), P6 (1.2–7.1%), P9 (8–16%), P11 (4–15%), and P13 (0.9–9.4%) were managed using forest plantations. Ground water with high SAR in T1 to T7 can be applied for agriculture using mixing or cyclic mode. Water with high RSC in T4, T5, T7, T8, T9, and T10 needs treatment with gypsum. A significant area (~ 24.87%) of salt-affected soils was reclaimed since 1971. Prominent changes (3.27 to 17.71%) were shown in Panipat and Karnal districts. Small areas of brick kiln (P11), industrial effluent (P10), riverine sand, partially stabilized dunes, and mining have appeared due to anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data used in the manuscript may be available on the basis of a reasonable request.

References

  • AbdelRahman, M. A. E., Natarajan, A., Hegde, R., & Prakash, S. S. (2019). Assessment of land degradation using comprehensive geostatistical and remote sensing data in GIS–Model builder. The Egyptian Journal of Remote Sensing and Space Sciences, 22, 323–334. https://doi.org/10.1016/j.ejrs.2018.03.002

    Article  Google Scholar 

  • Abrol, I. P., & Bhumbla, D. R. (1971) Saline and alkali soils of India; Their occurrence and management. World Soil Resource Report No. 41, Food and Agriculture Organization of the United Nations (FAO), Rome (Italy), p. 42–52.

  • Abrol, I. P., Dargan, K. S., & Bhumbla, D. R. (1973). Reclaiming alkali soils. Bulletin No. 2, Central Soil Salinity Research Institute (B. K. A. P.), Karnal, pp. 57.

  • Agarwal, M. C., & Roest, C. J. W. (1996). Towards improved water management in Haryana state. Indo-Dutch operational research project on hydrological studies-Final report. Agarwal MC, Roest CJW. (eds.) CCS HAU, Hisar, ILRI, the Netherlands and DLO Winand Starring Centre for Integrated land, Soil and Water Management (The Netherlands), p. 80.

  • Ajai, A., Dhinwa, P. S., Pathan, S. K., & Ganesh, R. K. (2009). Desertification/land degradation status mapping of India. Current Science, 97, 1478–1483.

    Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Proxy global assessment of land degradation. Soil Use and Management, 24, 223–234. https://doi.org/10.1111/j.1475-2743.2008.00169x

    Article  Google Scholar 

  • Avdan, U., Kaplan, G., Matci, D. K., Avdan, Z. Y., Erdem, F., Mizik, E. T., & Demirtas, I. (2022). Soil salinity prediction models constructed by different remote sensors. Physics and Chemistry of the Earth, Parts A/B/C available online 27 Aug 2022. https://doi.org/10.1016/j.pce.2022.103230

  • Bhattacharyya, T., Sarkar, D., & Pal, D. K. (2009). Soil survey manual. NBSS LUP Publication No. 146, India, pp. 400.

  • Bhargava, G. P., & Bhattacharjee, J. C. (1982). Morphology, genesis and classification of salt Affected soils. In “Review of soil research in India”, Proceedings of the 12th International Congress of Soil Science, 8–16 Feb. 1982, New Delhi, India, pp.508–528.

  • Bhargava, G. P., Sharma, R. C., Pal, D. K., & Abrol, I, P. (1980). A case study of the distribution and formation of salt affected soils in Haryana state. Proceedings of the International Symposium on Salt affected soils, CSSRI, Karnal, pp. 83–91.

  • Colwell, R. N. (ed.) (1993). Manual of remote sensing. Vol. II: Interpretation and Applications. American Society of Photogrammetry, 2nd Ed.

  • Coleman, T. L., Agbu, P. A., Montgomary, O. L., & Prasad, S. (1991). Spectral band selection for quantifying selected properties in highly weathered soils. Soil Science, 151, 355–361.

    Article  Google Scholar 

  • Csillag, F., Pasztore, L., & Biehl, L. L. (1993). Spectral selection for characterization of salinity status of soils. Remote Sensing of Environment, 43, 231–242. https://doi.org/10.1016/0034-4257(93)90068-9

    Article  Google Scholar 

  • CSSRI. (2015). Vision- 2050. Central Soil Salinity Research Institute (Indian Council of Agricultural Research) Karnal -132001, India, pp. 31, www.cssri.org

  • CSSRI. (2016). Reclamation of waterlogged saline soils through subsurface drainage technology. ICAR-CSSRI/Karnal/Technology Folder/2016/02, Central Soil Salinity Research Institute (Indian Council of Agricultural Research) Karnal – 132001, India, pp. 4, www.cssri.org

  • CSSRI. (1988). Annual Report. Central Soil Salinity Research Institute (Indian Council of Agricultural Research) Karnal -132001, India, pp. 225, www.cssri.org

  • DAC. (1994). Draft report: Status of Land Degradation in India. Department of Agriculture and Co-operation (DAC). Government of India, New Delhi.

  • DOLR. (2019). Wastelands Atlas of India-2019. Department of Land Resources (DOLR), Govt. of India. http://www.dolr.gov.in

  • DOLR-NRSA. (2005). Wastelands Atlas of India-2005. Department of Land Resources (DOLR) Govt. of India (GOI) http://www.dolr.gov.in and National Remote Sensing Agency (NRSA) (http://www.nrsc.gov.in ), Department of Space (DOS), GOI, Hyderabad, pp. 95.

  • Damodaran, T., Rai, R. B., Mishra, V. K., Sharma, D. K., Ram, R. A., Rai, S., & Kumar, H. (2011). Integrated farming system and livelihood security- An approach (p. 106). Central Soil Salinity Research Institute, Regional Research Station, Lucknow.

    Google Scholar 

  • Dwivedi, R. S. (1994). Study of salinity and waterlogging in Uttar Pradesh (India) using remote sensing data. Land Degradation & Development, 5, 191–199. https://doi.org/10.1002/ldr.3400050303

    Article  Google Scholar 

  • Dwivedi, R. S., & Sreenivas, K. (2002). The vegetation and waterlogging dynamics as derived from space borne multi-spectral and multi-temporal data. International Journal of Remote Sensing, 23, 2729–2740. https://doi.org/10.1080/01431160110076234

    Article  Google Scholar 

  • European Commission. (2019). World Atlas of Desertification (WAD). http://wed.jrc.ec.europa.eu

  • Eswaran, H., Lal, R., & Reich, P. F. (2001). Land degradation: An overview. Natural Resource Conservation Service: United States Department of Agriculture Washington DC.

  • Gibbs, H. K., & Salmon, J. M. (2015). Mapping the world’s degraded lands. Applied Geography, 57, 12–21. https://doi.org/10.1016/j.apgeog.2014.11.024

    Article  Google Scholar 

  • Government of Haryana. (1995). Statistical Handbook -Transformation and Development, Directorate of Economics and Statistics, Government of Haryana, Chandigarh, India.

  • Hopmans, J. W., Qureshi, A. S., Kisekk, A. I., Munns, R., Grattan, S. R., Rengasamy, P., Ben-Gal, A., Assouline, S., Javaux, M., Minhas, P. S., Raats, P. A. C., Skaggs, T. H., Wang, G., Jong, De., van Lier, Q., Jiao, H., Lavado, R. S., Lazarovitch, N., Li, B., & Talesnik, E. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy ISSN, 0065–2113. https://doi.org/10.1016/bs.agron.2021.03.001

    Article  Google Scholar 

  • HSMITC. (2005). Haryana ground water quality map. Haryana State Minor Irrigation and Tubewell Corporation Limited.

    Google Scholar 

  • Howari, F. M. (2003). The use of remote sensing data to extract information from agricultural land with emphasis on soil salinity. Australian Journal of Soil Research, 41, 1243–1253. https://doi.org/10.1071/SR03033

    Article  Google Scholar 

  • Jackson, M. L. (1986). Advanced soil chemical analysis prentice hall of India, New Delhi.

  • Joshi, D. C., & Sahai, B. (1993). Mapping salt affected land in Saurashtra coast using Landsat data. International Journal of Remote Sensing, 14, 1919–1929.

    Article  Google Scholar 

  • Joshi, D. C., Toth, T., & Sari, D. (2002). Spectral reflectance characteristics of Na-carbonate irrigated arid secondary sodic soils. Arid Land Research and Management, 16, 161–176. https://doi.org/10.1080/153249802317304459

    Article  CAS  Google Scholar 

  • Khan, N. M., Rastoskuev, V. V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydro-saline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77, 96–109. https://doi.org/10.1016/j.agwat.2004.09.038

    Article  Google Scholar 

  • Manchanda, M. L., & Iyer, H. S. (1983). Use of Landsat imagery and aerial photographs for delineation and categorization of salt-affected soils of part of North-West India. Journal of the Indian Society of Soil Science, 31, 263–271.

    Google Scholar 

  • Mandal, A. K. (2012). Delineation and characterization of salt affected and waterlogged areas in the Indo-Gangetic plain of central Haryana (District Kurukshetra) for reclamation and management. Journal of Soil Salinity & Water Quality, 4, 21–25.

    Google Scholar 

  • Mandal, A. K. (2016). Mapping and characterization of salt affected and waterlogged soils in the Gangetic plain of central Haryana (India) for reclamation and management. Cogent Geoscience. https://doi.org/10.1080/23312041.2016.1213689

    Article  Google Scholar 

  • Mandal, A. K. (2019). Modern technologies for diagnosis and prognosis of salt-affected soils and poor quality waters. In: Research developments in saline agriculture (Dagar JC, Yadav RK, Sharma PC. eds.), Springer Nature Singapore Pvt. Ltd. https://doi.org/10.1007/978-981-13-5832-6

  • Mandal, A. K., & Sharma, R. C. (2001). Mapping of waterlogged areas and salt affected soils in the IGNP command area. Journal of the Indian Society of Remote Sensing, 29, 229–235.

    Article  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2012). Description and characterization of typical soil monoliths from salt affected areas in Rajasthan. Journal of the Indian Society of Soil Science, 60, 299–303.

    CAS  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2005). Computerized database on salt affected soils in Haryana State. Journal of the Indian Society of Remote Sensing, 33, 447–455.

    Article  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2006). Computerized database on salt affected soils for agro-climatic regions in the Indo-Gangetic plain of India using GIS. Geocarto International, 21, 47–58.

    Article  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2010). Delineation and characterization of waterlogged and salt affected areas in IGNP command, Rajasthan for reclamation and management. Journal of the Indian Society of Soil Science, 58, 449–454.

    Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2011). Delineation and characterization of waterlogged salt affected soils in IGNP using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 39, 39–50.

    Article  Google Scholar 

  • Mandal, A. K., & Sharma, R. C. (2013). Mapping and characterization of waterlogged and salt affected soils in Loonkaransar area of Indira Gandhi Nahar Pariyojona for reclamation and management. Journal of the Indian Society of Soil Science, 61, 29–33.

    CAS  Google Scholar 

  • Mandal, A. K., Joshi, P. K., Singh R., & Sharma, D. K. (2018). Mapping and characterization of salt affected soils for reclamation and management - A case study in the Trans-Gangetic Plains of India. In “Sustainable management of land resources – An Indian experience” Eds. Obi Reddy, G. P., Patil, N. G. & Chaturvedi, A., Apple Academic Press, USA, p. 145–174. ISBN 978–1–77188–517–1.

  • Mandal, A. K., Joshi, P. K., Singh, R., & Sharma, D. K. (2016). Characterization of some salt affected soils and poor quality waters in Kaithal district of Central Haryana for reclamation and management. Journal of the Indian Society of Soil Science, 64, 419–426.

    Article  Google Scholar 

  • Mandal, A. K., Sethi, M., Yaduvanshi, N. P. S., Yadav, R. K., Bundela, D. S., Chaudhari, S. K., Chinchmalatpure, A., & Sharma, D. K. (2013). Salt affected soils of Nain experimental farm: Site characteristics, reclaimability and potential use. Technical Bulletin: CSSRI/Karnal /2013/03, pp-34.

  • Mandal, A. K., Reddy, G. P. O., & Ravisankar, T. (2011). Digital database of salt affected soils in india using geographic information system. Journal of Soil Salinity &.Water Quality, 3, 16–29.

    Google Scholar 

  • Metternicht, G., & Zinck, J. A. (1997). Spatial discrimination of salt- and sodium-affected soil surfaces. International Journal of Remote Sensing, 18, 2571–2586.

    Article  Google Scholar 

  • Minhas, P. S. (2010). A re-look at the diagnostic criteria for salt affected soils in India. Journal of the Indian Society of Soil Science, 58, 12–24.

    Google Scholar 

  • Minhas, P. S., & Gupta, R. K. (1992). Quality of irrigation water assessment and management. Indian Council of Agricultural Research (ICAR), New Delhi. P. 123.

  • Minhas, P. S. & Samra, J. S. (2004). Wastewater use in peri-urban agriculture: Impacts and opportunities. Tech. Bull. No. 2/2004, Central Soil Salinity Research Institute, Karnal-132001(India), p. 74.

  • Mogenot, B., Pouget, M., & Epema, G. F. (1993). Remote sensing of salt affected soils. Remote Sensing Reviews, 7, 241–259.

    Article  Google Scholar 

  • Moharana, P. C., Santra, P., Singh, D. V., Kumar, S., Goyal, R. K., Machiwal, D., & Yadav, O. P. (2016). Erosion processes and desertification in the Thar Desert of India. ICAR-Central Arid Zone Research Institute, Jodhpur: Proceedings Indian National Science Academy, 82, 1117–1140. https://doi.org/10.16943/ptinsa/2016/48507

    Article  Google Scholar 

  • NAAS- ICAR. (2010). Degraded and Wastelands of India- Status and Spatial Distribution. National Academy of Agricultural Sciences (NAAS), New Delhi and Indian Council of Agricultural Research (ICAR), New Delhi, pp. 158.

  • NRSA. (1997). Salt Affected Soils. National Remote Sensing Agency (NRSA). Department of Space (DOS), Government of India (GOI), Hyderabad, India.

  • NRSC. (2007). Manual: Nationwide mapping of Land Degradation using Multi-temporal Satellite Data. National Remote Sensing Centre (NRSC), Department of Space (DOS), Government of India (GOI), Hyderabad, pp. 134.

  • NRSC. (2008). Mapping Salt-affected Soils in India. Soil Division, RS & GIS Application Area, National Remote Sensing Centre (NRSC), Department of Space (DOS), Government of India (GOI), Hyderabad, India, pp. 54.

  • NRSC & MRD. (2003). Wastelands Atlas of India. National Remote Sensing Center (NRSC), Hyderabad and Ministry of Rural Development (MRD), New Delhi, India, p.95.

  • Phogat, V., Satyavan, K. S., & Sharma, S. K. (2011). Effects of cyclic and blending uses of saline and good quality waters on soil salinization and crop yields under pearl millet- Wheat rotation. Journal of the Indian Society of Soil Science, 59, 94–96.

    Google Scholar 

  • Rao, B. R. M., Ravisankar, T., Dwivedi, R. S., Thammappa, S. S., Venkatratnam, L., Sharma, R. C., & Das, S. N. (1995). Spectral behaviour of salt affected soils. International Journal of Remote Sensing, 16, 2125–2136. https://doi.org/10.1080/01431169508954546

    Article  Google Scholar 

  • Richards, L. A., Ed. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No. 60 United States Department of Agriculture, Washington DC, pp. 159.

  • SAC. (2021). Desertification and Land Degradation Atlas of India (Assessment and Analysis of Changes over 15 years based on Remote Sensing). Space Application Center (SAC), Indian Space Research Organization (ISRO) Department of Space (DOS), Govt. of India (GOI), Ahmedabad. ISBN: 978–93–82760–39–9.

  • SAC. (2016). Desertification and Land Degradation Atlas of India (Assessment and Analysis of Changes over 15 years based on Remote Sensing). Space Application Center (SAC), Indian Space Research Organization (ISRO) Department of Space (DOS), Govt. of India (DOI), Ahmedabad. ISBN: 978–93–82760–20–7.

  • Sachdev, C. B., Lal, T., Rana, K. P. C., & Sehgal, J. (1995). Soils of Haryana for optimizing land use. NBSS Publ. 44, National Bureau of Soil Survey and Land Use Planning, Nagpur, India, p. 59.

  • Salcedo, F. P., Cutillas, P. P., Aziz, F., Escabias, M. L., Boesveld, H., Bartholomeus, H., & Tallou, A. (2022). Soil salinity prediction using piloted aircraft systems under semi-arid environments irrigated with salty non-conventional water resources. Agronomy, 12. Available online. https://doi.org/10.3390/agronomy12092022

  • Saxena, R. K. (2003). Application of remote sensing in soils and agriculture. Journal of the Indian Society of Soil Science, 51, 431–447.

    Google Scholar 

  • Saxena, R. K., Sharma, R. C., Verma, K. S., Pal, D. K, & Mandal, A. K. (2004). Salt affected soils, Etah district (Uttar Pradesh). NBSS-CSSRI Publ. No. 108, NBSS LUP, Nagpur, p- 85.

  • Sharma, R. C., Saxena, R. K., & Verma, K. S. (2000a). Reconnaissance mapping & management of salt affected soils using satellite images. International Journal of Remote Sensing, 21, 3209–3218.

    Article  Google Scholar 

  • Sharma, D. P., Singh, Komal, & Rao, K. V. G. K. (2000b). Subsurface drainage for rehabilitation of waterlogged saline lands: Example of a soil in semiarid climate. Arid Land Research & Rehabilitation, 14, 373–386. https://doi.org/10.1080/08903060050136478

    Article  CAS  Google Scholar 

  • Sharma, R. C., & Mondal, A. K. (2006). Mapping of soil salinity and sodicity using digital image analysis and GIS in irrigated lands of the Indo-Gangetic plain. Agropedology, 16, 71–76.

    CAS  Google Scholar 

  • Sharma, R. C., Mandal, A. K., Singh, R., & Singh, Y. P. (2011). Characteristics and use potential of sodic and associated soils in CSSRI experimental farm, Lucknow, Uttar Pradesh. Journal of the Indian Society of Soil Science, 59, 381–387.

    CAS  Google Scholar 

  • Sharma, R. C., Saxena, R. K., Verma, K. S., & Mandal, A. K. (2008). Characteristics and reclaimability of sodic soils in the alluvial plain of Etah district, Uttar Pradesh. Agropedology, 18, 76–82.

    Google Scholar 

  • Sharma, D. K., Thimmppa, K., Chinchmalatpure, A. R., Mandal, A. K., Yadav, R. K., Chaudhari, S. K., Kumar, S., & Sikka, A. K. (2015). Assessment of production and monetary losses from salt-affected soils of India. Technical Bulletin: ICAR-CSSRI/Karnal/2015 /05.ICAR-CSSRI Karnal India.

  • Sidhu, G. S., Singh, S. P., Walia, C. S., & Singh, R. P. (2002). Degraded soils in rice-wheat areas of Indo-Gangetic Plain and their economic evaluation- A case study of Punjab state, India. 12th ISCO Conference, Beijing.

  • Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38, 39–67. https://doi.org/10.1111/sum.12772

    Article  Google Scholar 

  • Singh, A. (2015). Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators, 57, 128–130. https://doi.org/10.1016/j.ecolind.2015.04.027

    Article  Google Scholar 

  • Singh, G. (2009). Salinity-related desertification and management strategies: Indian experience. Land Degradation & Development, 20, 367-385. https://doi.org/10.1002/ldr.933

    Article  Google Scholar 

  • Singh, J., & Singh, J. P. (1995). Land degradation and economic sustainability. Ecological Economics 15, 77–86. SSDI: 0921–8009(95)00037–2.

  • Singh, S., Kar, A., Joshi, D. C., Ram, B., Kumar, S., Vats, P. C., Singh, N., Raina, P., Kolarkar, A. S., & Dhir, R. P. (1992). Desertification mapping in Western Rajasthan. Annals of Arid Zone, 31, 237–246.

    Google Scholar 

  • Singh, G., Mehta, K. K., Sharma, R. C., Chawla, K. L., Joshi, P. K., & Yaduvanshi, N. P. S. (2007). Sand mining or no mining in agricultural fields in Haryana. Technical Bulletin, 5, 32.

    Google Scholar 

  • Sreenivas, K., Sujatah, G., Mitran, T., Suresh, J. R., & K.G., Ravisankar, T., Rao, P.V.N. (2021). Decadal changes in land degradation status of India. Current Science, 121, 539–550. https://doi.org/10.18520/cs/v121/i4/539-550

    Article  Google Scholar 

  • Stavi, I., & Lal, R. (2015). Achieving zero net land degradation: Challenges and opportunities. Journal of Arid Environment, 112, 44–51. https://doi.org/10.1016/j.jaridenv.2014.01.016

    Article  Google Scholar 

  • Sutton, P. C., Anderson, S. J., Costanza, R., & Kubiszewski, I. (2016). The ecological economics of land degradation: Impact on ecosystem service values. Ecological Economics, 129, 182–192. https://doi.org/10.1016/j.ecolecon.2016.06.016

    Article  Google Scholar 

  • Szabolcs, I. (1989). Salt-affected soils. CRC Press, United States, ISBN: 0-8493-4818-8.

  • USDA. (2014). Salinity and Irrigation Water Management Guide. http://www.nrcs.usda.gov

  • www.thehindu.com. (2022). India's vulnerability to drought. the hindu.com, Thursday, May 19, 2022,  p.8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Kumar Mandal.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.K. Soil degradations in the IGP of central Haryana, India–a spatial assessment for reclamation and management. Environ Monit Assess 194, 835 (2022). https://doi.org/10.1007/s10661-022-10508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10508-8

Keywords

Navigation