Skip to main content

Advertisement

Log in

Agricultural drought assessment and monitoring using MODIS-based multiple indices: the case of North Wollo, Ethiopia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agriculture is the most sensitive sector which has largely been affected by the impacts of drought. The study aims to detect and characterize agricultural droughts using MODIS-based multiple indices in North Wollo, Ethiopia. Two Moderate Resolution Imaging Spectroradiometer (MODIS) datasets (MOD13Q1 and MOD11A2) for the period 2000 to 2019 were used to generate Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Accordingly, NDVI anomaly, Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI) were computed to characterize agricultural droughts during the crop growing season. Both the NDVI anomaly and VCI confirmed that there was no single drought-free year in the area throughout the study period. TCI showed relatively exaggerated drought stress than the other indices. However, VHI indicated lower area coverage and a lower level of stress than its aggregates (VCI and TCI). Specifically, 2002, 2004, 2009, 2010, and 2015 were all identified as severe drought years, where over 60% of the area was affected by droughts. Results of the regression analysis indicated that VCI, TCI, and VHI were having significant positive trends with precipitation in the majority of the districts. Using the aggregated drought frequency of each index, 13.5, 73.7, and 12.8% of the area were under moderate, high, and extremely high levels of agricultural drought occurrence, respectively, and the likelihood of implied risks. Therefore, all the districts of North Wollo were affected by persistent drought stress. Such drought recurrences have the potential to impose significant impacts on the agro-based livelihoods of the local community demanding ongoing drought monitoring and the application of effective early warning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used during the current study are freely available on websites listed in the acknowledgment.

References

  • Adhikari, U., Nejadhashemi, A. P., & Woznicki, S. A. (2015). Climate change and eastern Africa: A review of impact on major crops. Food and Energy Security, 4(2), 110–132. https://doi.org/10.1002/fes3.61

    Article  Google Scholar 

  • Anyamba, A., & Tucker, C. J. (2012). Historical perspectives on AVHRR NDVI and vegetation drought monitoring. NASA Publications, 217.

  • Aragie, T., & Genanu, S. (2017). Level and determinants of food security in North Wollo Zone (Amhara Region – Ethiopia). 5(6), 232–247. https://doi.org/10.12691/jfs-5-6-4

  • Asfaw, A., Bantider, A., Simane, B., & Hassen, A. (2021). Smallholder farmers’ livelihood vulnerability to climate change-induced hazards: Agroecology-based comparative analysis in Northcentral Ethiopia (Woleka Sub-basin). Heliyon, 7(4), e06761. https://doi.org/10.1016/j.heliyon.2021.e06761

    Article  Google Scholar 

  • Azadi, H., Keramati, P., Taheri, F., Rafiaani, P., Teklemariam, D., Gebrehiwotg, G., Hosseininiah, H., Passelb, S., & Lebaillyi, P. (2018). Agricultural land conversion: Reviewing drought impacts and coping strategies. International Journal of Disaster Risk Reduction, 31(2018), 184–195. https://doi.org/10.1016/j.ijdrr.2018.05.003

    Article  Google Scholar 

  • Bayissa, Y., Tadesse, T., Svoboda, M., Wardlow, B., Swigart, J., & Andel, S. (2018). Developing a satellite-based combined drought indicator to monitor agricultural drought: A case study for Ethiopia. Giscience & Remote Sensing, 00(00), 1–31. https://doi.org/10.1080/15481603.2018.1552508

    Article  Google Scholar 

  • Belayneh, A., Adamowski, J., Khalil, B., & Ozga-zielinski, B. (2014). Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology, 508, 418–429. https://doi.org/10.1016/j.jhydrol.2013.10.052

    Article  Google Scholar 

  • Bento, V., Trigo, I., Gouveia, C., & DaCamara, C. (2018). Contribution of land surface temperature (TCI) to vegetation health index: A comparative study using clear sky and all-weather climate data records. Remote Sensing, 10(1324). https://doi.org/10.3390/rs10091324

  • Bentoa, V. A., Gouveiaa, C. M., DaCamaraa, C. C., & Trigoa, I. F. (2018). A climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259, 286–295. https://doi.org/10.1016/j.agrformet.2018.05.014

    Article  Google Scholar 

  • Byakatonda, J., Parida, B., & Kenabatho, P. (2018). Relating the dynamics of climatological and hydrological droughts in semiarid Botswana. Physics and Chemistry of the Earth, 105, 12–24. https://doi.org/10.1016/j.pce.2018.02.004

    Article  Google Scholar 

  • Cai, G., Du, M., & Liu, Y. (2011). Regional drought monitoring and analyzing using MODIS data—a case study in Yunnan province. In and Y. C. D. Li, Y. Liu (Ed.), CCTA 2010, Part II (Internatio, Issue 1, pp. 243–251).

  • Cai, G., Du, M., & Liu, Y. (2017). Regional drought monitoring and analyzing using MODIS data—A case study in Yunnan province. In 4th Conference on Computer and Computing Technologies in Agriculture (CCTA).

  • CSA. (2013). Population projection of Ethiopia for all regions from 2014 – 2017 (Issue August 2013). CSA.

  • Dai, A. (2011). Drought under global warming: Advanced review. Climate Change, 2011(2), 45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Demisse, G. B., Tadesse, T., Bayissa, Y., Atnafu, S., Argaw, M., & Nedaw, D. (2018). Vegetation condition prediction for drought monitoring in pastoralist areas: A case study in Ethiopia. International Journal of Remote Sensing, 1–17. https://doi.org/10.1080/01431161.2017.1421797

  • Desportes, I. (2016). Responding to the 2016 drought amid political protest and a state of emergency in Ethiopia (Vol. 4).

  • Didan, K., Munoz, A. B., & Huete, A. (2015). MODIS Vegetation Index User’s Guide (MOD13 Series). Vegetation Index and Phenology Lab, the University of Arizona.

  • Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Advances in Remote Sensing Of Rainfall and Snowfall, January, 292–312. https://doi.org/10.1002/qj.3244

  • Dogan, S., Berktay, A., & Singh, V. P. (2012). Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. Journal of Hydrology, 470–471, 255–268. https://doi.org/10.1016/j.jhydrol.2012.09.003

    Article  Google Scholar 

  • Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observations and Geoinformation, 23, 245–253. https://doi.org/10.1016/j.jag.2012.09.010

    Article  Google Scholar 

  • Evans, J. D. (1996). Straight forward statistics for the behavioral sciences. Brooks/Cole, Pacifc Grove.

  • Frey, C. M., Kuenzer, C., & Dech, S. (2012). Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. International Journal of Remote, 33(22), 37–41. https://doi.org/10.1080/01431161.2012.699693

    Article  Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data, 1–21. https://doi.org/10.1038/sdata.2015.66

  • Gaikwad, S., Kale, K., Kulkarni, S., Varpe, A. B., & Pathare, G. (2015). Agricultural drought severity assessment using remotely sensed data: A review. International Journal of Advanced Remote Sensing and GIS, 4(1), 1195–1203.

    Article  Google Scholar 

  • Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Tan, B., & Nightingale, J. (2008). An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series, 5(1), 60–64.

    Google Scholar 

  • Gebre, E., Berhan, G., & Lelago, A. (2017). Application of remote sensing and GIS to characterize agricultural drought conditions in North Wollo Zone, Amhara Regional State, Ethiopia. Journal of Natural Sciences Research, 7(17).

  • Gebrechorkos, S., Hülsmann, S., & Bernhofer, C. (2018). Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrology and Earth System Science, 22, 4547–4564.

    Article  Google Scholar 

  • Gebrehiwot, T., Van der Veen, A., & Maathuis, B. (2016). Governing agricultural drought: Monitoring using the vegetation condition index. Ethiopian Journal of Environmental Studies and Management, 9(3), 354. https://doi.org/10.4314/ejesm.v9i3.9

    Article  Google Scholar 

  • Ghaleb, F., Mario, M., & Sandra, A. (2015). Regional Landsat-based drought monitoring from 1982 to 2014. Climate, 3, 563–577. https://doi.org/10.3390/cli3030563

    Article  Google Scholar 

  • Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2018a). Analysis of the long‑term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using vegetation health index (VHI) in Raya and its environs, Northern Ethiopia. Environmental Systems Research, 7(13). https://doi.org/10.1186/s40068-018-0115-z

  • Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2018b). Using drought indices to model the statistical relationships between meteorological and agricultural drought in Raya and its environs, Northern Ethiopia. Earth Systems and Environment. https://doi.org/10.1007/s41748-018-0055-9

  • Gonfa, L. (1996). Climate classification of Ethiopia (No. 3; Meteorological Research Report Series., pp. 1–76). National Meteorological Service Agency (NMA).

  • Guo, H., Bao, A., Liu, T., Jiapaer, G., Ndayisaba, F., & Jiang, L. (2018). Spatial and temporal characteristics of droughts in Central Asia. Science of the Total Environment, 624, 1523–1538. https://doi.org/10.1016/j.scitotenv.2017.12.120

    Article  CAS  Google Scholar 

  • Hailu, S. (2013). The impact of disaster risk management interventions in humanitarian programmes on household food security: The case of East africa, Ethiopia, Amhara Region, North Wollo Zone.

  • Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal drought prediction: Advances, challenges, and future prospects. Reviews of Geophysics, 56(1), 108–141. https://doi.org/10.1002/2016RG000549

    Article  Google Scholar 

  • HRD. (2016). Joint Government and Humanitarian Partners’ Document: 2016 Humanitarian Requirement Document, Ethiopia (Humanitarian Requirement Document, Ethiopia No. 2016; Humanitarian Requirement Document, Ethiopia).

  • HRD. (2017). Joint Government and Humanitarian Partners’ Document: 2017 Humanitarian Requirements Documen, Ethiopia (2016 Humanitarian Requirement Document, Ethiopia).

  • IPCC. (2014). Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

  • Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23(3), 618–633. https://doi.org/10.1175/2009JCLI2900.1

    Article  Google Scholar 

  • Kiem, A., Johnson, F., Westra, S., Dijk, A., Evans, J., Donnell, A., Rouillard, A., Barr, C., Tyler, J., Thyer, M., Jakob, D., Woldemeskel, F., Sivakumar, B., & Mehrotra, R. (2016). Natural hazards in Australia: Droughts. Climatic Change. https://doi.org/10.1007/s10584-016-1798-7

    Article  Google Scholar 

  • Kogan, F. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91–100. https://doi.org/10.1016/0273-1177(95)00079-T

    Article  Google Scholar 

  • Kogan, F. (1997). Global drought watch from space. American Meteorological Society, 621–636.

  • Kogan, F., Guo, W., & Yang, W. (2019). Drought and food security prediction from NOAA new generation of operational satellites. Geomatics, Natural Hazards and Risk, 10(1), 651–666. https://doi.org/10.1080/19475705.2018.1541257

    Article  Google Scholar 

  • Kundu, A., Dwivedi, S., & Dutta, D. (2016). Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. The Arabian Journal of Geosciences, 9(144). https://doi.org/10.1007/s12517-015-2185-9

  • Legesse, G., & Suryabhagavan, K. V. (2014). Remote sensing and GIS based agricultural drought assessment in East Shewa Zone Ethiooia. Tropical Ecology, 55(3), 349–363.

    Google Scholar 

  • Liou, Y., & Mulualem, G. M. (2019). Spatio – temporal assessment of drought in Ethiopia and the impact of recent intense droughts. Remote Sensing, 11, 1–19. https://doi.org/10.3390/rs11151828

  • Little, P. D., Stone, M. P., Mogues, T., Castro, A. P., & Negatu, W. (2006). ‘Moving in place’: Drought and poverty dynamics in South Wollo Ethiopia. Journal of Development Studies, 42(2), 200–225. https://doi.org/10.1080/00220380500405287

    Article  Google Scholar 

  • Lyon, B. (2014). Seasonal drought in the Greater Horn of Africa and its recent increase during the March-May Long Rains. Journal of Climate, 27, 7953–7975. https://doi.org/10.1175/JCLI-D-13-00459.1

    Article  Google Scholar 

  • Martinez, P., & Blanco, M. (2019). Sensitivity of agricultural development to water-related drivers: The case of Andalusia (Spain). Water, 11(9), 1–21. https://doi.org/10.3390/w11091854

    Article  Google Scholar 

  • Matewos, T. (2019). Climate change-induced impacts on smallholder farmers in selected districts of Sidama, Southern Ethiopia. Climate, 7(70), 1–17. https://doi.org/10.3390/cli7050070

  • Measho, S., Chen, B., Trisurat, Y., Pellikka, P., Guo, L., Arunyawat, S., Tuankrua, V., Ogbazghi, W., & Yemane, T. (2019). Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the Semiarid Region, Eritrea. Remote Sensing, 11(6). https://doi.org/10.3390/RS11060724

  • Mekonen, A. A., & Berlie, A. B. (2021). Rural households’ livelihood vulnerability to climate variability and extremes: A livelihood zone-based approach in the Northeastern Highlands of Ethiopia. Ecological Processes, 10(1), 55. https://doi.org/10.1186/s13717-021-00313-5

    Article  Google Scholar 

  • Mekonen, A. A., Berlie, A. B., & Ferede, M. B. (2020). Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia. Geoenvironmental Disasters, 7(10). https://doi.org/10.1186/s40677-020-0146-4

  • Mera, G. A. (2018). Drought and its impacts in Ethiopia. Weather and Climate Extremes, 22, 24–35. https://doi.org/10.1016/j.wace.2018.10.002

    Article  Google Scholar 

  • Meze-Hausken, E. (2000). Migration caused by climate change: How vulnerable are people in dryland areas: A case-study in Northern Ethiopia. Mitigation and Adaptation Strategies for Global Chang, 5, 379–406.

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Mohammed, Y., Yimer, F., Tadesse, M., & Tesfaye, K. (2017). Meteorological drought assessment in north east highlands of Ethiopia. International Journal of Climate Change Strategies and Management, 1–201. https://doi.org/10.1108/IJCCSM-12-2016-0179

  • Mohammed, Y., Yimer, F., Tadesse, M., & Tesfaye, K. (2018). Meteorological drought assessment in north east highlands of Ethiopia. International Journal of Climate Change Strategies and Management, 10(1), 142–160. https://doi.org/10.1108/IJCCSM-12-2016-0179

    Article  Google Scholar 

  • Morid, S., Smakhtin, V., & Moghaddasi, M. (2006). Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology, 26(7), 971–985. https://doi.org/10.1002/joc.1264

    Article  Google Scholar 

  • Mpelasoka, F., Awange, J. L., & Zerihun, A. (2018). Influence of coupled ocean-atmosphere phenomena on the Greater Horn of Africa droughts and their implications. Science of the Total Environment, 610–611, 691–702. https://doi.org/10.1016/j.scitotenv.2017.08.109

    Article  CAS  Google Scholar 

  • Munira, S., Alves, M., & Marin, M. (2018). Evaluating Precipitation estimates from Eta, TRMM and CHRIPS data in the south-southeast region of Minas Gerais site—Brazil. Remote Sensing Article, 10. https://doi.org/10.3390/rs10020313

  • Mutsotso, R. B., Sichangi, A. W., & Makokha, G. O. (2018). Spatio-temporal drought characterization in Kenya from 1987 to 2016. Advances in Remote Sensing, 07(02), 125–143. https://doi.org/10.4236/ars.2018.72009

    Article  Google Scholar 

  • Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhanga, S., & Baia, Y. (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of Arid Environments. https://doi.org/10.1016/j.jaridenv.2019.01.019

    Article  Google Scholar 

  • Pathak, A., & Dodamani, B. M. (2016). Comparison of two hydrological drought indices. Perspectives in Science, 8, 626–628. https://doi.org/10.1016/j.pisc.2016.06.039

    Article  Google Scholar 

  • Paulo, A. A., & Pereira, L. S. (2006). Drought concepts and characterization: Comparing drought indices applied at local and regional scales. Water International, 31(1), 37–41. https://doi.org/10.1080/02508060608691913

    Article  Google Scholar 

  • Senamaw, A., Addisu, S., & Suryabhagavan, K. V. (2021). Mapping the spatial and temporal variation of agricultural and meteorological drought using geospatial techniques, Ethiopia. Environmental Systems Research, 10(15). https://doi.org/10.1186/s40068-020-00204-2

  • Sholihah, R. I., Trisasongko, B. H., Shiddiq, D., Ode, L., & Iman, S. (2016). Identification of agricultural drought extent based on vegetation health indices of Landsat data: Case of Subang and Karawang, Indonesia. Nvironmental Sciences, 33, 14–20. https://doi.org/10.1016/j.proenv.2016.03.051

    Article  Google Scholar 

  • Sruthi, S., & Aslam, M. A. M. (2015). Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, 1258–1264. https://doi.org/10.1016/j.aqpro.2015.02.164

    Article  Google Scholar 

  • Tadesse, N., Nedaw, D., Woldearegay, K., Gebreyohannes, T., & Steenbergen, F. V. (2015). Groundwater management for irrigation in the Raya and Kobo Valleys, Northern Ethiopia. International Journal of Earth Sciences and Engineering, 08(03), 36–46.

    Google Scholar 

  • Trnka, M., Hayes, M., Jurečka, F., Bartošová, L., Anderson, M., Brown, J., Camarero, J. J., Cudlín, P., Dobrovolný, P., & Eitzinger, J. (2018). Priority questions in multidisciplinary drought research. Climate Research. https://doi.org/10.3354/cr01509

    Article  Google Scholar 

  • UNDRR. (2021). Special report on drought 2021: Global Assessment Report on Disaster Risk Reduction. United Nations Office for Disaster Risk Reduction (UNDRR), Geneva.

  • UNISDR. (2009). Drought risk reduction framework and practices: Contributing to the implementation of the Hyogo Framework for Action. United Nations secretariat of the International Strategy for Disaster Reduction (UNISDR), Geneva, Switzerland.

  • Viste, E., Korecha, D., & Sorteberg, A. (2013). Recent drought and precipitation tendencies in Ethiopia. Theoretical and Applied Climatology, 112(3–4), 535–551. https://doi.org/10.1007/s00704-012-0746-3

    Article  Google Scholar 

  • Wagesho, N., Goel, N. K., & Jain, M. K. (2013). Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal ISSN: 6667. https://doi.org/10.1080/02626667.2012.754543

  • Wilhite, D., Sivakumar, M., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4–13. https://doi.org/10.1016/j.wace.2014.01.002

    Article  Google Scholar 

  • WMO, & GWP. (2016). Handbook of drought indicators and indices (M. Svoboda & B. Fuchs, Eds.; Drought Mi). DigitalCommons@University of Nebraska - Lincoln.

  • Wu, D., Qu, J., & Hao, X. (2015). Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt. International Journal of Remote Sensing, 36(21), 5403–5425. https://doi.org/10.1080/01431161.2015.1093190

    Article  Google Scholar 

  • Zhang, J., Mu, Q., & Huang, J. (2016). Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China. Ecological Indicators, 63, 296–309. https://doi.org/10.1016/j.ecolind.2015.11.062

    Article  Google Scholar 

  • Zhang, X., Chen, N., Li, J., Chen, Z., & Niyogi, D. (2017). Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 188, 141–163. https://doi.org/10.1016/j.rse.2016.10.045

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the USGS earth explorer for freely downloading different MODIS images of the study watershed from http://earthexplorer.usgs.gov. We also acknowledge the US Geological Survey (USGS) and the Climate Hazards Group at the University of California for developing the CHIRPS rainfall estimate and allowing us to freely download it at https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_monthly/. We are grateful to the Ethiopian National Meteorological Service Agency for providing the time series daily rainfall and temperature data of the study area.

Author information

Authors and Affiliations

Authors

Contributions

The first author collect data, analyzes it, and wrote the manuscript. The co-authors gave technical support and conceptual advice with comments for improvement. All authors discussed the contents, methods, and results of the manuscript. They also read, edited, and approved it.

Corresponding author

Correspondence to Simachew Bantigegn Wassie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wassie, S.B., Mengistu, D.A. & Birlie, A.B. Agricultural drought assessment and monitoring using MODIS-based multiple indices: the case of North Wollo, Ethiopia. Environ Monit Assess 194, 787 (2022). https://doi.org/10.1007/s10661-022-10455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10455-4

Keywords

Navigation