Skip to main content

Advertisement

Log in

Climatology and model prediction of aerosol optical properties over the Indo-Gangetic Basin in north India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current research focuses on the use of different simulation techniques in the future prediction of the crucial aerosol optical properties over the highly polluted Indo-Gangetic Basin in the northern part of India. The time series model was used to make an accurate forecast of aerosol optical depth (AOD) and angstrom exponent (AE), and the statistical variability of both cases was compared in order to evaluate the effectiveness of the model (training and validation). For this, different models were used to simulate the monthly average AOD and AE over Jaipur, Kanpur and Ballia during the period from 2003 to 2018. Further, the study was aimed to construct a comparative model that will be used for time series statistical analysis of MODIS-derived AOD550 and AE412–470. This will provide a more comprehensive information about the levels of AOD and AE that will exist in the future. To test the validity and applicability of the developed models, root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), fractional bias (FB), and Pearson coefficient (r) were used to show adequate accuracy in model performance. From the observation, the monthly mean values of AOD and AE were found to be nearly similar at Kanpur and Ballia (0.62 and 1.26) and different at Jaipur (0.25 and 1.14). Jaipur indicates that during the pre-monsoon season, the AOD mean value was found to be highest (0.32 ± 0.15), while Kanpur and Ballia display higher AOD mean values during the winter season (0.72 ± 0.26 and 0.83 ± 0.32, respectively). Among the different methods, the autoregressive integrated moving average (ARIMA) model was found to be the best-suited model for AOD prediction at Ballia based on fitted error (RMSE (0.22), MAE (0.15), MAPE (24.55), FB (0.05)) and Pearson coefficient r (0.83). However, for AE, best prediction was found at Kanpur based on RMSE (0.24), MAE (0.21), MAPE (22.54), FB (-0.09) and Pearson coefficient r (0.82).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

Authors use the Giovanni website (https://giovanni.gsfc.nasa.gov/giovanni/) data portal, the NASA Earth Science data centers, for the online availability of the MODIS aerosol products used in this analysis.

References

  • Abish, B., & Mohanakumar, K. (2013). A stochastic model for predicting aerosol optical depth over the north Indian region. International Journal of Remote Sensing, 34(4), 1449–1458.

    Article  Google Scholar 

  • Adams, F., & Liu, X. (2000). Characterization of biomass burning particles. In: Boutron, C. (Ed.), From Weather Forecasting to Exploring the Solar System, ERCA(4). EDP Sciences, Les Ulis, France, pp. 82–99. Chapter VI.

  • Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM 2.5. Environmental science & technology, 49(13), 8057–8066.

  • Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K., & Singh, D. (2013). Trends in aerosol optical depth over Indian region: Potential causes and impact indicators. Journal of Geophysical Research: Atmospheres, 118(20), 11–794.

    Google Scholar 

  • Bayley, G. V., & Hammersley, J. M. (1946). The" effective" number of independent observations in an autocorrelated time series. Supplement to the Journal of the Royal Statistical Society, 8(2), 184–197.

    Article  Google Scholar 

  • Bellouin, N., Boucher, O., Haywood, J., & Reddy, M. S. (2005). Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438(7071), 1138–1141.

    Article  CAS  Google Scholar 

  • Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29, 105340.

    Article  Google Scholar 

  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., & Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552.

    Article  CAS  Google Scholar 

  • Bowerman, B. L., & O’Connell, R. T. (2003). Forecasting and Time Series: an Applied Approach, 521 pp.

  • Box, G., & Jenkins, G. (1976). Time Series Analysis: Forecasting and Control. Holden-Day.

    Google Scholar 

  • Cadenas, E., & Rivera, W. (2010). Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renewable Energy, 35(12), 2732–2738.

    Article  Google Scholar 

  • Cao, S., Wang, F., Tam, W., Tse, L. A., Kim, J. H., Liu, J., & Lu, Z. (2013). A hybrid seasonal prediction model for tuberculosis incidence in China. BMC Medical Informatics and Decision Making, 13(1), 1–7.

    Article  Google Scholar 

  • Chen, Z. Y., Zhang, T. H., Zhang, R., Zhu, Z. M., Yang, J., Chen, P. Y., & Guo, Y. (2019). Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmospheric Environment, 202, 180–189.

    Article  CAS  Google Scholar 

  • CPCB. (2011). Air Quality Monitoring, Emission Inventory and Source Apportionment Study for Indian Cities. Online. http://cpcb.nic.in/FinalNationalSummary.pdf

  • Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E., DeFries, R. S., & & Gupta, P. (2018). Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi. India. Environmental Research Letters, 13(4), 044018.

    Article  Google Scholar 

  • Dey, S., Tripathi, S. N., Singh, R. P., & Holben, B. N. (2004). Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. Journal of Geophysical Research: Atmospheres, 109(D20).

  • Dey, S., & Tripathi, S. N. (2008). Aerosol direct radiative effects over Kanpur in the Indo‐Gangetic basin, northern India: Long‐term (2001–2005) observations and implications to regional climate. Journal of Geophysical Research: Atmospheres113(D4).

  • Draxler, R. R., & Rolph, G. D. (2011). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model; National Oceanic and Atmospheric Administration, Air Resources Laboratory READY Web site. Air Resources Laboratory READY Web site.

  • Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H., & Xia, X. (2010). Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. Journal of Geophysical Research: Atmospheres115(D19).

  • Geng, G., Murray, N. L., Chang, H. H., & Liu, Y. (2018). The sensitivity of satellite-based PM2.5 estimates to its inputs: Implications to model development in data-poor regions. Environment International, 121, 550–560.

    Article  Google Scholar 

  • Goloub, P., Deuze, J. L., Herman, M., Tanre, D., Chiapello, I., Roger, B., & Singh, R. P. (2001). Aerosol remote sensing over land using the spaceborne polarimeter POLDER. Current problems in atmospheric radiation, 113–116.

  • Guttikunda, S. K., & Jawahar, P. (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449–460.

    Article  CAS  Google Scholar 

  • Habib, G., Venkataraman, C., Chiapello, I., Ramachandran, S., Boucher, O., & Reddy, M. S. (2006). Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: Relationship to regional meteorology and emissions. Atmospheric Environment, 40(11), 1909–1921.

    Article  CAS  Google Scholar 

  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196.

    Article  Google Scholar 

  • Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software packages for regression models with missing variables. The American Statistician, 55(3), 244–254.

    Article  Google Scholar 

  • Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., Tsay, S. C., & Holben, B. N. (2012). Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmospheric Chemistry and Physics, 12(17), 8037–8053.

    Article  CAS  Google Scholar 

  • Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.

  • Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., & Holben, B. N. (2010). Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the aerosol robotic network. Journal of Geophysical Research: Atmospheres., 115, D23209.

    Article  Google Scholar 

  • Kanawade, V. P., Srivastava, A. K., Ram, K., Asmi, E., Vakkari, V., Soni, V. K., Varaprasad, V., & Sarangi, C. (2020). What caused severe air pollution episode of November 2016 in New Delhi? Atmospheric Environment, 222, 117–125.

    Article  Google Scholar 

  • Kaskaoutis, D. G., Singh, R. P., Gautam, R., Sharma, M., Kosmopoulos, P. G., & Tripathi, S. N. (2012). Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10). Environmental Research Letters, 7(2), 024003.

    Article  Google Scholar 

  • Kaufman, Y. J., Tanre, D., Gordon, H. R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B. M., King, M. D., & Teillet, P. M. (1997). Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. Journal of Geophysical Research: Atmospheres, 102, 16815–16830.

    Article  Google Scholar 

  • Kishcha, P., Da Silva, A. M., Starobinets, B., & Alpert, P. (2014). Air pollution over the Ganges basin and northwest Bay of Bengal in the early postmonsoon season based on NASA MERRAero data. Journal of Geophysical Research: Atmospheres, 119(3), 1555–1570.

    Article  CAS  Google Scholar 

  • Kisi, O., & Parmar, K. S. (2016). Application of least square support vector machine and multivariate adaptive regression spline models in long-term prediction of river water pollution. Journal of Hydrology, 534, 104–112.

    Article  CAS  Google Scholar 

  • Kripalani, R. H., & Kulkarni, A. (2001). Monsoon rainfall variations and teleconnections over South and East Asia. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(5), 603–616.

    Article  Google Scholar 

  • Kumar, A., Bellam, N. K., & Sud, A. (1999). Performance of an industrial source complex model: Predicting long-term concentrations in an urban area. Environmental Progress, 18(2), 93–100.

    Article  CAS  Google Scholar 

  • Kumar, M., Parmar, K. S., Kumar, D. B., Mhawish, A., Broday, D. M., Mall, R. K., & Banerjee, T. (2018). Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields. Atmospheric Environment, 180, 37–50.

    Article  CAS  Google Scholar 

  • Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., & Ojha, N. (2015a). What controls the seasonal cycle of black carbon aerosols in India? Journal of Geophysical Research: Atmospheres, 120(15), 7788–7812.

    Article  CAS  Google Scholar 

  • Kumar, S., Kumar, S., Kaskaoutis, D. G., Singh, R. P., Singh, R. K., Mishra, A. K., & Singh, A. K. (2015b). Meteorological, atmospheric and climatic perturbations during major dust storms over Indo-Gangetic Basin. Aeolian Research, 17, 15–31.

    Article  Google Scholar 

  • Kumar, S., Singh, A., Srivastava, A. K., Sahu, S. K., Hooda, R. K., Dumka, U. C., & Pathak, V. (2021). Long-term change in aerosol characteristics over Indo-Gangetic Basin: How significant is the impact of emerging anthropogenic activities? Urban Climate, 38, 100880.

    Article  Google Scholar 

  • Kumar, S., Srivastava, A. K., Pathak, V., Bisht, D. S., & Tiwari, S. (2019). Surface solar radiation and its association with aerosol characteristics at an urban station in the Indo-Gangetic Basin: Implication to radiative effect. Journal of Atmospheric and Solar-Terrestrial Physics, 193, 105061.

  • Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., Szidat, S., Wehrli, M. N., Wacker, L., Wemer, S., Puxbaum, H., & Prevot, A. S. H. (2008). Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra. Environmental Science and Technology, 42, 214–220.

    Article  CAS  Google Scholar 

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371.

    Article  CAS  Google Scholar 

  • Lelieveld, J. O., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M., Campos, T., & Williams, J. (2001). The Indian Ocean experiment: Widespread air pollution from South and Southeast Asia. Science, 291(5506), 1031–1036.

    Article  CAS  Google Scholar 

  • Lettenmaier, D. P. (1976). Detection of trends in water quality data from records with dependent observations. Water Resources Research, 12(5), 1037–1046.

    Article  Google Scholar 

  • Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, T. F. (2010). Global evaluation of the collection 5 MODIS Dark-Target aerosol products over land. Atmospheric Chem. Phys., 10, 10399–10420.

    Article  CAS  Google Scholar 

  • Li, J., Carlson, B. E., Dubovik, O., & Lacis, A. A. (2014). Recent trends in aerosol optical properties derived from AERONET measurements. Atmospheric Chemistry and Physics, 14(22), 2271–12289.

    Google Scholar 

  • Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore, A. M., & & Milly, G. (2018). Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 172, 83–92.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Misra, A., Gaur, A., Bhattu, D., Ghosh, S., Dwivedi, A. K., Dalai, R., & Tripathi, S. N. (2014). An overview of the physico-chemical characteristics of dust at Kanpur in the central Indo-Gangetic basin. Atmospheric Environment, 97, 386–396.

    Article  CAS  Google Scholar 

  • Misra, A., Tripathi, S., Sembhi, H., & Boesch, H. (2020). Validation of CAMS AOD using AERONET data and trend analysis at four locations in the Indo-Gangetic Basin. Annales Geophysicae Discussions, 1–25.

  • Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons. 

  • Moorthy, K. K., Satheesh, S. K., Babu, S. S., & Dutt, C. B. S. (2008). Integrated campaign for aerosols, gases and radiation budget (ICARB): An overview. Journal of Earth System Science, 117(1), 243–262.

    Article  CAS  Google Scholar 

  • Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S., Nair, P. R., ... & Reddy, R. R. (2007). Winter time aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. Journal of Geophysical Research: Atmospheres, 112(D13).

  • Ojha, N., Sharma, A., Kumar, M., Girach, I., Ansari, T. U., Sharma, S. K., & Gunthe, S. S. (2020). On the widespread enhancement in fine particulate, matter across the Indo-Gangetic Plain towards winter. Scientific Reports, 10(1), 1–9.

    Article  Google Scholar 

  • Pala, Z., Ünlük, İ. H., & Yaldız, E. (2019). Forecasting of electromagnetic radiation time series: An empirical comparative approach. The Applied Computational Electromagnetics Society Journal (ACES), 1238–1241.

  • Pala, Z., & Atici, R. (2019). Forecasting sunspot time series using deep learning methods. Solar Physics, 294(5), 1–14.

    Article  Google Scholar 

  • Pathak, B., Bhuyan, P. K., Gogoi, M., & Bhuyan, K. (2012). Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmospheric Environment, 47, 307–315.

    Article  CAS  Google Scholar 

  • Rahman, S. A., Hamzah, M. S., Wood, A. K., Elias, M. S., Salim, N. A. A., & Sanuri, E. (2011). Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmospheric Pollution Research, 2(2), 197–206.

    Article  Google Scholar 

  • Ramachandran, S., Srivastava, R., Kedia, S., & Rajesh, T. A. (2012). Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location. Environmental Research Letters, 7(3), 034028.

    Article  Google Scholar 

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221–227.

    Article  CAS  Google Scholar 

  • Ramanathan, V. C. P. J., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 2119–2124.

    Article  CAS  Google Scholar 

  • Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., & Holben, B. N. (2008). Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research: Atmospheres, 113(D14).

  • Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R. -R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., & Holben, B. N. (2005). The MODIS aerosol algorithm, products and validation. Journal of Atmospheric Science, 62, 947–973.

    Article  Google Scholar 

  • Romilly, P. (2005). Time series modelling of global mean temperature for managerial decision-making. Journal of Environmental Management, 76(1), 61–70.

    Article  Google Scholar 

  • Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., & Jeong, M. J. (2014). MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24), 13–965.

    Google Scholar 

  • Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., & Wood, R. (2016). Improving our fundamental understanding of the role of aerosol− cloud interactions in the climate system. Proceedings of the National Academy of Sciences, 113(21), 5781–5790.

    Article  CAS  Google Scholar 

  • Sen, A., Abdelmaksoud, A. S., Ahammed, Y. N., Banerjee, T., Bhat, M. A., Chatterjee, A., & Mandal, T. K. (2017). Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmospheric Environment, 154, 200–224.

    Article  CAS  Google Scholar 

  • Sharma, M., & Dikshit, O. (2016). Comprehensive Study on Air Pollution and Green House Gases (GHGs) in Delhi. Online. http://delhi.gov.in/DoIT/Environment/PDFs/Final_Report.pdf

  • Singh, N., Murari, V., Kumar, M., Barman, S. C., & Banerjee, T. (2017). Fine particulates over South Asia: Review and meta-analysis of PM2. 5 source apportionment through receptor model. Environmental Pollution, 223, 121–136.

    Article  CAS  Google Scholar 

  • Singh, A., Srivastava, A. K., Pathak, V., & Shukla, A. K. (2021). Quantifying the impact of biomass burning and dust storm activities on aerosol characteristics over the Indo-Gangetic Basin. Atmospheric Environment, 270, 118893.

    Article  Google Scholar 

  • Song, W., Jia, H., Huang, J., & Zhang, Y. (2014). A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sensing of Environment, 154, 1–7.

    Article  Google Scholar 

  • Soni, K., Kapoor, S., Parmar, K. S., & Kaskaoutis, D. G. (2014). Statistical analysis of aerosols over the Gangetic-Himalayan region using ARIMA model based on long-term MODIS observations. Atmospheric Research, 149, 174–192.

    Article  CAS  Google Scholar 

  • Soni, K., Parmar, K. S., & Kapoor, S. (2015). Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environmental Science and Pollution Research, 22(5), 3652–3671.

    Article  CAS  Google Scholar 

  • Soni, K., Parmar, K. S., Kapoor, S., & Kumar, N. (2016). Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling. Science of the Total Environment, 553, 258–265.

    Article  CAS  Google Scholar 

  • Srivastava, A. K., Ram, K., Singh, S., Kumar, S., & Tiwari, S. (2015). Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: Seasonal variability and role of transported aerosols. Science of the Total Environment, 502, 287–295.

    Article  CAS  Google Scholar 

  • Srivastava, A. K., Soni, V. K., Singh, S., Kanawade, V. P., Singh, N., Tiwari, S., & Attri, S. D. (2014). An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: A case study. Science of the Total Environment, 493, 526–534.

    Article  CAS  Google Scholar 

  • Srivastava, A. K., Tiwari, S., Devara, P. C. S., Bisht, D. S., Srivastava, M. K., Tripathi, S. N., Goloub, P., & Holben, B. N. (2011). Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: Implications to climatic impact. Annales Geophysicae, 29, 789–804.

    Article  Google Scholar 

  • Taneja, K., Ahmad, S., Ahmad, K., & Attri, S. D. (2016). Time series analysis of aerosol optical depth over New Delhi using Box-Jenkins ARIMA modeling approach. Atmospheric Pollution Research, 7(4), 585–596.

    Article  Google Scholar 

  • Tanré, D., Kaufman, Y. J., Herman, M., & Mattoo, S. (1997). Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research: Atmospheres, 102(D14), 16971–16988.

    Article  Google Scholar 

  • Tripathi, S. N., Dey, S., Tare, V., Satheesh, S. K., Lal, S., & Venkataramani, S. (2005). Enhanced layer of black carbon in a north Indian industrial city. Geophysical Research Letters, 32(12).

  • Tripathi, S. N., Tare, V., Chinnam, N., Srivastava, A. K., Dey, S., Agarwal, A., & Lal, S. (2006). Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. Journal of Geophysical Research: Atmospheres, 111(D23).

  • Tularam, G. A., & Ilahee, M. (2010). Time series analysis of rainfall and temperature interactions in coastal catchments. Journal of Mathematics and Statistics, 6(3), 372–380.

    Article  Google Scholar 

  • Verma, S., Payra, S., Gautam, R., Prakash, D., Soni, M., Holben, B., & Bell, S. (2013). Dust events and their influence on aerosol optical properties over Jaipur in Northwestern India. Environmental Monitoring and Assessment, 185(9), 7327–7342.

    Article  CAS  Google Scholar 

  • Verma, S., Prakash, D., Ricaud, P., Payra, S., Attié, J. L., & Soni, M. (2015). A new classification of aerosol sources and types as measured over Jaipur. India. Aerosol and Air Quality Research, 15(3), 985–993.

    Article  Google Scholar 

  • Vinoj, V., & Pandey, S. K. (2016, July). Towards understanding the variability of aerosol characteristics over the Indo-Gangetic Plain. In Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI. 9882, 988205. International Society for Optics and Photonics.

  • Wilks, D. S. (2006). Statistical Methods in the atmospheric sciences second edition. International geophysics series91.

  • WHO. (2018). WHO global ambient air quality database (update 2018). Geneva: World Health Organization.

    Google Scholar 

  • Xu, J. W., Martin, R. V., Van Donkelaar, A., Kim, J., Choi, M., Zhang, Q., & Lin, N. (2015). Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument. Atmospheric Chemistry and Physics, 15(22), 13133–13144.

  • Yue, S., & Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218.

    Article  Google Scholar 

  • Yürekli, K., Simsek, H., Cemek, B., & Karaman, S. (2007). Simulating climatic variables by using stochastic approach. Building and Environment, 42(10), 3493–3499.

    Article  Google Scholar 

  • Zafra, C., Ángel, Y., & Torres, E. (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 8(4), 660–668.

    Article  Google Scholar 

  • Zhang, L., Lin, J., Qiu, R., Hu, X., Zhang, H., Chen, Q., & Wang, J. (2018). Trend analysis and forecast of PM2. 5 in Fuzhou, China using the ARIMA model. Ecological Indicators, 95, 702–710.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the use of Giovanni website (http://giovanni.gsfc.nasa.gov/) data portal and the NASA Earth Science data centers for the online availability of the MODIS aerosol products used in this analysis. Authors’ expresses their gracious thank to Director, IITM, Pune, for his encouragement and support. Authors are thankful to the anonymous reviewers for their constructive comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amarendra Singh or A. K. Srivastava.

Ethics declarations

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, S., Srivastava, A.K. et al. Climatology and model prediction of aerosol optical properties over the Indo-Gangetic Basin in north India. Environ Monit Assess 194, 827 (2022). https://doi.org/10.1007/s10661-022-10440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10440-x

Keywords

Navigation