Abstract
Since the middle of the 1500 s, mining has been active in central Mexico. Total estimates for low-grade piles and mine tailing materials in the Guanajuato mining district (GMD) are in the range of 150 million tons, covering an area of 15 to 20 km2. GMD is located in the Guanajuato River sub-basin (GRB), which is part of one of the largest basins in Mexico (Lerma-Santiago). Previous studies on the GRB found unusually high concentrations of heavy metals in mining tailings and sediments. Geochemical and statistical methods were used here to determine the sediment’s origin, background values, degree of contamination, and toxicity through different contamination indices. This analysis shows that Cu, Co, As, Sb, and Hg are higher than they are in the upper continental crust (UCC) overbank sediments without human and mining influence, because of the ore deposits and rock weathering in GRB. Geochemistry results in stream sediments show anomalies, where Hg, Cu, Zn, As, and Pb are higher than UCC because those heavy metals and trace elements (HMT) have been influenced by human activities and mineral recovery (smelting, amalgamation, cyanidation). The distribution of high concentrations of HMTs and contamination indices occur in the main channel of the Guanajuato River and downstream of the city of Guanajuato. Statistical analyses (cluster and principal component analysis) reveal relationships between Cr, Ni, Cu, and Pb, which are primarily of natural origin, related to rocks of the upper basin. The middle and lower basins are distinctive in their associations between As, Sb, Zn, Pb, and Hg. Additionally, it is recognized that the origins of Pb, Zn, and Hg are geogenic and anthropogenic. This study demonstrates how crucial it is to understand the geochemistry of various HMT sources, with both natural and anthropogenic contributions (stream sediments and rocks), in order to calculate a more realistic background in a basin with both natural anomalies and anthropogenic contamination. The basin is a regional aquifer recharge area, so the new geochemical data are important for improving basin environmental management.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.
References
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101
Adewumi, A. J., & Laniyan, T. A. (2020). Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area, Northwest Nigeria. Science of the Total Environment, 718, 137235. https://doi.org/10.1016/j.scitotenv.2020.137235
Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society: Series B (methodological), 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
Antúnez-Echagaray, F. (1964). Monografía Histórica y Minera del Distrito de Guanajuato.
Barats, A., Renac, C., Orani, A. M., Durrieu, G., Saint Martin, H., Esteller, M. V., & Garrido Hoyos, S. E. (2020). Tracing source and mobility of arsenic and trace elements in a hydrosystem impacted by past mining activities (Morelos state, Mexico). Science of the Total Environment, 712(xxxx). https://doi.org/10.1016/j.scitotenv.2019.135565
Bouzekri, S., El Hachimi, M. L., Touach, N., El Fadili, H., El Mahi, M., & Lotfi, E. M. (2019). The study of metal (As, Cd, Pb, Zn and Cu) contamination in superficial stream sediments around of Zaida mine (High Moulouya-Morocco). Journal of African Earth Sciences, 154(November 2018), 49–58. https://doi.org/10.1016/j.jafrearsci.2019.03.014
Bravo-Covarrubias, A., Torres, E., Ayora, C., & Ramos-Arroyo, Y. R. (2020). Movilidad de arsénico en los sedimentos de una presa que recibe escurrimientos de minas epitermales. Revista Internacional de Contaminación Ambiental, 36(4), 797–811. https://doi.org/10.20937/rica.53318
Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 1–5. https://doi.org/10.1016/j.gexplo.2014.03.022
Buchanan, L. J. (1979). The Las Torres mine, Guanajuato, Mexico: Ore controls of a fossil geothermal system. Colorado School of Mines.
Burton, G. A. (2002). Sediment quality criteria in use around the world. Limnology, 3(2), 65–75. https://doi.org/10.1007/s102010200008
Calmus, T., Valencia-Moreno, M., Del Río-Salas, R., Ochoa-Landín, L., & Mendivil-Quijada, H. (2018). A multi-elemental study to establish the natural background and geochemical anomalies in rocks from the Sonora river upper basin, NW Mexico. Revista Mexicana de Ciencias Geologicas, 35(2), 158–167. https://doi.org/10.22201/cgeo.20072902e.2018.2.605
Cano-Rodriguez, I., Gómez-Vallejo, F., Rarnirez-Méndez, V., Martinez-Barbosa, P., Rodiguez-Rodriguez, E., & Aguilera-Alvarado, A. (2000). Determinacion de contaminantes en la presa La Purísima y su efecto en el sistema de pozos puentecillas de Guanajuato. International Water Management Institute. Serie Lationamericana De México, 20, 123–133.
Carrillo-Chávez, A., Morton-Bermea, O., González-Partida, E., Rivas-Solorzano, H., Oesler, G., García-Meza, V., Hernández, E., Morales, P., & Cienfuegos, E. (2003). Environmental geochemistry of the Guanajuato Mining District, Mexico. Ore Geology Reviews, 23(3–4), 277–297. https://doi.org/10.1016/S0169-1368(03)00039-8
Chaparro, M. A. E., Ramírez-Ramírez, M., Chaparro, M. A. E., Miranda-Avilés, R., Puy-Alquiza, M. J., Böhnel, H. N., & Zanor, G. A. (2020). Magnetic parameters as proxies for anthropogenic pollution in water reservoir sediments from Mexico: An interdisciplinary approach. Science of the Total Environment, 700, 134343. https://doi.org/10.1016/j.scitotenv.2019.134343
Chen, M., Ma, L. Q., Hoogeweg, C. G., & Harris, W. G. (2001). Arsenic background concentrations in florida, u.S.a. surface soils: Determination and interpretation. Environmental Forensics, 2(2), 117–126. https://doi.org/10.1006/enfo.2001.0050
Chiprés, J. A., Castro-Larragoitia, J., & Monroy, M. G. (2009). Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico. Applied Geochemistry, 24(8), 1579–1589. https://doi.org/10.1016/j.apgeochem.2009.04.022
CoreTeam, R. (2017). R: A Language and Environment for Statistical Computing (Vol. 2). https://www.r-project.org/
Correa-Burrows, J. P., Navarrete-Calvo, Á., Valenzuela-Díaz, M. J., Zapata-Aguiló, V. A., Montserrat, S., Navarro-Valdivia, L., McPhee, J., & Caraballo, M. A. (2021). The role of local geochemical and mineralogical backgrounds as essential information to build efficient sediment quality guidelines at high-mountainous hydrothermally-altered basins (Mapocho basin, Chile). Science of the Total Environment, 785(May), 147266. https://doi.org/10.1016/j.scitotenv.2021.147266
Dash, S., Borah, S. S., & Kalamdhad, A. S. (2021). Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecological Indicators, 122(May 2020), 107265. https://doi.org/10.1016/j.ecolind.2020.107265
Dhomse Kanchan, B., & Mahale Kishor, M. (2017). Study of machine learning algorithms for special disease prediction using principal of component analysis. Proceedings - International Conference on Global Trends in Signal Processing, Information Computing and Communication, ICGTSPICC, 2016, 5–10. https://doi.org/10.1109/ICGTSPICC.2016.7955260
Díaz-Delgado, C., Esteller, M. V, Velasco-Chilpa, A., Martínez-Vilchis, J., Arriaga-Jordán, C. M., Vilchis-Francés, A. Y., Manzano-Solís, L. R., Colín-Mercado, M., Miranda-Juárez, S., & Uribe-Caballero, M. L. W. (2009). Guía de planeación estratégica participativa para la gestión integrada de los recursos hídricos de la cuenca Lerma-Chapala-Santiago. Capítulo Estado de México. In UNAM (Ed.), Centro Interamericano de Recursos del Agua, Facultad de Ingeniería de la Universidad Autónoma del Estado de México y Red Interinstitucional e Interdisciplinaria de Investigación, Consulta y Coordinación Científica para la Recuperación de la Cuenca Lerma-C (Issue January, p. 15). Centro Regional de Investigaciones Multidisciplinarias.
Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and İzmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269–285. https://doi.org/10.1016/0009-2541(91)90004-B
Esparza-Claudio, J. D. J. E. (2011). Simulación de flujo y trazado de partículas generadas por un depósito de jales mineros, para el análisis de riesgo en la zona de alta vulnerabilidad del acuífero Silao-Romita, en el Municipio de Guanajuato. Universidad Autónoma Agraria Antonio Narro.
Espinosa, E., & Armienta, M. A. (2007). Mobility and fractionation of Fe, Pb and Zn in river sediments from silver and base-metals mining area: Taxco, México. Journal of Environmental Science and Health - Part A Toxic/hazardous Substances and Environmental Engineering, 42(10), 1391–1401. https://doi.org/10.1080/10934520701480474
Espinosa, E., Armienta, M. A., Cruz, O., Aguayo, A., & Ceniceros, N. (2009). Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetallic mining zone of México. Environmental Geology, 58(7), 1467–1477. https://doi.org/10.1007/s00254-008-1649-6
Ezhilmaran, D., & Vinoth Indira, D. (2020). A survey on clustering techniques in pattern recognition. AIP Conference Proceedings, 2261(October). https://doi.org/10.1063/5.0017774
Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.
Figueroa, J. A. L., Wrobel, K., Afton, S., Caruso, J. A., Corona, F. G., & J., & Wrobel, K. (2008). Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere, 70(11), 2084–2091. https://doi.org/10.1016/j.chemosphere.2007.08.066
Filzmoser, P., Hron, K., & Reimann, C. (2009). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407(23), 6100–6108. https://doi.org/10.1016/j.scitotenv.2009.08.008
Gałuszka, A., & Migaszewski, Z. (2011). Geochemical Background-an Environmental Perspective. Mineralogia, 42(1), 7–17. https://doi.org/10.2478/v10002-011-0002-y
García-Arreola, M. E., Flores-Vélez, L. M., Loredo-Tovías, M., Aguillón-Robles, A., López-Doncel, R. A., Cano-Rodríguez, I., & Soriano-Pérez, S. H. (2018). Assessment of the acid drainage neutralization capacity and the toxic metals lixiviation of tailing from Guanajuato mining district, Mexico. Environmental Earth Sciences, 77(9), 0. https://doi.org/10.1007/s12665-018-7521-4
Håkanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
Hernández-Silva, G., Solorio-Munguia, J., Maples-Vermeesch, M., Vasallo-Morales, L., Flores-Delgadillo, L., Hernández-Santiago, D., Solis-Valdez, S., Hernández-Anguiano, M. E., & Alcala-Martinez, J. R. (2005). Monitoreo de contaminantes en las cuencas de los ríos Guanajuato, San Juan de Otates y Turbio y su Impacto en el río Lerma, Estado de Guanajuato, México. Instituto De Geología, UNAM, Boletin, 11, 111.
John, D. A., Vikre, P. G., du Bray, E. A., Blakely, R. J., Fey, D. L., Rockwell, B. W., Mauk, J. L., Anderson, E. D., & Graybeal, F. T. (2018). Mineral Deposit Models for Resource Assessment. In Descriptive Models for Epithermal Gold-Silver Deposits (p. 264). U.S. Geological Survey. https://pubs.usgs.gov/sir/2010/5070/q/sir20105070q.pdf
Khelifi, F., Mokadem, N., Liu, G., Yousaf, B., Zhou, H., Ncibi, K., & Hamed, Y. (2021). Occurrence, contamination evaluation and health risks of trace metals within soil, sediments and tailings in southern Tunisia. International Journal of Environmental Science and Technology, 0123456789. https://doi.org/10.1007/s13762-021-03531-8
Li, Y., Zhou, H., Gao, B., & Xu, D. (2021). Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. Science of the Total Environment, 755, 142437. https://doi.org/10.1016/j.scitotenv.2020.142437
Lin, C., He, M., Zhou, Y., Guo, W., & Yang, Z. (2008). Distribution and contamination assessment of heavy metals in sediment of the Second Songhua River, China. Environmental Monitoring and Assessment, 137(1–3), 329–342. https://doi.org/10.1007/s10661-007-9768-1
López-Hernández, M., Ramos-Espinosa, M. G., & Carranza-Fraser, J. (2007). Análisis multimétrico para evaluar contaminación en el río Lerma y lago de Chapala, México. Hidrobiologica, 17(1 SUPPL.), 17–30.
MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075
Marmolejo-Rodríguez, A. J., Sánchez-Martínez, M. A., Romero-Guadarrama, J. A., Sánchez-González, A., & Magallanes-Ordóñez, V. R. (2011). Migration of As, Hg, Pb, and Zn in arroyo sediments from a semiarid coastal system influenced by the abandoned gold mining district at El Triunfo, Baja California Sur, Mexico. Journal of Environmental Monitoring, 13(8), 2182–2189. https://doi.org/10.1039/c1em10058k
Martini, M., Mori, L., Solari, L., & Centeno-garcía, E. (2011). Sandstone provenance of the Arperos Basin (Sierra de Guanajuato, central Mexico): Late Jurassic-Early Cretaceous back-arc spreading as the foundation of Guerrero Terrane. The Journal of Geology, 119(6), 597–617. https://doi.org/10.1086/661989
Martini, M., Solari, L., & Camprubí, A. (2013). Kinematics of the Guerrero terrane accretion in the Sierra de Guanajuato, central Mexico: New insights for the structural evolution of arc-continent collisional zones. International Geology Review, 55(5), 574–589. https://doi.org/10.1080/00206814.2012.729361
Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background - Can we calculate it? Environmental Geology, 39(9), 990–1000. https://doi.org/10.1007/s002549900084
Mexicano, S. G. (1998). Carta geológico-minera Guanajuato F14-C43.
Miranda-Avilés, R., Puy-Alquiza, M. J., & Caudillo-González, M. (2009). Evidencias estratigráficas y geoquímicas de la variación temporal de sedimentos naturales y antropogénicos en la planicie aluvial del río Guanajuato. Revista Mexicana De Ciencias Geologicas, 26(3), 564–574.
Miranda-Avilés, R., Puy-Alquiza, M. J., & Pérez Arvizu, O. (2012). Anthropogenic Metal Content and Natural Background of Overbank Sediments from the Mining District of Guanajuato, Mexico. Soil and Sediment Contamination, 21(5), 604–624. https://doi.org/10.1080/15320383.2012.672488
Mohammadrezapour, O., Kisi, O., & Pourahmad, F. (2020). Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality. Neural Computing and Applications, 32(8), 3763–3775. https://doi.org/10.1007/s00521-018-3768-7
Müller, V. G. (1979). Schwermetalle in den sedimenten des Rheins-Veranderungen seit. Umschan, 79, 779–783.
Nafchi, R. F., Samadi-Boroujeni, H., Vanani, H. R., Ostad-Ali-Askari, K., & Brojeni, M. K. (2021). Laboratory investigation on erosion threshold shear stress of cohesive sediment in Karkheh Dam. Environmental Earth Sciences, 80(19). https://doi.org/10.1007/s12665-021-09984-x
Nafchi, R. F., Vanani, H. R., Pashaee, K. N., Brojeni, H. S., & Ostad-Ali-Askari, K. (2022). Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds. Natural Hazards, 110(3), 1495–1505. https://doi.org/10.1007/s11069-021-04999-w
Omwene, P. I., Öncel, M. S., Çelen, M., & Kobya, M. (2018). Heavy metal pollution and spatial distribution in surface sediments of the Mustafakemalpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere, 208, 782–792. https://doi.org/10.1016/j.chemosphere.2018.06.031
Ostad-Ali-As, K. (2022). investigation of meteorological variables on runoff archetypal using SWAT: Basic concepts and fundamentals. Applied Water Science, 12(8), 1–18. https://doi.org/10.1007/s13201-01701-8
Pearson, K. (1897). Mathematical contributions to the theory of evolution. on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 489–502.
Prieto-García, F., Acevedo-Sandoval, O. A., Pérez-Moreno, F., Prieto-Méndez, J., & Canales-Flores, R. A. (2016). Arsenic contamination in groundwater in Zimapan, Hidalgo, Mexico. Desalination and Water Treatment, 57(28), 13038–13047. https://doi.org/10.1080/19443994.2015.1055307
Ramos-Arroyo, Y. R., Prol-Ledesma, R. M., & Siebe-Grabach, C. (2004). Características geológicas y mineralógicas e historia de extracción del Distrito de Guanajuato, México. Posibles escenarios geoquímicos para los residuos mineros. Revista Mexicana de Ciencias Geologicas, 21(2), 268–284.
Ramos-Arroyo, Y. R., Serafín-Muñoz, A. H., Yanez-Barrientos, E., Rodriguez-Huerta, I., Wrobel, K., & Wrobel, K. (2013). Natural decrease of dissolved arsenic in a small stream receiving drainages of abandoned silver mines in Guanajuato, Mexico. Bulletin of Environmental Contamination and Toxicology, 91(5), 539–544. https://doi.org/10.1007/s00128-013-1091-7
Ramos-Arroyo, Y. R., & Siebe-Grabach, C. D. (2006). Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: Estudio de caso en el Distrito de Guanajuato, Mexico. Revista Mexicana De Ciencias Geologicas, 23(1), 54–74.
Ramos-Gómez, M., Avelar, J., Medel-Reyes, A., Yamamoto, L., Godinez, L., Ramirez, M., Guerra, R., & Rodríguez, F. (2012). Movilidad de metales en jales procedentes del distrito minero de Guanajuato, Méxic. Revista Internacional de Contaminacion Ambiental, 28(1), 49–59. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992012000100005&lng=es&nrm=iso
Randall, R. J. A., Saldaña, A. E., & Clark, K. F. (1994). Exploration in a volcano-plutonic center at Guanajuato, Mexico. Economic Geology, 89(8), 1722–1751. https://doi.org/10.2113/gsecongeo.89.8.1722
Reddy, A. J., Tripathy, B., Nimje, S., Ganga, G. S., & Varnasree, K. (2018). Performance Analysis of Clustering Algorithm in Data Mining in R Language. In Communications in Computer and Information Science (Vol. 837). Springer Singapore. https://doi.org/10.1007/978-981-13-1936-5_39
Reimann, C., & De Caritat, P. (2000). Intrinsic flaws of element enrichment factor in environmental geochemistry RN - Environ. Sci. Technol. 34, 5084–5091. Environmental Science and Technology, 34(24), 5084–5091.
Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17(3), 185–206. https://doi.org/10.1016/S0883-2927(01)00066-X
Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical Data Analysis Explained Applied Environmental Statistics with R. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester.
Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., & Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data – a worked example. Science of the Total Environment, 607–608, 965–971. https://doi.org/10.1016/j.scitotenv.2017.06.063
Rudnick, R. L., & Gao, S. (2013). Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4, Issue November). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
Rueda-Garzon, L. (2018). Análisis de procedencia de los sedimentos de la cuenca de drenaje de la presa La Purísima. Universidad de Guanajuato.
Sahoo, P. K., Tripathy, S., Panigrahi, M. K., & Equeenuddin, S. M. (2017). Anthropogenic contamination and risk assessment of heavy metals in stream sediments influenced by acid mine drainage from a northeast coalfield, India. Bulletin of Engineering Geology and the Environment, 76(2), 537–552. https://doi.org/10.1007/s10064-016-0975-2
Sedeño-Díaz, J. E., & López-López, E. (2007). Water quality in the Río Lerma, Mexico: An overview of the last quarter of the twentieth century. Water Resources Management, 21(10), 1797–1812. https://doi.org/10.1007/s11269-006-9128-x
Servicio Geológico Mexicano. (2002). Carta geológico-minera Aldama F14-C53 Guanajuato.
Shlens, J. (2014). A Tutorial on Principal Component Analysis. http://arxiv.org/abs/1404.1100
Shruti, V. C., Jonathan, M. P., Rodríguez-Espinosa, P. F., Nagarajan, R., Escobedo-Urias, D. C., Morales-García, S. S., & Martínez-Tavera, E. (2017). Geochemical characteristics of stream sediments from an urban-volcanic zone, Central Mexico: Natural and man-made inputs. Chemie Der Erde, 77(2), 303–321. https://doi.org/10.1016/j.chemer.2017.04.005
Sikakwe, G. U., Anam, G., & Ilaumo, B. U. (2021). Risk assessment of potentially toxic elements in stream sediments around granite quarries, barite mines and cultivation areas, Southeastern Nigeria.pdf. Environmental Monitoring and Assessment, 193(11), 1–3. https://doi.org/10.1007/s10661-021-09496-y
Sinex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 3(6), 315–323. https://doi.org/10.1007/BF02473521
Solgun, E., Horasan, B. Y., & Ozturk, A. (2021). Heavy metal accumulation and potential ecological risk assessment in sediments from the southwestern Konya district (Turkey). Arabian Journal of Geosciences, 14(8), 1–15. https://doi.org/10.1007/s12517-021-07088-1
Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473
Talavera-Mendoza, O., Ruiz, J., Díaz Villaseñor, E., Ramírez Guzmán, A., Cortés, A., Salgado Souto, S. A., Dótor Almazán, A., & Rivera Bustos, R. (2016). Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach. Applied Geochemistry, 66(2016), 73–81. https://doi.org/10.1016/j.apgeochem.2015.12.002
Teegavarapu, R. S. V. (2014). Missing precipitation data estimation using optimal proximity metric-based imputation, nearest-neighbour classification and cluster-based interpolation methods. Hydrological Sciences Journal, 59(11), 2009–2026. https://doi.org/10.1080/02626667.2013.862334
Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23(8), 2198–2213. https://doi.org/10.1016/j.apgeochem.2008.03.004
Tharwat, A. (2016). Principal component analysis - a tutorial. International Journal of Applied Pattern Recognition, 3(3), 197–79733. https://doi.org/10.1504/IJAPR.2016.079733
Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/BF02414780
Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(February), 175–192. https://pubs.geoscienceworld.org/gsa/gsabulletin/article/72/2/175/5262/Distribution-of-the-Elements-in-Some-Major-Units
Velmurugan, T., & Santhanam, T. (2011). A comparative analysis between K-Medoids and fuzzy C-Means clustering algorithms for statistically distributed data points. Journal of Theoretical and Applied Information Technology, 27(1), 19–30.
Wittich, E. (1909). El estaño en la Sierra de Guanajuato. Boletín De La Sociedad Geológica Mexicana, 6(2), 189–194. http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca01/0601/1909-6-2wittich5.pdf
Wojciechowska, E., Nawrot, N., Walkusz-Miotk, J., Matej-Łukowicz, K., & Pazdro, K. (2019). Heavy metals in sediments of urban streams: Contamination and health risk assessment of influencing factors. Sustainability (switzerland), 11(3), 5–10. https://doi.org/10.3390/su11030563
Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. https://doi.org/10.1007/s40745-015-0040-1
Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China - Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051–1070. https://doi.org/10.1006/ecss.2001.0879
Zheng, Y. M., Chen, T. B., & He, J. Z. (2008). Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. Journal of Soils and Sediments, 8(1), 51–58. https://doi.org/10.1065/jss2007.08.245
Acknowledgements
This work was funded by the Guanajuato University project 102/2020 and CONACyT scholarship 785610. We appreciate the support of Daniela Moncada from the LICAMM-UG laboratory. We thank all of the reviewers for their helpful comments.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by Rueda-Garzon, Miranda-Avilés, Puy-Alquiza, and Zanor. The first draft of the manuscript was written by Rueda-Garzon, Miranda-Avilés, Carrillo-Chávez, and Morales-Martínez, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant interests to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rueda-Garzon, L.F., Miranda-Avilés, R., Carrillo-Chávez, A. et al. Contamination assessment and potential sources of heavy metals and other elements in sediments of a basin impacted by 500 years of mining in central Mexico. Environ Monit Assess 194, 729 (2022). https://doi.org/10.1007/s10661-022-10421-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-022-10421-0