Skip to main content
Log in

Contamination assessment and potential sources of heavy metals and other elements in sediments of a basin impacted by 500 years of mining in central Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Since the middle of the 1500 s, mining has been active in central Mexico. Total estimates for low-grade piles and mine tailing materials in the Guanajuato mining district (GMD) are in the range of 150 million tons, covering an area of 15 to 20 km2. GMD is located in the Guanajuato River sub-basin (GRB), which is part of one of the largest basins in Mexico (Lerma-Santiago). Previous studies on the GRB found unusually high concentrations of heavy metals in mining tailings and sediments. Geochemical and statistical methods were used here to determine the sediment’s origin, background values, degree of contamination, and toxicity through different contamination indices. This analysis shows that Cu, Co, As, Sb, and Hg are higher than they are in the upper continental crust (UCC) overbank sediments without human and mining influence, because of the ore deposits and rock weathering in GRB. Geochemistry results in stream sediments show anomalies, where Hg, Cu, Zn, As, and Pb are higher than UCC because those heavy metals and trace elements (HMT) have been influenced by human activities and mineral recovery (smelting, amalgamation, cyanidation). The distribution of high concentrations of HMTs and contamination indices occur in the main channel of the Guanajuato River and downstream of the city of Guanajuato. Statistical analyses (cluster and principal component analysis) reveal relationships between Cr, Ni, Cu, and Pb, which are primarily of natural origin, related to rocks of the upper basin. The middle and lower basins are distinctive in their associations between As, Sb, Zn, Pb, and Hg. Additionally, it is recognized that the origins of Pb, Zn, and Hg are geogenic and anthropogenic. This study demonstrates how crucial it is to understand the geochemistry of various HMT sources, with both natural and anthropogenic contributions (stream sediments and rocks), in order to calculate a more realistic background in a basin with both natural anomalies and anthropogenic contamination. The basin is a regional aquifer recharge area, so the new geochemical data are important for improving basin environmental management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Servicio Geológico Mexicano (1998, 2002)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  • Adewumi, A. J., & Laniyan, T. A. (2020). Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area, Northwest Nigeria. Science of the Total Environment, 718, 137235. https://doi.org/10.1016/j.scitotenv.2020.137235

    Article  CAS  Google Scholar 

  • Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society: Series B (methodological), 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x

    Article  Google Scholar 

  • Antúnez-Echagaray, F. (1964). Monografía Histórica y Minera del Distrito de Guanajuato.

  • Barats, A., Renac, C., Orani, A. M., Durrieu, G., Saint Martin, H., Esteller, M. V., & Garrido Hoyos, S. E. (2020). Tracing source and mobility of arsenic and trace elements in a hydrosystem impacted by past mining activities (Morelos state, Mexico). Science of the Total Environment, 712(xxxx). https://doi.org/10.1016/j.scitotenv.2019.135565

  • Bouzekri, S., El Hachimi, M. L., Touach, N., El Fadili, H., El Mahi, M., & Lotfi, E. M. (2019). The study of metal (As, Cd, Pb, Zn and Cu) contamination in superficial stream sediments around of Zaida mine (High Moulouya-Morocco). Journal of African Earth Sciences, 154(November 2018), 49–58. https://doi.org/10.1016/j.jafrearsci.2019.03.014

  • Bravo-Covarrubias, A., Torres, E., Ayora, C., & Ramos-Arroyo, Y. R. (2020). Movilidad de arsénico en los sedimentos de una presa que recibe escurrimientos de minas epitermales. Revista Internacional de Contaminación Ambiental, 36(4), 797–811. https://doi.org/10.20937/rica.53318

  • Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 1–5. https://doi.org/10.1016/j.gexplo.2014.03.022

    Article  CAS  Google Scholar 

  • Buchanan, L. J. (1979). The Las Torres mine, Guanajuato, Mexico: Ore controls of a fossil geothermal system. Colorado School of Mines.

  • Burton, G. A. (2002). Sediment quality criteria in use around the world. Limnology, 3(2), 65–75. https://doi.org/10.1007/s102010200008

    Article  CAS  Google Scholar 

  • Calmus, T., Valencia-Moreno, M., Del Río-Salas, R., Ochoa-Landín, L., & Mendivil-Quijada, H. (2018). A multi-elemental study to establish the natural background and geochemical anomalies in rocks from the Sonora river upper basin, NW Mexico. Revista Mexicana de Ciencias Geologicas, 35(2), 158–167. https://doi.org/10.22201/cgeo.20072902e.2018.2.605

  • Cano-Rodriguez, I., Gómez-Vallejo, F., Rarnirez-Méndez, V., Martinez-Barbosa, P., Rodiguez-Rodriguez, E., & Aguilera-Alvarado, A. (2000). Determinacion de contaminantes en la presa La Purísima y su efecto en el sistema de pozos puentecillas de Guanajuato. International Water Management Institute. Serie Lationamericana De México, 20, 123–133.

    Google Scholar 

  • Carrillo-Chávez, A., Morton-Bermea, O., González-Partida, E., Rivas-Solorzano, H., Oesler, G., García-Meza, V., Hernández, E., Morales, P., & Cienfuegos, E. (2003). Environmental geochemistry of the Guanajuato Mining District, Mexico. Ore Geology Reviews, 23(3–4), 277–297. https://doi.org/10.1016/S0169-1368(03)00039-8

    Article  Google Scholar 

  • Chaparro, M. A. E., Ramírez-Ramírez, M., Chaparro, M. A. E., Miranda-Avilés, R., Puy-Alquiza, M. J., Böhnel, H. N., & Zanor, G. A. (2020). Magnetic parameters as proxies for anthropogenic pollution in water reservoir sediments from Mexico: An interdisciplinary approach. Science of the Total Environment, 700, 134343. https://doi.org/10.1016/j.scitotenv.2019.134343

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., Hoogeweg, C. G., & Harris, W. G. (2001). Arsenic background concentrations in florida, u.S.a. surface soils: Determination and interpretation. Environmental Forensics, 2(2), 117–126. https://doi.org/10.1006/enfo.2001.0050

  • Chiprés, J. A., Castro-Larragoitia, J., & Monroy, M. G. (2009). Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico. Applied Geochemistry, 24(8), 1579–1589. https://doi.org/10.1016/j.apgeochem.2009.04.022

    Article  CAS  Google Scholar 

  • CoreTeam, R. (2017). R: A Language and Environment for Statistical Computing (Vol. 2). https://www.r-project.org/

  • Correa-Burrows, J. P., Navarrete-Calvo, Á., Valenzuela-Díaz, M. J., Zapata-Aguiló, V. A., Montserrat, S., Navarro-Valdivia, L., McPhee, J., & Caraballo, M. A. (2021). The role of local geochemical and mineralogical backgrounds as essential information to build efficient sediment quality guidelines at high-mountainous hydrothermally-altered basins (Mapocho basin, Chile). Science of the Total Environment, 785(May), 147266. https://doi.org/10.1016/j.scitotenv.2021.147266

    Article  CAS  Google Scholar 

  • Dash, S., Borah, S. S., & Kalamdhad, A. S. (2021). Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecological Indicators, 122(May 2020), 107265. https://doi.org/10.1016/j.ecolind.2020.107265

  • Dhomse Kanchan, B., & Mahale Kishor, M. (2017). Study of machine learning algorithms for special disease prediction using principal of component analysis. Proceedings - International Conference on Global Trends in Signal Processing, Information Computing and Communication, ICGTSPICC, 2016, 5–10. https://doi.org/10.1109/ICGTSPICC.2016.7955260

    Article  Google Scholar 

  • Díaz-Delgado, C., Esteller, M. V, Velasco-Chilpa, A., Martínez-Vilchis, J., Arriaga-Jordán, C. M., Vilchis-Francés, A. Y., Manzano-Solís, L. R., Colín-Mercado, M., Miranda-Juárez, S., & Uribe-Caballero, M. L. W. (2009). Guía de planeación estratégica participativa para la gestión integrada de los recursos hídricos de la cuenca Lerma-Chapala-Santiago. Capítulo Estado de México. In UNAM (Ed.), Centro Interamericano de Recursos del Agua, Facultad de Ingeniería de la Universidad Autónoma del Estado de México y Red Interinstitucional e Interdisciplinaria de Investigación, Consulta y Coordinación Científica para la Recuperación de la Cuenca Lerma-C (Issue January, p. 15). Centro Regional de Investigaciones Multidisciplinarias.

  • Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and İzmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91(3), 269–285. https://doi.org/10.1016/0009-2541(91)90004-B

    Article  CAS  Google Scholar 

  • Esparza-Claudio, J. D. J. E. (2011). Simulación de flujo y trazado de partículas generadas por un depósito de jales mineros, para el análisis de riesgo en la zona de alta vulnerabilidad del acuífero Silao-Romita, en el Municipio de Guanajuato. Universidad Autónoma Agraria Antonio Narro.

  • Espinosa, E., & Armienta, M. A. (2007). Mobility and fractionation of Fe, Pb and Zn in river sediments from silver and base-metals mining area: Taxco, México. Journal of Environmental Science and Health - Part A Toxic/hazardous Substances and Environmental Engineering, 42(10), 1391–1401. https://doi.org/10.1080/10934520701480474

    Article  CAS  Google Scholar 

  • Espinosa, E., Armienta, M. A., Cruz, O., Aguayo, A., & Ceniceros, N. (2009). Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetallic mining zone of México. Environmental Geology, 58(7), 1467–1477. https://doi.org/10.1007/s00254-008-1649-6

    Article  CAS  Google Scholar 

  • Ezhilmaran, D., & Vinoth Indira, D. (2020). A survey on clustering techniques in pattern recognition. AIP Conference Proceedings, 2261(October). https://doi.org/10.1063/5.0017774

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.

    Article  CAS  Google Scholar 

  • Figueroa, J. A. L., Wrobel, K., Afton, S., Caruso, J. A., Corona, F. G., & J., & Wrobel, K. (2008). Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere, 70(11), 2084–2091. https://doi.org/10.1016/j.chemosphere.2007.08.066

    Article  CAS  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009). Univariate statistical analysis of environmental (compositional) data: Problems and possibilities. Science of the Total Environment, 407(23), 6100–6108. https://doi.org/10.1016/j.scitotenv.2009.08.008

    Article  CAS  Google Scholar 

  • Gałuszka, A., & Migaszewski, Z. (2011). Geochemical Background-an Environmental Perspective. Mineralogia, 42(1), 7–17. https://doi.org/10.2478/v10002-011-0002-y

    Article  CAS  Google Scholar 

  • García-Arreola, M. E., Flores-Vélez, L. M., Loredo-Tovías, M., Aguillón-Robles, A., López-Doncel, R. A., Cano-Rodríguez, I., & Soriano-Pérez, S. H. (2018). Assessment of the acid drainage neutralization capacity and the toxic metals lixiviation of tailing from Guanajuato mining district, Mexico. Environmental Earth Sciences, 77(9), 0. https://doi.org/10.1007/s12665-018-7521-4

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

  • Hernández-Silva, G., Solorio-Munguia, J., Maples-Vermeesch, M., Vasallo-Morales, L., Flores-Delgadillo, L., Hernández-Santiago, D., Solis-Valdez, S., Hernández-Anguiano, M. E., & Alcala-Martinez, J. R. (2005). Monitoreo de contaminantes en las cuencas de los ríos Guanajuato, San Juan de Otates y Turbio y su Impacto en el río Lerma, Estado de Guanajuato, México. Instituto De Geología, UNAM, Boletin, 11, 111.

    Google Scholar 

  • John, D. A., Vikre, P. G., du Bray, E. A., Blakely, R. J., Fey, D. L., Rockwell, B. W., Mauk, J. L., Anderson, E. D., & Graybeal, F. T. (2018). Mineral Deposit Models for Resource Assessment. In Descriptive Models for Epithermal Gold-Silver Deposits (p. 264). U.S. Geological Survey. https://pubs.usgs.gov/sir/2010/5070/q/sir20105070q.pdf

  • Khelifi, F., Mokadem, N., Liu, G., Yousaf, B., Zhou, H., Ncibi, K., & Hamed, Y. (2021). Occurrence, contamination evaluation and health risks of trace metals within soil, sediments and tailings in southern Tunisia. International Journal of Environmental Science and Technology, 0123456789. https://doi.org/10.1007/s13762-021-03531-8

  • Li, Y., Zhou, H., Gao, B., & Xu, D. (2021). Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. Science of the Total Environment, 755, 142437. https://doi.org/10.1016/j.scitotenv.2020.142437

    Article  CAS  Google Scholar 

  • Lin, C., He, M., Zhou, Y., Guo, W., & Yang, Z. (2008). Distribution and contamination assessment of heavy metals in sediment of the Second Songhua River, China. Environmental Monitoring and Assessment, 137(1–3), 329–342. https://doi.org/10.1007/s10661-007-9768-1

    Article  CAS  Google Scholar 

  • López-Hernández, M., Ramos-Espinosa, M. G., & Carranza-Fraser, J. (2007). Análisis multimétrico para evaluar contaminación en el río Lerma y lago de Chapala, México. Hidrobiologica, 17(1 SUPPL.), 17–30.

    Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Marmolejo-Rodríguez, A. J., Sánchez-Martínez, M. A., Romero-Guadarrama, J. A., Sánchez-González, A., & Magallanes-Ordóñez, V. R. (2011). Migration of As, Hg, Pb, and Zn in arroyo sediments from a semiarid coastal system influenced by the abandoned gold mining district at El Triunfo, Baja California Sur, Mexico. Journal of Environmental Monitoring, 13(8), 2182–2189. https://doi.org/10.1039/c1em10058k

    Article  CAS  Google Scholar 

  • Martini, M., Mori, L., Solari, L., & Centeno-garcía, E. (2011). Sandstone provenance of the Arperos Basin (Sierra de Guanajuato, central Mexico): Late Jurassic-Early Cretaceous back-arc spreading as the foundation of Guerrero Terrane. The Journal of Geology, 119(6), 597–617. https://doi.org/10.1086/661989

    Article  CAS  Google Scholar 

  • Martini, M., Solari, L., & Camprubí, A. (2013). Kinematics of the Guerrero terrane accretion in the Sierra de Guanajuato, central Mexico: New insights for the structural evolution of arc-continent collisional zones. International Geology Review, 55(5), 574–589. https://doi.org/10.1080/00206814.2012.729361

    Article  Google Scholar 

  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background - Can we calculate it? Environmental Geology, 39(9), 990–1000. https://doi.org/10.1007/s002549900084

    Article  CAS  Google Scholar 

  • Mexicano, S. G. (1998). Carta geológico-minera Guanajuato F14-C43.

  • Miranda-Avilés, R., Puy-Alquiza, M. J., & Caudillo-González, M. (2009). Evidencias estratigráficas y geoquímicas de la variación temporal de sedimentos naturales y antropogénicos en la planicie aluvial del río Guanajuato. Revista Mexicana De Ciencias Geologicas, 26(3), 564–574.

    Google Scholar 

  • Miranda-Avilés, R., Puy-Alquiza, M. J., & Pérez Arvizu, O. (2012). Anthropogenic Metal Content and Natural Background of Overbank Sediments from the Mining District of Guanajuato, Mexico. Soil and Sediment Contamination, 21(5), 604–624. https://doi.org/10.1080/15320383.2012.672488

    Article  CAS  Google Scholar 

  • Mohammadrezapour, O., Kisi, O., & Pourahmad, F. (2020). Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality. Neural Computing and Applications, 32(8), 3763–3775. https://doi.org/10.1007/s00521-018-3768-7

    Article  Google Scholar 

  • Müller, V. G. (1979). Schwermetalle in den sedimenten des Rheins-Veranderungen seit. Umschan, 79, 779–783.

    Google Scholar 

  • Nafchi, R. F., Samadi-Boroujeni, H., Vanani, H. R., Ostad-Ali-Askari, K., & Brojeni, M. K. (2021). Laboratory investigation on erosion threshold shear stress of cohesive sediment in Karkheh Dam. Environmental Earth Sciences, 80(19). https://doi.org/10.1007/s12665-021-09984-x

  • Nafchi, R. F., Vanani, H. R., Pashaee, K. N., Brojeni, H. S., & Ostad-Ali-Askari, K. (2022). Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds. Natural Hazards, 110(3), 1495–1505. https://doi.org/10.1007/s11069-021-04999-w

    Article  Google Scholar 

  • Omwene, P. I., Öncel, M. S., Çelen, M., & Kobya, M. (2018). Heavy metal pollution and spatial distribution in surface sediments of the Mustafakemalpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere, 208, 782–792. https://doi.org/10.1016/j.chemosphere.2018.06.031

    Article  CAS  Google Scholar 

  • Ostad-Ali-As, K. (2022). investigation of meteorological variables on runoff archetypal using SWAT: Basic concepts and fundamentals. Applied Water Science, 12(8), 1–18. https://doi.org/10.1007/s13201-01701-8

    Article  Google Scholar 

  • Pearson, K. (1897). Mathematical contributions to the theory of evolution. on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 489–502.

  • Prieto-García, F., Acevedo-Sandoval, O. A., Pérez-Moreno, F., Prieto-Méndez, J., & Canales-Flores, R. A. (2016). Arsenic contamination in groundwater in Zimapan, Hidalgo, Mexico. Desalination and Water Treatment, 57(28), 13038–13047. https://doi.org/10.1080/19443994.2015.1055307

    Article  CAS  Google Scholar 

  • Ramos-Arroyo, Y. R., Prol-Ledesma, R. M., & Siebe-Grabach, C. (2004). Características geológicas y mineralógicas e historia de extracción del Distrito de Guanajuato, México. Posibles escenarios geoquímicos para los residuos mineros. Revista Mexicana de Ciencias Geologicas, 21(2), 268–284.

  • Ramos-Arroyo, Y. R., Serafín-Muñoz, A. H., Yanez-Barrientos, E., Rodriguez-Huerta, I., Wrobel, K., & Wrobel, K. (2013). Natural decrease of dissolved arsenic in a small stream receiving drainages of abandoned silver mines in Guanajuato, Mexico. Bulletin of Environmental Contamination and Toxicology, 91(5), 539–544. https://doi.org/10.1007/s00128-013-1091-7

    Article  CAS  Google Scholar 

  • Ramos-Arroyo, Y. R., & Siebe-Grabach, C. D. (2006). Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: Estudio de caso en el Distrito de Guanajuato, Mexico. Revista Mexicana De Ciencias Geologicas, 23(1), 54–74.

    Google Scholar 

  • Ramos-Gómez, M., Avelar, J., Medel-Reyes, A., Yamamoto, L., Godinez, L., Ramirez, M., Guerra, R., & Rodríguez, F. (2012). Movilidad de metales en jales procedentes del distrito minero de Guanajuato, Méxic. Revista Internacional de Contaminacion Ambiental, 28(1), 49–59. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992012000100005&lng=es&nrm=iso

  • Randall, R. J. A., Saldaña, A. E., & Clark, K. F. (1994). Exploration in a volcano-plutonic center at Guanajuato, Mexico. Economic Geology, 89(8), 1722–1751. https://doi.org/10.2113/gsecongeo.89.8.1722

    Article  Google Scholar 

  • Reddy, A. J., Tripathy, B., Nimje, S., Ganga, G. S., & Varnasree, K. (2018). Performance Analysis of Clustering Algorithm in Data Mining in R Language. In Communications in Computer and Information Science (Vol. 837). Springer Singapore. https://doi.org/10.1007/978-981-13-1936-5_39

  • Reimann, C., & De Caritat, P. (2000). Intrinsic flaws of element enrichment factor in environmental geochemistry RN - Environ. Sci. Technol. 34, 5084–5091. Environmental Science and Technology, 34(24), 5084–5091.

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 17(3), 185–206. https://doi.org/10.1016/S0883-2927(01)00066-X

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical Data Analysis Explained Applied Environmental Statistics with R. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester.

  • Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., & Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data – a worked example. Science of the Total Environment, 607–608, 965–971. https://doi.org/10.1016/j.scitotenv.2017.06.063

    Article  CAS  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2013). Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition (2nd ed., Vol. 4, Issue November). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

  • Rueda-Garzon, L. (2018). Análisis de procedencia de los sedimentos de la cuenca de drenaje de la presa La Purísima. Universidad de Guanajuato.

    Google Scholar 

  • Sahoo, P. K., Tripathy, S., Panigrahi, M. K., & Equeenuddin, S. M. (2017). Anthropogenic contamination and risk assessment of heavy metals in stream sediments influenced by acid mine drainage from a northeast coalfield, India. Bulletin of Engineering Geology and the Environment, 76(2), 537–552. https://doi.org/10.1007/s10064-016-0975-2

    Article  CAS  Google Scholar 

  • Sedeño-Díaz, J. E., & López-López, E. (2007). Water quality in the Río Lerma, Mexico: An overview of the last quarter of the twentieth century. Water Resources Management, 21(10), 1797–1812. https://doi.org/10.1007/s11269-006-9128-x

    Article  Google Scholar 

  • Servicio Geológico Mexicano. (2002). Carta geológico-minera Aldama F14-C53 Guanajuato.

  • Shlens, J. (2014). A Tutorial on Principal Component Analysis. http://arxiv.org/abs/1404.1100

  • Shruti, V. C., Jonathan, M. P., Rodríguez-Espinosa, P. F., Nagarajan, R., Escobedo-Urias, D. C., Morales-García, S. S., & Martínez-Tavera, E. (2017). Geochemical characteristics of stream sediments from an urban-volcanic zone, Central Mexico: Natural and man-made inputs. Chemie Der Erde, 77(2), 303–321. https://doi.org/10.1016/j.chemer.2017.04.005

    Article  CAS  Google Scholar 

  • Sikakwe, G. U., Anam, G., & Ilaumo, B. U. (2021). Risk assessment of potentially toxic elements in stream sediments around granite quarries, barite mines and cultivation areas, Southeastern Nigeria.pdf. Environmental Monitoring and Assessment, 193(11), 1–3. https://doi.org/10.1007/s10661-021-09496-y

  • Sinex, S. A., & Helz, G. R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 3(6), 315–323. https://doi.org/10.1007/BF02473521

    Article  CAS  Google Scholar 

  • Solgun, E., Horasan, B. Y., & Ozturk, A. (2021). Heavy metal accumulation and potential ecological risk assessment in sediments from the southwestern Konya district (Turkey). Arabian Journal of Geosciences, 14(8), 1–15. https://doi.org/10.1007/s12517-021-07088-1

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473

    Article  CAS  Google Scholar 

  • Talavera-Mendoza, O., Ruiz, J., Díaz Villaseñor, E., Ramírez Guzmán, A., Cortés, A., Salgado Souto, S. A., Dótor Almazán, A., & Rivera Bustos, R. (2016). Water-rock-tailings interactions and sources of sulfur and metals in the subtropical mining region of Taxco, Guerrero (southern Mexico): A multi-isotopic approach. Applied Geochemistry, 66(2016), 73–81. https://doi.org/10.1016/j.apgeochem.2015.12.002

    Article  CAS  Google Scholar 

  • Teegavarapu, R. S. V. (2014). Missing precipitation data estimation using optimal proximity metric-based imputation, nearest-neighbour classification and cluster-based interpolation methods. Hydrological Sciences Journal, 59(11), 2009–2026. https://doi.org/10.1080/02626667.2013.862334

    Article  Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23(8), 2198–2213. https://doi.org/10.1016/j.apgeochem.2008.03.004

    Article  CAS  Google Scholar 

  • Tharwat, A. (2016). Principal component analysis - a tutorial. International Journal of Applied Pattern Recognition, 3(3), 197–79733. https://doi.org/10.1504/IJAPR.2016.079733

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(February), 175–192. https://pubs.geoscienceworld.org/gsa/gsabulletin/article/72/2/175/5262/Distribution-of-the-Elements-in-Some-Major-Units

  • Velmurugan, T., & Santhanam, T. (2011). A comparative analysis between K-Medoids and fuzzy C-Means clustering algorithms for statistically distributed data points. Journal of Theoretical and Applied Information Technology, 27(1), 19–30.

    Google Scholar 

  • Wittich, E. (1909). El estaño en la Sierra de Guanajuato. Boletín De La Sociedad Geológica Mexicana, 6(2), 189–194. http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca01/0601/1909-6-2wittich5.pdf

  • Wojciechowska, E., Nawrot, N., Walkusz-Miotk, J., Matej-Łukowicz, K., & Pazdro, K. (2019). Heavy metals in sediments of urban streams: Contamination and health risk assessment of influencing factors. Sustainability (switzerland), 11(3), 5–10. https://doi.org/10.3390/su11030563

    Article  CAS  Google Scholar 

  • Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. https://doi.org/10.1007/s40745-015-0040-1

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China - Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051–1070. https://doi.org/10.1006/ecss.2001.0879

    Article  CAS  Google Scholar 

  • Zheng, Y. M., Chen, T. B., & He, J. Z. (2008). Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. Journal of Soils and Sediments, 8(1), 51–58. https://doi.org/10.1065/jss2007.08.245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Guanajuato University project 102/2020 and CONACyT scholarship 785610. We appreciate the support of Daniela Moncada from the LICAMM-UG laboratory. We thank all of the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by Rueda-Garzon, Miranda-Avilés, Puy-Alquiza, and Zanor. The first draft of the manuscript was written by Rueda-Garzon, Miranda-Avilés, Carrillo-Chávez, and Morales-Martínez, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raúl Miranda-Avilés.

Ethics declarations

Conflict of interest

The authors have no relevant interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rueda-Garzon, L.F., Miranda-Avilés, R., Carrillo-Chávez, A. et al. Contamination assessment and potential sources of heavy metals and other elements in sediments of a basin impacted by 500 years of mining in central Mexico. Environ Monit Assess 194, 729 (2022). https://doi.org/10.1007/s10661-022-10421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10421-0

Keywords

Navigation