Abstract
Despite the biodiversity and ecosystem services provided by lotic ecosystems, they are strongly affected by anthropogenic activities. Therefore, biological monitoring and assessment strategies are crucial in helping maintain these ecosystems and developing mitigation policies. We provide a global overview of the use of benthic diatoms as bioindicators in lotic environments, by analyzing 764 articles published in the past 20 years. We analyzed the influence of substrate type on samplings, which species have been highlighted as indicators and for which type of impacts, which anthropogenic impacts have been most commonly evaluated, and which metrics have been commonly used in studies using diatoms to assess and monitor the quality of lotic environments. We found that the most studied anthropogenic impact is artificial eutrophication and that some species, especially Nitzschia palea, have been thoroughly mentioned as indicators of this impact. Indicator species related to other types of impact are less common, demonstrating the need for studies on this issue. Moreover, we verified that traditional taxonomic metrics, such as diversity and diatom indices, have been widely used. Some alternative metrics have been used recently, such as those based on teratological valves, lipid bodies, valve size, and DNA metabarcoding. The number of biomonitoring and assessment studies based on diatoms has increased considerably in the past 20 years. Nonetheless, the demand for natural resources and consequently the degradation of lotic ecosystems have accelerated significantly. Thus, the development of low-cost and time-efficient biological assessment and monitoring strategies is essential for evaluating the health of lotic environments.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alba Tercedor, J., Jáimez-Cuéllar, P., Álvarez, M., Avilés, J., Bonada-Caparrós, N., Casas, J., Mellado, A., Ortega, M., Pardo, I., Prat, N., Rieradevall, M., Robles, S., Sainz-Cantero, C. E., Sánchez-Ortega, A, Suárez, M. L., Vidal-Abarca, M. R., Vivas, S., & Zamora-Muñoz, C. (2002). Caracterización del estado ecológico de ríos ndiceriophy ibéricos mediante el índice IBMWP (antes BMWP’). Limnetica, 21, 175–185. https://doi.org/10.23818/limn.21.24
Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2009). Biogeographic distributions and environmental controls of stream diatoms in the Canadian Artic Archipelago. Botany, 87(5), 443–454. https://doi.org/10.1139/B09-001
Archibald, C. G. M., & Taylor, J. C. (2007). The assessment of diffuse pollution from acid-mine drainage using an update and revised diatom assessment procedure as an added-value biomonitoring tool. Water Science and Technology, 55(3), 151–160. https://doi.org/10.2166/wst.2007.083
Baker, M. E., & King, R. S. (2010). A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution, 1(1), 25–37. https://doi.org/10.1111/j.2041-210X.2009.00007.x
Bartell, S. M. (2006). Biomarkers, bioindicators, and ecological risk assessment – a brief review and evaluation. Environmental Bioindicators, 1(1), 60–73. https://doi.org/10.1080/15555270591004920
Beauger, A., Serieyssol, K. K., & Peiry, J. L. (2014). Diatom distribution in natural and impacted cut-off meanders of the Allier River France. Diatom Research, 29(2), 119–145. https://doi.org/10.1080/0269249X.2013.863224
Bere, T., & Tundisi, J. G. (2011a). The effects of substrate type on diatom-based multivariate water quality assessment in a tropical river (Monjolinho), São Carlos, SP, Brazil. Water, Air & Soil Pollution, 216, 391–409. https://doi.org/10.1007/s11270-010-0540-8
Bere, T., & Tundisi, J. G. (2011b). Influence of ionic strength and conductivity on benthic diatoms communities in a tropical river (Monjolinho), São-Carlos-SP Brazil. Hydrobiologia, 661(1), 261–276. https://doi.org/10.1007/s10750-010-0532-0
Besse-Lototskaya, A., Verdonschot, P. F. M., Coste, M., & Vijver, B. V. (2011). Evaluation of European diatom trophic indices. Ecological Indicators, 11(2), 456–467. https://doi.org/10.1016/j.ecolind.2010.06.017
Blindow, I. (1987). The composition and density of epiphyton on several species of submerged macrophytes – the neutral substrate hypothesis tested. Aquatic Botany, 29, 157–168. https://doi.org/10.1016/0304-3770(87)90093-3
Carayon, D., Eulin-Garrigue, A., Vigouroux, R., & Delmas, F. (2020). A new metric index for the evaluation of water ecological quality of French Guiana streams based on benthic diatoms. Ecological Indicators, 113, 106248. https://doi.org/10.1016/j.ecolind.2020.106248
Cemagref. (1982). Etude des methodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Division Qualité des Eaux Lyon Agence de l’ Eua Rhône-Méditerranéan-Corse, Pierre Bénite (pp. 2018).
Cerisier, A., Vedrenne, J., Lavoie, I., & Morin, S. (2018). Assessing the severity of diatom deformities using geometric morphometric. Botany Letters, 166(1), 32–40. https://doi.org/10.1080/23818107.2018.1474800
Chambers, P. A., McGoldrick, D. J., Brua, R. B., Vis, C., Culp, J. M., & Benoy, G. A. (2012). Development of environmental thresholds for nitrogen and phosphorus in streams. Journal of Environmental Quality, 41(1), 7–20. https://doi.org/10.2134/jeq2010.0273
Chen, X., Zhou, W., Pickett, S. T. A., Li, W., Han, L., & Ren, Y. (2016). Diatoms are better indicators of urban streams conditions: A case study in Beijing, China. Ecological Indicators, 60, 265–274. https://doi.org/10.1016/j.ecolind.2015.06.039
Chen, X., Stevenson, M. A., Zeng, L., & Qiao, Q. (2017). Diatom distribution in an alpine basin (central China) in relation to environmental factors and substrata. Diatom Research, 32(3), 251–262. https://doi.org/10.1080/0269249X.2017.1371082
Chessman, B. C., Bate, N., Gell, P. A., & Newall, P. (2007). A diatom species index for bioassessment of Australian rivers. Marine and Freshwater Research, 58(6), 542–557. https://doi.org/10.1071/MF06220
Clarke, K. R., & Ainsworth, M. (1993). A method of linking multivariate community structure to environmental variables. Marine Ecology-Progress Series, 92, 205–2019. https://doi.org/10.3354/meps092205
Coxon, A. P. M. (1982). The user’s guide to multidimensional scaling. Heinemann.
Debenest, T., Silvestre, J., Coste, M., Delmas, F., & Pinelli, E. (2008). Herbicide effects on freshwater diatoms: Introduction of nuclear alterations and silica cell wall abnormalities. Aquatic Toxicology, 88(1), 88–94. https://doi.org/10.1016/j.aquatox.2008.03.011
Della Bella, V., Pace, G., Barile, M., Zedde, A., Puccinelli, C., Ciadamidaro, S., Danieli, P. P., Andreani, P., Aulicino, F. A., Belfiore, C., & Mancini, L. (2012). Benthic diatom assemblages and their response to human stress in small-sized volcanic-siliceous streams of central Italy (Mediterranean eco-region). Hydrobiologia, 695(1), 207–222. https://doi.org/10.1007/s10750-012-1195-9
Dickman, M. D., Peart, M. R., & Yin, W. W. S. (2005). Benthic diatoms as indicators of stream sediment concentration. International Review of Hydrobiology, 90(4), 412–421. https://doi.org/10.1002/iroh.200410806
Dudgeon, D. (2019). Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology, 29(19), R960–R967. https://doi.org/10.1016/j.cub.2019.08.002
Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
Duong, T. T., Nguyen, H. Y., Le, T. P. Q., Nguyen, T. K., Tran, T. T. H., Le, N. D., Dang, D. K., Vu, T. N., Panizzo, V., & McGowan, S. (2019). Transitions in diatom assemblages and pigments through dry and wet season conditions in the Red River, Hanoi (Vietnam). Plant Ecology and Evolution, 152(2), 163–177. https://doi.org/10.5091/plecevo.2019.1627
Dziengo-Czaja, M., Koss, J., & Matuszak, A. (2008). Teratological forms of diatoms (Bacillariophyceae) as indicators of water pollution in the western part of Puck Bay (southern Baltic Sea). Oceanological and Hydrobiological Studies, 50(1), 119–132. https://doi.org/10.2478/v10009-007-0042-1
Falasco, E., & Bona, F. (2011). Diatom community biodiversity in an Alpine protected area: A study in the Maritime Alps Natural Park. Journal of Limnology, 70(2), 157–167. https://doi.org/10.4081/jlimnol.2011.157
Feeley, H. B., Bradley, C., Free, G., Kennedy, B., Little, R., McDonnell, N., Plant, C., Trodd, W., Wynne, C., & Boyle, S. O. (2020). A national macroinvertebrate dataset collected for the biomonitoring of Ireland’s river network, 2007–2018. Scientific Data, 7(208), 1–9. https://doi.org/10.1038/s41597-020-00618-8
Feio, M. J., Hughes, R. M., Casllisto, M., Nichols, S. J., Odume, O. N., Quintella, B. R., Kuemmerlen, M., Aguiar, F. C., Almeida, S. F. P., Alonso-EguíaLis, P., Arimoro, F. O., Dyer, F. J., Harding, J. S., Jang, S., Kaufmann, P. R., Lee, S., Li, J., Macedo, D. R., Mendes, A., … Yates, A. G. (2021). The biological assessment and rehabilitation of the world’s rivers: An overview. Water, 13(3), 371. https://doi.org/10.3390/w13030371
Fisher, J., & Dunbar, M. J. (2007). Towards a representative periphytic diatom sample. Hydrology and Earth System Sciences, 11(1), 399–407. https://doi.org/10.5194/hess-11-399-2007
Fliedner, A., Rüdel, H., Lohmann, N., Buchmeier, G., & Koschorreck, J. (2018). Biota monitoring under the water framework directive: On tissue choice and fish species selection. Environmental Pollution, 235, 129–140. https://doi.org/10.1016/j.envpol.2017.12.052
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772
Garnier, S., Ross, N., Rudis, B., Sciaini, M., Camargo, A. P., & Scherer, C. (2021). Colorblind- friendly color maps for R.
Glendell, M., Palarea-Albaladejo, J., Pohle, I., Marrero, S., McCreadie, B., Cameron, G., & Stutter, M. (2019). Modeling the ecological impact of phosphorus in catchments with multiple environmental stressors. Journal of Environmental Quality, 48(5), 1336–1346. https://doi.org/10.2134/jeq2019.05.0195
Gomez, N., & Licursi, M. (2001). The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology, 35(2), 173–181. https://doi.org/10.1023/A:1011415209445
Gray, N. F. (1998). Acid mine drainage composition and the implications for its impact on lotic systems. Water Research, 32(7), 2122–2134. https://doi.org/10.1016/S0043-1354(97)00449-1
Gray, J. B. V., & Vis, M. L. (2013). Reference diatom assemblage response to restauration of an acid mine drainage stream. Ecological Indicators, 29, 234–245. https://doi.org/10.1016/j.ecolind.2013.01.002
Grimmett, M. R., & Lebkuecher, J. G. (2017). Composition of algae assemblages in middle Tennessee streams and correlations of composition to trophic state. Journal of Freshwater Ecology, 32(1), 363–389. https://doi.org/10.1080/02705060.2017.1314228
Guimarães, P. S., & Garcia, M. (2016). Importância do habitat e do forófito para a composição da comunidade de diatomáceas perifíticas. Iheringia Serie Botanica, 71(1), 99–112.
Harding, W. R., & Taylor, J. C. (2014). Diatoms as indicators of historical water quality: A comparison of samples taken in the Wemmershoek catchment (Western Province, South Africa) 1in 1960 and 2008. Water SA, 40(4), 601–606. https://doi.org/10.4314/wsa.v40i4.4
Herrero, A., Guitiérrez-Cánovas, C., Vigiak, O., Lutz, S., Kumar, R., Gampe, D., Huber-García, V., Ludwig, R., Batalla, R., & Sabater, S. (2018). Multiple stressor effects on biological quality elements in the Ebro River: Present diagnosis and predicted responses. Science of the Total Environment, 630, 1608–1618. https://doi.org/10.1016/j.scitotenv.2018.02.032
Hill, M. O. (1979). TWINSPAN – A FORTRAN Program for arranging multivariate data in an ordered two-way table by classifications of the individuals and attributes. Ithaca.
Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: As improved ordination technique. Vegetatio, 42(13), 47–58. https://doi.org/10.1007/BF00048870
Ho, L., & Goethals, P. (2020). Research hotspots and current challenges of lakes and reservoirs: A bibliometric analysis. Scientometrics, 124, 603–631. https://doi.org/10.1007/s11192-020-03453-1
Kahlert, M., & Rašić, I. S. (2015). Similar small-scale variation of diatom assemblages of different substrates in a mesotrophic stream. Acta Botanica Croatica, 74(2), 363–376. https://doi.org/10.1515/botcro-2015-0021
Kassambara, A., & Mundt, F. (2020). Factoextra: Extract and visualize the results of multivariate data analyses.
Kelly, M. G., & Whitton, B. A. (1995). The Trophic Diatom Index: A new index for biomonitoring eutrophication in rivers. Journal of Applied Phycology, 7(4), 433–444. https://doi.org/10.1007/BF00003802
Kelly, M. G., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Hirst, H., & Yallop, M. (2008). Assessment of ecological status in UK. Rivers Using Diatoms. Freshwater Biology, 53(2), 403–422. https://doi.org/10.1111/j.1365-2427.2007.01903.x
Kim, Y. S., Choi, J. S., Kim, J. H., Kim, S. C., Park, J. W., & Kim, H. S. (2008). The effects of effluent from a closed mine and treated sewage on epilithic diatom communities in a Korean stream. Nova Hedwigia, 86(3), 507–524. https://doir.org/https://doi.org/10.1127/0029-5035/2008/0086-0507
Kókai, Z., Bácsi, I., Török, P., & Buczkó, K. (2015). Halophilic diatom taxa are sensitive indicators of even short term changes in lowland lotic systems. Acta Botanica Croatica, 74(2), 287–302. https://doi.org/10.1515/botcro-2015-0025
Kolkwitz, R., & Marsson, M. (1908). Ökologie der pflanzlichen saprobien. Ver Deutsche Bot Ges, 26, 505–5019.
Lavoie, I., Campeau, S., Fallu, M. A., & Dillon, P. J. (2006). Diatoms and biomonitoring: Should cell size be accounted for? Hydrobiologia, 573(1), 1–16. https://doi.org/10.1007/s10750-0060223-z
Lavoie, I., Lento, J., & Morin, A. (2010). Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. Journal of the North American Benthological Society, 29(2), 586–601. https://doi.org/10.1899/09-062.1
Law, R. J., Elliott, A., & Thackeray, S. J. (2014). Do functional or morphological classifications explain stream phytobenthic community assemblages? Diatom Research, 29(4), 309–324. https://doi.org/10.1080/0269249X.2014.889037
Legendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier.
Lenoir, A., & Coste, M. (1996). Development of a practical diatom index of overall water quality applicable to the French National Water Board network. In B. A. Whitton & E. Rott (Eds.), Use of Algal for Monitoring Rivers (pp. 29–45). Innsbruck University.
López-Barea, J. (1995). Biomarkers in ecotoxicology: An overview. In G. H. Degen, J. P. Seiler, & P. Bentley (Eds.), Toxicology in Transition (pp. 57–85). Springer.
Makarenkov, V., & Legendre, P. (2002). Nonlinear redundancy analysis and canonical correspondence analysis based on polynomial regression. Ecology, 83(4), 1146–1161. https://doi.org/10.1890/0012-9658(2002)083[1146:NRAACC]2.0.CO;2
Martina, L. C., Principe, R., & Gari, N. (2013). Effect of a dam on epilithic algal communities of a mountain stream: Before-after dam construction comparison. Journal of Limnology, 72(1), 79–94. https://doi.org/10.4081/jlimnol.2013.e7
Mbao, E. O., Gao, J., Wang, Y., Sitoki, L., Pan, Y., & Wang, B. (2020). Sensitivity and reliability of diatoms metrics and guilds in detecting the impact of urbanization on streams. Ecological Indicators, 116, 106506. https://doi.org/10.1016/j.ecolind.2020.106506
Mendes, T., Almeida, S. F. P., & Feio, M. J. (2012). Assessment of rivers using diatoms: effect of substrate and evaluation method. Fundamental and Applied Limnology, 179(4), 267–279. https://doi.org/10.1127/1863-9135/2012/0180
Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hendrickx, F., Higuti, J., Lens, L., Martens, K., … Dyck, H. V. (2018). Body-size shifts in aquatic and terrestrial urban communities. Nature, 558(7708), 113–116. https://doi.org/10.1038/s41586-018-0140-0
Moore, M. J. C., Langrehr, H. A., & Angradi, T. R. (2012). A submersed macrophyte index of condition for the Upper Mississippi River. Ecological Indicators, 13(1), 196–205. https://doi.org/10.1016/j.ecolind.2011.06.003
Mora, D., Abarca, N., Proft, S., Grau, J. H., Enke, N., Carmona, J., Skibbe, O., Jahn, R., & Zimmermann, J. (2019). Morphology and metabarcoding: A test with stream diatoms from Mexico highlights the complementary of identification methods. Freshwater Science, 38(3), 448–464. https://doi.org/10.1086/704827
Moreno, J. L., Navarro, C., & De Las Heras, J. (2006). Proposal of an aquatic vegetation index (IVAM) for assessing the trophic status of the Castilla-La Mancha rivers: A comparison with other indexes. Limnetica, 25(3), 821–838.
Morin, S., Bonet, B., Corcoll, N., Guasch, H., Bottin, M., & Coste, M. (2015). Cumulative stressors trigger increased vulnerability of diatom communities to additional disturbances. Microbial Ecology, 70, 585–595. https://doi.org/10.1007/s00248-015-0602-y
Olenici, A., Blanco, S., Borrego-Ramos, M., Momeu, L., & Baciu, C. (2017). Exploring the effects of acid mine drainage on diatom teratology using geometric morphometric. Ecotoxicology, 26(8), 1018–10330. https://doi.org/10.1007/s10646-017-1830-3
Pandey, L. K., Kumar, D., Yadav, A., Rai, J., & Gaur, J. P. (2014). Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecological Indicators., 36, 272–279. https://doi.org/10.1016/j.ecolind.2013.08.002
Pandey, L. K., & Bergey, E. A. (2016). Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Science of the Total Environment, 550, 372–381. https://doi.org/10.1016/j.scitotenv.2015.11.151
Pandey, L. K., Bergey, E. A., Lyu, J., Park, J., Choi, S., Lee, H., Depuydt, S., Oh, Y. T., Lee, S. M., & Han, T. (2017). The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Research, 118, 39–58. https://doi.org/10.1016/j.watres.2017.01.062
Pandey, L. K., Sharma, Y. C., Park, J., Choi, S., Lee, H., Lyu, J., & Han, T. (2018). Evaluating features of periphytic diatoms communities as biomonitoring tools in fresh, brackish and marine waters. Aquatic Toxicology, 194, 67–77. https://doi.org/10.1016/j.aquatox.2017.11.003
Pandey, L. K. (2020). In situ assessment of metal toxicity in riverine periphytic algae as a tool for biomonitoring of fluvial ecosystems. Environmental Technology & Innovation, 18, 100675. https://doi.org/10.1016/j.eti.2020.100675
Park, J., Bergey, E., & A., Han, T., & Pandey, L. K. (2020). Diatoms as indicators of environmental health on Korean islands. Aquatic Toxicology, 227, 105594. https://doi.org/10.1016/j.aquatox.2020.105594
Passy, S. I., & Bode, R. W. (2004). Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia, 524(1), 241–252. https://doi.org/10.1023/B:HYDR.0000036143.60578.e0
Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradient in running waters. Aquatic Botany, 86(2), 171–178. https://doi.org/10.1016/j.aquabot.2006.09.018
Pham, T. L. (2020). Using benthic diatoms as bioindicator to assess rural-urban river conditions in tropical area: A case study in the Sai Gon River, Vietnam. Pollution, 6(2), 387–398. https://doi.org/10.22059/POLL.2020.292996.716
Piano, E., Falasco, E., & Bona, F. (2017). Mediterranean rivers: consequences of water scarcity on benthic algal chlorophyll a content. Journal of Limnology, 76(s1), 39–48. https://doi.org/10.4081/jlimnol.2016.1503
Potapova, M., & Charles, D. F. (2007). Diatom metrics for biomonitoring eutrophication in rivers of the United States. Ecological Indicators, 7(1), 48–70. https://doi.org/10.1016/j.ecolind.2005.10.001
Potapova, M., & Hamilton, P. B. (2007). Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. Journal of Phycology, 43(3), 561–575. https://doi.org/10.1111/j.1529-8817.2007.00332.x
Prygiel, J., Carpentier, P., Almeida, S., Coste, M., Druart, J. C., Ector, L., Guillard, D., Honoré, M. A., Iserentant, R., Ledeganck, P., Lalanne-Cassou, C., Lesniak, C., Mercier, I., Moncaut, P., Nazart, M., Nouchet, N., Peres, F., Peeters, V., Rimet, F., … Zydek, N. (2002). Determination of the biological diatom index (IBD NF T 90–354): Results of an intercomparison exercise. Journal of Applied Phycology, 14(1), 27–39. https://doi.org/10.1023/A:1015277207328
R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
Richards, J., Tibby, J., Barr, C., & Goonan, P. (2020). Effect of substrate type on diatom-based water quality assessments in the Mount Lofty Ranges South Australia. Hydrobiologia, 847(14), 3077–3090. https://doi.org/10.1007/s10750-020-04316-9
Rimet, F. (2012). Recent views on river pollution and diatoms. Hydrobiologia, 683, 1–24. https://doi.org/10.1007/s10750-011-0949-0
Rimet, F., & Bouchez, A. (2012). Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowledge and Management of Aquatic Ecosystems, 406, 1–12. https://doi.org/10.1051/kmae/2012018
Rimet, F., Gusev, E., Kahlert, M., Kelly, M. G., Kulikovskiy, M., Maltsev, Y., Mann, D. G., Pfannkuchen, M., Trobajo, R., Vasselon, V., Zimmermann, J., & Bouchez, A. (2019). Diat.barcode, na open-access curated barcode library for diatoms. Scientific Reports, 9, 15116. https://doi.org/10.1038/s41598-019-51500-6
Rivera, M. J., Luís, A. T., Grande, J. A., Sarmiento, A. M., Dávila, J. M., Fortes, J. C., Córdoba, F., Diaz-Curiel, J., & Santisteban, M. (2019). Physico-chemical influence of surface water contaminated by acid mine drainage on the populations of diatoms in dams (Iberian Pyrite Belt, SW Sapin). International Journal oh Environmental Research and Public Health, 16(22), 4516. https://doi.org/10.3390/ijerph16224516
Rivera, M. J., Santisteban, M., Aroba, J., Grande, J. A., Dávila, J. M., Sarmiento, A., Fortes, J. C., Curiel, J., & Luís, A. T. (2020). Application of fuzzy logic techniques for biogeochemical characterization of dams affected by acid mine drainage (AMD) process in the Iberian Pyrite Belt (IPB) Spain. Water Air and Soil Pollution, 231(4), 142. https://doi.org/10.1007/s11270-020-04501-5
Rodríguez, P., Garraza, G. G., García, V., Granitto, M., & Escobar, J. (2020). Beaver dam effect of phytoplankton and periphyton composition and hydrology in streams from Tierra del Fuego (Argentina). Hydrobiologia, 847(6), 1461–1477. https://doi.org/10.1007/s10750-020-04201-5
Rumeau, A., & Coste, M. (1988). Initiation a la systématique des Diatomées d’eau douce pour l’ utilization pratique d’um ndice diatomique générique. Bulletin Francais De La Pêche Et Le La Pisciculture, 309, 1–69.
Rusanov, A. G., Stanislavskaya, E. V., & Ács, E. (2012). Periphytic algal assemblages along environmental gradients in the rivers of the Lake Ladoga basin, Northwestern Russia: Implication for the water quality assessment. Hydrobiologia, 695(1), 305–327. https://doi.org/10.1007/s10750-012-1199-5
Salomoni, S. E., Rocha, O., Callegaro, V. L., & Lobo, E. A. (2006). Epilithic diatoms as indicators of water quality in the Gravataí River, Rio Grande do Sul, Brazil. Hydrobiologia, 559, 233–246. https://doi.org/10.1007/s10750-005-9012-3
Schowe, K. A., & Harding, J. S. (2014). Development of two diatom-based indices: A biotic and multimetric index for assessing mine impacts in New Zealand streams. New Zealand Journal of Marine and Freshwater Research, 48(2), 163–176. https://doi.org/10.1080/00288330.2013.852113
Shen, R., Ren, H., Yu, P., You, Q., Pang, W., & Wang, Q. (2018). Benthic diatoms of the Ying River (Huaihe River Basin, China) and their application in water trophic status assessment. Water, 10(8), 1013. https://doi.org/10.3390/w10081013
Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Were do we go from here? Trends in Ecology and Evolution, 24(4), 201–207. https://doi.org/10.1016/j.tree.2008.11.009
Souza, G. B. G., & Vianna, M. (2020). Fish-based indices for assessing ecological quality and biotic integrity in transitional waters: A systematic review. Ecological Indicators, 109, 105665. https://doi.org/10.1016/j.ecolind.2019.105665
Stevenson, R. J., Pan, Y., & Van Dam, H. (2010). Assessing environmental conditions in rivers and streams with diatoms. In J. Smol, & E. Stoermer (Eds.), The diatoms: Applications for the environmental and earth sciences (2th ed., pp. 57–85). Cambridge University Press.
Stubbington, R., Paillex, A., England, J., Barthès, A., Bouchez, A., Rimet, F., Sánchez-Montoya, M. M., Westwood, C. G., & Datry, T. (2019). A comparison of biotic groups as dy-phase indicators of ecological quality an intermittent rivers and ephemeral streams. Ecological Indicators, 97, 165–174. https://doi.org/10.1016/j.ecolind.2018.09.061
Tapolczai, K., Keck, F., Bouchez, A., Rimet, F., Kahlert, M., & Vasselon, V. (2019). Diatom DNA metabarcoding for biomonitoring: Strategies to avoid major taxonomical and bioinformatical biases limiting molecular indices capacities. Frontiers in Ecology and Evolution, 7, 1–15. https://doi.org/10.3389/fevo.2019.00409
Taylor, J. C., Harding, W. R., Archibald, C. G. M., & Rensburg, L. V. (2005). Diatoms as indicators of water quality in the Jukskei-Crocodile river system in 1956 and 1957, a re-analysis of diatom count data generated by Bj Cholnoky. Water SA, 31(2), 237–246. https://doi.org/10.4314/wsa.v31i2.5176
ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179. https://doi.org/10.2307/1938672
Townsend, S. A., & Gell, P. A. (2005). The role of substrate type on benthic diatom assemblages in the Daly and Roper Rivers of the Australian wet/dry tropics. Hydrobiologia, 548(1), 101–115. https://doi.org/10.1007/s10750-005-0828-7
Tudesque, L., Grenouillet, G., Gevrey, M., Khazraie, K., & Brosse, S. (2012). Influence of small-scale gold mining on French Guiana streams: Are diatom assemblages valid disturbance sensors? Ecological Indicators, 14(1), 100–106. https://doi.org/10.1016/j.ecolind.2011.07.018
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3
Vidaković, D. P., Radovanović, S. S., Predojević, D. D., Šovran, S. I., Živić, I. M., Stojanović, K. Z., & Krizmanić, J. Ž. (2018). Uncertainty of using habitat fidelity in biomonitoring based on benthic diatoms- the Raška River case study. Biologia, 73, 831–839. https://doi.org/10.2478/s11756-018-0108-4
Vilmi, A., Karjalainen, S. M., & Heino, J. (2017). Ecological uniqueness of stream and lake diatom communities show different macroecological patterns. Biodiversity Research, 23(9), 1042–1053. https://doi.org/10.1111/ddi.12594
Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3), 706–723. https://doi.org/10.1899/04-028.1
Wen, Y., Schoups, G., & Giesen, N. (2017). Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/srep43289
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer.
Wojtal, A. Z., & Sobczyk, Ł. (2012). The influence of substrates and physicochemical factors on the composition of diatom assemblages in karst springs and their applicability in water-quality assessment. Hydrobiologia, 695(1), 97–108. https://doi.org/10.1007/s10750-012-1203-0
Wu, N., Cai, Q., & Fohrer, N. (2012). Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecological Indicators, 18, 108–117. https://doi.org/10.1016/j.ecolind.2011.10.013
Zalack, J. T., Smucker, N. J., & Vis, M. L. (2010). Development of a diatom index of biotic integrity for acid mine drainage impacted streams. Ecological Indicators, 10(2), 287–295. https://doi.org/10.1016/j.ecolind.2009.06.003
Acknowledgements
We thank Maria Gabrielle Rodrigues Maciel for helping with the species list and two anonymous reviewers for providing critical, useful suggestions during the review process.
Funding
This study was partly funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Costa, A.P.T., Schneck, F. Diatoms as indicators in running waters: trends of studies on biological assessment and monitoring. Environ Monit Assess 194, 695 (2022). https://doi.org/10.1007/s10661-022-10383-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-022-10383-3

